CHAPTER 1 \E come Aboard

Welcome to Learn Java on the Macintosh. By picking up this book, you have taken the first step toward learning the
Java programming language. Y ou're about to learn the most powerful and exciting computer language in wide use

today.

What's in This Package?

Learn Java on the Macintoshis a book/CD-ROM package. The book isfilled with diagrams, explanations, examples,
and exercises designed to teach people new to programming the basics of how to program in Java. Thisbook istailor-
made for people who do not have a programming background but want to learn Java as their first programming lan-
guage. WEe' Il start at the very beginning by explaining what programming isall about before moving into the specifics
of Javaand Java applets (an applet is a Java program that runs over the Web). By working through the examples and
exercises found in this book, you can use this book as a self-study guide to build a solid foundation for your explora-

tions of the Javalanguage.

In the back of the book you'll find a compact disc (CD-ROM) that includes a customized version of
Metrowerks CodeWarrior, one of the most popular development environments for the Macintosh. The CD-ROM
also contains all of the sample code explored in this book, as well asthe answersto all the exercises. You'll use the
CodeWarrior development environment to work with the example Java programs shown in this book and to write

your own Java programs.

Barry Boone and Dave Mark Learn Java on the Macintosh 2

Why Learn Java?

Javaisfast becoming the standard in software development, primarily because it is transforming the World Wide
Weh. While Javais arelatively new language in the evolution of programming, Javais already talked about and used
everywhere. There are many good reasons for this, and you'll gain strong insights into these reasons as you progress
through this book. By the time you’ ve reached the last chapter, you'll be ready to take part in the community of

knowledgeabl e Java programmers, and you'll be able to make the Web come alive by writing applets of your own.

What Should You Know to Get Started?

First of al, you do not already need to know how to program in some other language to learn Java. Javaisasimpler
language than other programming languages in use today, including C and C++. However, though the language itsel f
issimpler, there are afew conceptsto get straight first before you divein and start writing code. Chapters 3 and 4 ease
you into the Java mind set before you begin learning the language itself starting in Chapter 5. So hang through the

introductory chapters; we'll get to the good stuff soon.

To use the CD-ROM effectively, you do need to know how to use a Macintosh and how to use the mouse
to make selections and open and close windows. Do you know how to double-click an application to start it up?
Doesthe scralling list in Figure 1.1 look familiar? If you use the Macintosh to run programs and edit documents,
you have all the skills you need to get started learning Java. And if you have a desire to learn a programming

language, you have the only prerequisite you need!

Barry Boone and Dave Mark Learn Java on the Macintosh 3

Open Document:

|=5,| My Documents v |

O Applications — BlueHorse
O Games

O Internet

[0 Memos

[0 Miscellaneous

<] Preview

Eingd

Desktop

Cancel

R

Help

<

Format: [All available |

[] Show All Files

Figure 1.1 Scrolling through alist of documents.

It's helpful to be familiar with the various kinds of applications available for your Mac. The more familiar
you are with what modern, graphical applications ook like—such as word processors, drawing programs, games,
persona finance software, and so on—the better sense you'll have for what your own applets should look like, as

well.

It's also important to have had experience with using the Web. This book assumes you already have used

browsers to tour the Web and are up-to-date on the latest browsers that incorporate Java.

Barry Boone and Dave Mark Learn Java on the Macintosh

What Equipment Will You Need?

Although you can learn the basic concepts of Java just by reading this book, you'll get the most out of Learn Java on
the Macintosh if you run each example program as you read how it works. To do this, you'll need a Macintosh with a
68020, 68030, 68040, or PowerPC processor; at least 8 megabytes of memory; System 7.1 or a newer version (for
68K -based Macintosh computers) or System 7.1.2 or a newer version (for Power Macintosh computers); and, of
course, a CD-ROM drive so you can install your new programming environment. If you already have Metrowerks
CodeWarrior, you'll still want a CD-ROM drive to install the sample code and exercises contained on the CD-ROM.
(If you are using a version of the Mac OS before System 7.5, you must also obtain and install Apple’'s Thread Man-
ager extension into your extensions folder. Appendix G contains references for where to look for this software and

how to find other information relating to Java and CodeWarrior.)

The Lay of the Land

There arefifteen chaptersin this book, plus seven appendices.

Chapter 1 (this chapter) provides an introduction to what you'll find in this book and what this book is all

about.

Chapter 2 introduces you to the CD-ROM portion of this book/CD-ROM package. You'll learn about
CodeWarrior, the Java programming environment that you' Il use to run all of the programs in this book. This
chapter explains how to install the software that's on the CD-ROM (you'll use this software to develop your own

Java applets and to learn the Java language) and how to test CodeWarrior to ensure it’s working properly.

Barry Boone and Dave Mark Learn Java on the Macintosh 5

Chapter 3 offers an overview of programming for the World Wide Web and shows you how Javafitsinto
the Web picture. Just how does a Web browser arrange a Web page? And what does the browser do when it

encounters a Java applet in a Web page?

Chapter 4 begins the exploration of concepts central to Java programming. It's always a good idea to
design aprogram as thoroughly as you can before you begin writing code; this chapter suggests four questions you
should try to answer before you turn to writing your software. This chapter aso introduces three terms you may
have already heard people mention in relation to Java: class, object, and method. Y ou’ll explore these terms by

working through a detailed example, without yet writing any code, that illustrates how to design Java applets.

Chapter 5 introduces the steps you'll follow when you devel op a Java applet. By creating the simplest
possible Java applet, you'll learn how to work with CodeWarrior to create a new program, edit afile to write your

own Java program, get your Java program ready to run, and then execute your program.

Chapters 6 explores the basics of most programming languages, including Java: Variables and operators.
When you finish this chapter, you'll have tasted your first morsels of real programming. You'll know how to
declare avariable and how to use operators to store datain your variables. In particular, you'll learn about ways to

refer to numbersinside your program. You'll even learn alittle bit about programming with style!

Chapter 7 provides an introduction to defining and invoking chunks of code called methods. You'll also
learn how to hook into the communication that takes place between the browser and your own Java applet to start to

customize your applet.

Chapter 8 moves into the true potential of programming languages by discussing flow control. You'll learn
how to use Java programming constructs, such asi f , whi | e, andf or loops, to control the direction of your

program and indicate when to execute certain sets of instructions instead of others.

Barry Boone and Dave Mark Learn Java on the Macintosh 6

Chapter 9 explores how to create and use objects that are based on your classes. You'll keep track of data
by using objects, and you'll provide behavior for your objects by writing methods. Once you’ ve completed this

chapter, you'll know many of the concepts central to Java.

Chapter 10 introduces you to lots of classes provided for you by Java that you can use in your own applets.

You'll learn how to extend Java s classes to add your own data and behavior to what Java provides by default.

Chapter 11 discusses what it means to create a graphical user interfacein Java. You'll learn the necessary
steps for creating your own windows, buttons, and text input fields, and you'll learn how to paint picturesin your
applet’ swindow. Creating a graphical user interface will enable your Java applets to become part of the World

Wide Web. You'll also learn how to respond to mouse clicks and keyboard entry to create truly interactive applets.

Chapter 12 returnsto variables and data types to cover some more ways to store data in your classes,
objects, and methods. These include floating point values, characters, strings, collections of data called arrays, and

mini-databases called vectors and hashtables.

Chapter 13 divesinto afew advanced topics that can help you write even more powerful programs. For
example, you'll learn how you can get into the act of creating new objects from your own classes by defining
constructors, how to signal error conditions using exceptions, and you'll gain an introduction to other conceptsin

Java. You'll also learn how your HTML pages can pass data to your applets.

Chapter 14 provides an overview of how you can create stand-alone Java applications in addition to the
applets you' ve devel oped to run on the Web. Stand-alone applications offer all of the features of applets without

requiring your computer to be connected to the Internet at all.

Chapter 15 offers a path for further exploration. Now that you’ ve surveyed the basics of the Javalanguage
and have achieved a solid grasp of how to program in Java, what more is there? This chapter shows you where to
look to learn more about Java s more advanced topics, such as using threads to make more than one thing occur at

the same time.

Barry Boone and Dave Mark Learn Java on the Macintosh

Appendix A isaglossary of the technical terms used in this book.

Appendix B contains alisting of all of the programs discussed in this book. Y ou might find this appendix
particularly useful if you're looking for an example of some Java code in action, such as how to define a method,

how to create a new object, or how to writeaf or loop.

Appendix C provides a summary for the syntax of each of the Java statements and keywords introduced in

this book. Need an exact specification of aswi t ch statement? It sright herein Appendix C.

Appendix D provides some more details about the version of Metrowerks CodeWarrior included on the
CD-ROM. It also describes the differences between the version of CodeWarrior provided here and the commercial

version.

Appendix E presents exercises for each chapter that you can use to turn this book into a self-study guide.

Appendix F provides answers to the exercises.

Appendix G points the way to other books and resources on the Internet for learning more about

programming in Java

Conventions Used in this Book

Asyou read this book, you'll encounter afew standard conventions that make this book easier to read. For example,
technical terms appearing for thefirst time arein boldface. Y ou'll find most of thesetermsin the glossary in Appendix

A.

Barry Boone and Dave Mark Learn Java on the Macintosh 8

All of the source code examples in this book are presented using a special font, known asthe code
f ont . Thisincludes source code fragments that appear in the middle of running text. Menu items, or items you'll

click on, appear in Chicago font.

Occasionally, you'll come across ablock of text set off in abox, like this. These blocks are called tech blocksand are
intended to add technical detail to the subject currently being discussed. Each tech block will fit into one of five cate-
gories. “By the Way,” “Style,” “Detail,” “ Definition,” and “Warning.” Each category hasits own specia icon, which
will appear to the | eft of the tech block. Asthe namesimply, “By the Way” tech blocks are intended to be informative
but not crucial. “ Style” tech blocks contain information relating to your Java programming style. “Detail” tech blocks
offer more detailed information about the current topic. “ Definition” tech blocks contain the definition of an impor-
tant Javaterm. “Warning” tech blocks are usually trying to caution you about some potential programming problem,

SO pay attention!

Review

This book provides an introduction to Javafor new programmers. By using the Java devel opment environment avail-
able on the CD-ROM included with this book, you'll be able to work through all of the syntax, grammar, and con-

cepts required to begin mastering the Java language.

What's Next?

You'reready toroll! In Chapter 2, you'll install the software that’s on the CD-ROM and explore the CodeWarrior

environment so that you can begin running the samplesin this book and writing your own Java programs.

Barry Boone and Dave Mark Learn Java on the Macintosh 9

CHAPTER 2 I ngal | I ng and Tal ng
Codearrior Lite

Tucked into the back of this book isaCD containing aspecia version of CodeWarrior, one of the leading Macintosh
programming environments. This specia version is CodeWarrior Lite, and it provides you with all the tools you'll

need to work with the programming examples presented in this book.

This chapter will guide you through installing and testing CodeWarrior Lite. We'll run an applet here that
writes“Hello, World!” in itswindow, but we'll skim over the specifics concerning how the applet actually makesthis
occur. The rest of this book coversthis kind of thing in detail. But before we dive into the deep ocean of Java pro-

gramming, let’s get you up and running with CodeWarrior Lite.

Installing CodeWarrior Lite

When you insert the Learn Java CD into your CD-ROM drive, the main Learn Java CD window will appear on your
desktop. (If this window does not appear automatically, double-click the CD icon that appears on your desktop.) In
the center of that window is the CodeWarrior Lite Installer icon (Figure 2.1). Double-click that icon to launch the

installer.

C'w Lite Installer

Barry Boone and Dave Mark Learn Java on the Macintosh 10

FIGURE 2. 1 The CodeWarrior Lite Installer.

By the Way

If you already own version 9.0 or higher of CodeWarrior, you may want to skip the installation of CodeWarrior Lite.
If that isthe case, just drag the Learn Java Projects folder from the top level of the CD onto your hard drive. If you do
run into problems, try removing the full CodeWarrior from your hard drive (only do this if you have a backup or the

original installation CD around, however!) and install CodeWarrior Lite instead.

When you start the installer, the first thing you' ll seeisthe CodeWarrior Lite information screen. Click the
Continue button. Next, alicense agreement will appear in a scrolling window. Read the license agreement (you'll
love it); then click the Continue button. Thistime, you'll be presented with alist of possible installation configura-
tions (Figure 2.2). In this version of CodeWarrior, there' s only one configuration, named “ Standard Install,” which
will require about 18 megs of free hard drive space. If you've got the space, click the Install button. Otherwise,

click Quit and go make some room.

Barry Boone and Dave Mark Learn Java on the Macintosh 11

Install the following:
Standard Install

o

¢|

@ Installs Code'warrior Lite™,

Inztallation requires: 17307K

[Ouit]|| Install ||

FIGURE 2. 2 The CodeWarrior Liteinstaler. Do you have enough free space on your hard drive?

After theinstallation is complete you will still need to do one thing: At thetop level of the Learn Java CD is
afolder named Learn Java Projects that contains all of the book’ s programs. Drag this folder from the CD onto your
hard drive. Once you have done this you will no longer need the CD (though you might want to keep it around as a

backup). Also, if the installer suggests that you restart your Mac, make sure you do so before proceeding with the rest

of this chapter.

Barry Boone and Dave Mark Learn Java on the Macintosh 12

Testing CodeWarrior Lite

Now that CodeWarrior Liteisinstalled, let’ stakeit for aspin. Open the Learn Java Projectsfolder on your hard drive;
then open the subfolder named 02. 01 - hel | o, wor | d. You should see awindow similar to the one shownin

Figure 2.3.

.E|_|E 02.01 - hello, world EEEI
S items 2184 MB in disk 12.2 MB availab
s ; ; =

: = =
Helloworld.p Helloworld.java HelloWworld.htimi =
&l B

FIGURE 2. 3The02.01 - hell o, worl d folder.

Thethreefilesin thiswindow contain the ingredients you'll use to build your very first Java applet.

Double-click thefile Hel | oWbr | d. p. A window just like the one shown in Figure 2.4 should appear.

Sd———— HellolWorld.) ——"——01]
[#] Fite Code Data W
T w .Jawa Source 0 0 [|5r
w Hello%orld. java o 0 =
w classes.zip 0 ai]
= HTML files 0 o =
..................... Helloworldftrl b D nfal WL
T
3 file(s) 0 0]

Barry Boone and Dave Mark Learn Java on the Macintosh 13

FIGURE 2. 4 TheHel | oWor | d. p project window.

Thiswindow is called the proj ect window. It containsinformation about the files used to build a Java appl et.
Sincethisinformationisstored inthefileHel | oWor | d. p, thisfileisalso known asaproject file A filethat endsin
the characters .pislikely to be a project file. (By the way, you cantypea ‘[’ onthe Mac, which is a Greek letter pro-

nounced “mu”, by holding down the option key and typing the letter ‘m’.)

Warning

If you got a message telling you that the document Hel | oWbr | d. p could not be opened, restart your Mac and try
again. If this still doesn’t work, try rebuilding your desktop. To do this, restart your Mac and then press the command
and option keys simultaneously. Keep holding both keys down until the Mac asks you if you'd like to rebuild your

desktop. Click OK and go watch MTV for afew minutes until it's done.

If some other window appears instead of the one shown in Figure 2.4, you double clicked the wrong file.

That’s no problem; quit CodeWarrior and try double-clicking thefile Hel | oWor | d. p again.

The project window shown in Figure 2.4 issplit into two sections. Thefirst section, titled “ Java Source,” lists
the files that contain the Javasour ce code for your application. Source code is a set of instructions that determine
what your application will do and when it will do it. The HelloWorld project contains two Java source files. Thefirst,
named Hel | oWor | d. j ava, contains the specific Javainstructions that define the applet that will make the words
“Hello, World!” appear in the applet. The second file, cl asses. zi p, identifies afile containing code supplied by

Javathat gets combined into all your applets.

The second section, titled “HTML files,” contains a single Hypertext Markup Language (HTML) file called
Hel | oWor | d. ht m . Let'stakealook at thisHTML file before looking at the Java source code. Double-click this
file name in the project window. Thiswill open awindow displaying the contents of the HTML file and will look like

Figure 2.5.

Barry Boone and Dave Mark Learn Java on the Macintosh 14

EDE HelloWorld.hitml EE'
‘applet codebase="Hel lolor1d" code="Hel |lolorld.class" width=250 height=50% ﬁ
{fapplet: =9

A

MEIE] |Line: 1 | [« =y

FIGURE 2. 5 The contents of theHel | oWwbr | d. ht ni file.

Thissimple HTML file specifies two things. First, it specifies the name of afile containing the applet to run
and whereto find it. Thisfile nameisgivenasHel | oWbr | d. cl ass (as specified by code=), and itslocation is
given asthe folder namedHel | oWor | d (as specified by codebase=). Second, it specifies the width and height of

the window in which the applet will appear. Thissizeis given as 250 pixels wide by 50 pixels high.

Even though the HTML file specifies that the applet is contained in afile named Hel | oWor | d. cl ass, if
you did asearch of your Mac hard drive right now you would not find afile named Hel | oWbr | d. cl ass. Butdon't

worry: Creating . cl ass filesiswhat CodeWarrior is all about! We'll create thisfile in just a moment.

Y ou can display thisHTML file using a Web browser that supports Javato run your applet. Another way to
run an applet in CodeWarrior isto drop an HTML file that references your applet onto an application supplied with
CodeWarrior called Metrowerks Java. Doing this launches M etrowerks Java, which then runsthe appl et referenced by

the HTML file.

Before we run the applet, we have to create the file named Hel | oWor | d. cl ass. Let's start by taking a
look at the source codein Hel | oWbr | d. j ava. Double-click thelabel Hel | oWbr | d. j ava. A source code win-
dow will appear containing the source code inthefileHel | oWbr | d. j ava (Figure 2.6). Thisisyour first Java pro-

gram.

Barry Boone and Dave Mark Learn Java on the Macintosh 15

ublic class HelloHorld extends jova.applet.Applet {

public void paintdjaua.awt . Graphics g 1
g.drawStringt"Hel o, world!™, 100 , 257;
¥

¥
MEE| |Line: 2 | |}

FIGURE 2. 6 The source code window with the source code from the fileHel | oWor | d. j ava.

The HelloWorld program tells the computer to display the text “Hello, world!” inside the applet’s window.

Don't worry about the how this works right now. We'll get into all that later on. For now, |et’s create the applet and

crank it up.

Go to the Project menu and select Make (alternatively, you can hold down the command key and typed
theletter ‘m’). CodeWarrior now doestwo things. First, it creates the folder named Hel | oWbr | d. Second, it creates
thefilenamed Hel | oWor | d. cl ass and placesthisfileinto theHel | oWor | d folder. These will show up inthe

same folder that contains your source code and are shown in Figure 2.7.

Barry Boone and Dave Mark Learn Java on the Macintosh 16

SH=—— 02.01 - hello, world =—"c——=0
g items 1705 MEB in disk 60.4 MB avails

%
| 4= =

HelloWworld.pt Helloworld java HelloWorld.html

in

Hello'world
<d| =5

Frrri
Frrri
rFFrri

|

FIGURE 2. 7 Thefolder 02. 01 - hel |l o, wor | d with the addition of the HelloWorld folder. Inside the

HelloWorld folder isthefileHel | oWor | d. cl ass.

Hel | oWor | d. cl ass isthefilereferenced fromHel | oWor | d. ht ml . Thisfile known isacompiled
classfile. The compiled class file contains the definition for your applet that’s ready to run as part of the Web. Thisis

what CodeWarrior does: It turns your Java source files into files that can be run as part of the Web.

Open thefolder named Hel | oWor | d totakealook at theicon for thefileHel | oWbr | d. cl ass. Thisfile

will appear asin Figure 2.8.

[
-i“l-

Helloworld.class

FIGURE 2. 8 The compiled classfile generated by CodeWarrior, called Hel | oWbr | d. cl ass.

By the Way

Barry Boone and Dave Mark Learn Java on the Macintosh 17

Who'sthis funny-looking cartoon character that appears on the Java class file icon and in other placesrelating to
Java? Thisguy’ snameis Duke, and he’ sthe unofficial mascot of the Javalanguage. (M ost programming languages do
not have mascots, but you're in luck with Java.) You'll run across him in various places as you pursue your investiga

tionsinto Java.

Y ou can close the HellowWorld folder once you’ ve seen the compiled class file. Now for the good part: Run
the applet by dragging and dropping the icon for the HTML file that’sin your HelloWorld project folder (that is, the
one named Hel | oWor | d. ht m) onto the Metrowerks Javaapplicationicon. You'll find the Metrowerks Java appli-
cation icon in your Metrowerks CodeWarrior folder. (Figure 2.9 shows what these folders and application icons ook

like. Also check out Figure 2.11 for pictures of what's happening here.)

Metrowerks EdeWarrinr

%

Metrowerks Java
Metrowerks Java.

FIGURE 2. 9 The Metrowerks CodeWarrior folder contains the Metrowerks Java folder, which contains the

Metrowerks Java application.

Barry Boone and Dave Mark Learn Java on the Macintosh 18

The very first time you try to run an applet using Metrowerks Java, awindow may appear that informs you
that you are about to run a Java applet. Metrowerks Java presents this message mainly because Java makes an incred-
ible effort to ensure that no applets do damage to your Mac (or to any other computer on which you run the appl et).
Thismessage is perfectly normal. To acknowledge that you wish to run Java applets, which iswhat you'll do through-

out this book, click the Accept button at the bottom of the information window.

Once you drop the HTML file onto the Metrowerks Java application and you indicate you wish to run the

applet, two windows will appear.

By the Way

WEe Il use the drag-and-drop method in this book to run applets, but there might be other ways to run applets by the
time the CodeWarrior development environment is complete for Java. (Of course, you can always run the applet in a
Java-enabled Web browser.) Check the documentation with your development environment for more information on

other ways to run your applets.

Thefirst window istitled Java Output. The Java Output window will look like the one shown in Figure 2.10.
Thiswindow provides a place for the Metrowerks Java application as well as for applets themselvesto display infor-

mation to the devel oper.

-

SfI=—————————— Java Dutput

Executing: jowai sun.applet. Appletliswer
fBlueHor=e /LearnB20Jauval20Projects820KR /02 . 01820-820he] 1o, B20wor 1dHel lobor 1d himl
Completedddl

[

<]

| E2

Barry Boone and Dave Mark Learn Java on the Macintosh 19

FIGURE 2. 10 The Java Output window contains messages from the Metrowerks Java application and from the

applet itself.

By the Way

Y ou may notice the words Bl ueHor se at the start of the path that indicates wherethe . ht ml fileislocated on the
Mac. These screen shots reflect the particular Mac on which they were made (that is, on this Mac, the hard disk was
named Bl ueHor se). Thisname will vary, of course, from Mac to Mac. When run on your particular computer, the

Java Output window will display the name of your hard disk instead.

Looking at this Java Output window, you can see that Metrowerks Java provides some information so you
can tell what’ s happening behind the scenes. Metrowerks Java finds and reads the class file referenced by the HTML

file. Thisis known asloading the class.

By the Way

These messages appear in the Java Output window when the default for the Applet Viewer is“verbose.” Check the

documentation that comes with your environment to see how you might be able to adjust this setting in CodeWarrior.

After the classisloaded, Metrowerks Java starts up the appl et using the Applet Viewer. The Applet Viewer is
the second window that appears when your drop the HTML file onto Metrowerks Java. The Applet Viewer is
CodeWarrior’ sway of simulating a\Web browser so that you can work with your applets from within the CodeWarrior
environment (that is, without turning away from CodeWarrior and starting up a different browser application). The
Applet Viewer knows how to display the applet referenced by the HTML file, though it will not display any other
information defined by the HTML file.Metrowerks Java runs the applet in the Applet Viewer. Asyou can see from

Figure 2.11, the applet simply displays the words “Hello, world!” in the center of the window.

Barry Boone and Dave Mark Learn Java on the Macintosh 20

drag and drop

Frrri

Helloworld.html

HTML fileicon

- &

Metrowerks Java.

Metrowerks Java application icon

—

Y

find the applet classfile referenced by the HTML file

[,

.| k>

HelloWworld.class

load the applet classfile
display the Java Output window

start the Applet Viewer

run the applet in the Applet Viewer

\

=[0= Applet Diewer: HelloWorld.class ==

applet started

Hello, sworld!

FIGURE 2. 11 What happens when you run an applet.

Once you are done admiring this amazing applet, select Quit from the File menu. Thiswill quit Metrow-

erks Java and the Applet Viewer, and you'll be back in CodeWarrior Lite.

Before we leave, check out at the project window again (you can reopen it by double-clicking the fileHel -

| oWor | d. pif you've already closed the project window). If you look closely, you' [l see numbers appear in each

Barry Boone and Dave Mark Learn Java on the Macintosh

21

row of the project window, where before there were only 0s. Thisis shown in Figure 2.12. These numbersindicate the

size of the resulting application code in bytes.

|§|JE HE"D“.IDI"[L].I EI_HEi
[#] Fite Code Data W
= Jawa Source © 540 I i
Helloworld. java i 549 0l =
classes. zip [}
i 5 o~
..................... Helloworldftred ohnfalondal WL
<
= file(s) 549 0 23

FIGURE 2. 12 The project window reveal sthe size of the application in bytes once the application has been created.

We'redl donefor now. You can quit CodeWarrior Liteif you'd like to. If you're asked if you want to save
the results of your program, select Don’t Save and let’s move on. (If you click theSave button, the results pro-
duced by your program are saved as atext file, which you can then open by using CodeWarrior or your favorite word

processor.)

Congratulations! Y ou’ ve just built and run your first Java applet!

Review

You veinstalled the CodeWarrior Lite development environment and even created and run your first Java applet.
Y ou’ ve poked around the CodeWarrior environment alittle, exploring the project file, the HTML file, and the Java
sourcefile. Y ou may have some questions relating to what you’ ve seen. Rest assured, these will al be answered soon

enough. For now, with CodeWarrior up and running, you're all set to forge ahead!

Barry Boone and Dave Mark Learn Java on the Macintosh 22

What's Next?

The next two chapters provide a context for understanding Java. Chapter 3 looks at Javain relation to the Web. You'll
learn the important concepts behind Web programming and why Javais a great language to use for writing programs
that run over the Web. We'll also touch on some concepts that will help you understand the files you created when you
compiled the HellowWorld Java applet in this chapter. Chapter 4 introduces programming concepts you should know

before you begin writing Java programs. Once you understand these core concepts, we' |l easeinto Java programming

in Chapter 5.

Barry Boone and Dave Mark Learn Java on the Macintosh 23

CHAPTER 3 W\Eb Programming Basics

Before we dive into Java programming, let's put this endeavor into context. Y ou know that Java programs can berun
over the Web, but what does this mean, exactly? How do Web browsers arrange elements on a Web page, and what
doesit mean to add a software application to a Web page? What doesit even mean to write a computer program in the
first place? This chapter will answer these questions and more. You'll aso learn how Java meshes with HTML and

why Javais a perfect programming language for writing software applications that run over the Web.

With these concepts under your belt, you' |l be able to turn to the specifics of Javain Chapter 4 and learn how

to design your own Java applets.

Web Content

Web pages can contain almost anything: Pictures, text, linksto other Web pages, tables, charts, sound, animation, and
more. These diverse, multimedia elements allow people to create very sophisticated Web pages. However, until
recently, Web pages were limited in that they could not incorporate software applications. With Java, thisisno longer
alimitation. Java alows complete applications—such as drawing programs, spreadsheets, word processors, games,

and in fact any kind of application at all—to be included as part of a Web page.

Definition
WEe Il often use the termsapplication and applet interchangeably. Throughout this book, you will be writing applica-

tionsin the traditional software sense. But the “official” Javaterm invented by Sun Microsystems (the company that

developed the Java language) for a Java application that runs over the Web is an applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 24

Beforewe look at how to add a software application to a Web page, let’ sreview how Web browserswork in
thefirst place. Thiswill alow usto understand how a Web browser displays atraditional document containing text

and formatting instructionsin HTML, and what a Web browser does when it encounters a software application.

Traditional Web Browsers

Web browsers do three things very well. First, they download files from other computers connected to the Internet.

Internet
file _ file [find file
file
download fil

Web browser on your computer

FIGURE 3. 1 Downloading afile found on the Internet.

Typically, thesefiles contain instructions written in HTML that tell the Web browser what the Web page

should look like. For example, one such HTML file might look like this:

Listing 3.1: A simple HTML file.

<bol d>

Enjoy a cup of java!
</ bol d>

<pbr >

Barry Boone and Dave Mark Learn Java on the Macintosh 25

After downloading the file, the Web browser arranges the text in this file and downloads and arranges any
images referenced by thisfile so that these elements are positioned according to formatting instructions also found in

thefile.

HTML document browser arranges elements
instruction: Enjoy acup of javal
start using a bold font
text: picture
Enjoy acup of javal
instruction: >
return to anormal, non-bold font
instruction:
go to the next line
instruction:
put a picture here
final document as it
appears in the browser
H=—————————= Hetacape: chapihinl =————————1|=
- L ; i | %]
Eljk Fr# v d) H?r?-e Ne?l:d rnEms l:%:'. F%t gﬂl St E
wWhat's Hew? | What'eCoc1? | Handbtack | MetSsarch | Mt Creotary| mewsgroues |
Exjorvecop of ! Q
|| I
5
i Sl
Fga] Dovument: Done, [] |

FIGURE 3. 2 Positioning text and images according to formatting instructions found in an HTML file.

The third thing browsers do is display connections to other Web pages. These other Web pages can be

located anywhere on the Internet—that isto say, anywhere in the world. Usually, these connections—or links—

Barry Boone and Dave Mark Learn Java on the Macintosh 26

between Web pages are displayed in blue and are underlined. The HTML document itself indicates where these links
to other pages should appear. The browser’sjob isto know when the user has clicked on alink and to then return to
step 1, retrieve the document (the file) on the Internet, and then progressto step 2 to format and display the elements

in the document so that they appear in the Web browser.

If you've ever looked at the source document for aWeb page or have created Web pages yourself, you know
that Web pages are defined using HTML. These HTML documents contain the text to display in a Web page. Sprin-
kled in with this text are special formatting instructions written in HTML. These formatting instructions are placed

between left and right angled brackets, like this:

<a formatting instruction would go here>

For example, inthefile shownin Listing 3.1, we placed HTML formatting statements around the text “ Enjoy

acup of javal” so that this text appeared in bold.

Images are kept in separate files from the HTML document. To indicate that a picture should appear in a
Web page, the Web page creator can indicate where the Web browser should look to find the computer on the Web that
contains the image, and what file thisimageisin. In the example above, the image was on the same computer and in
the same directory asthe HTML document itself. That allowed us to simply name the file containing the picture. The
Web browser then knew where to look. If we wanted to indicate that the picture existed on a different computer, we

would need to supply the address for that computer, such as.

Barry Boone and Dave Mark Learn Java on the Macintosh 27

By the Way

Knowing how to write HTML documentsis not strictly necessary for programming in Java. In fact, athorough dis-
cussion of using HTML to design Web pagesis beyond the scope of this book. However, if you are unfamiliar with
HTML and would like to know more, there are lots of books availableto help you get started with HTML. We humbly
recommend Learn HTML on the Macintosh, by Dave Mark and David Lawrence. There are also anumber of siteson

the Web that explain what HTML isall about. Check out Appendix G for alisting of these sites.

Asthe Web browser reads through the downloaded file containing the formatting instructions and the text to
display, the browser sets aside enough space on the screen to display the elementsin the document. The browser
leaves enough room to draw the images and flows the text around these images; the browser spaces the lines of the
text far enough apart to accommodate the appropriate font; the browser leaves enough room in the display for tables;

and the browser takes care of arranging any other elements as appropriate.

Web page

Welcome to my Web page!

Come back

icture
P soon!

table

FIGURE 3. 3 Schematic of a Web page with avariety of elements. The Web browser arranges these elements
according to the HTML instructions in the document, setting aside the appropriate amount of space for each

element.

Barry Boone and Dave Mark Learn Java on the Macintosh 28

Once the Web browser arranges the images, text, and links, all the user can do is view the document. The ele-
ments just sit there, passively, until the user clicks alink and the browser displays a new page. While thisis actually

quite afeat, such a Web page still lacks the interactivity that people have come to expect from using a computer.

Interactivity

Recently, Web browsers have become capabl e of handling another type of element: A software application. Just asthe
Web browser sets aside aregion of the screen to display images and text, Web browsers can now also set aside a
region of the screen in which to display the user interface for an application. With an application, a Web page is no

longer passive, but can offer any type of capability you're used to from the desktop.

For example, as of thiswriting, the comet Hyakutake is currently making its (mostly fuzzy) appearance in
the night-time sky. A number of excellent Web pages show diagrams of the comet’ s path through the solar system and
through the backdrop of stars as seen from earth. While this isinformative, a Web page created using Java could
really make such pages come alive. Rather than showing printouts of plots made with desktop-bound software appli-
cations, a software application written in Java could be inserted into a Web page. Thiswould allow any Web user to
make his or her own plots, animate the flight of the comet, simulate how the comet would appear if it increased or
decreased in magnitude, and so on. In other words, Java applications on the Web can provide the immediacy, interac-
tivity, excitement, and power you’ ve come to expect from the software applications sitting on your own Mac’s hard

drive.

What does it mean to include a software application in a Web page? In many ways, the software application
referenced by an HTML document is treated just like any other element on a Web page. As with images, software
applications are kept in separate files. The Web page creator indicates that a software application should be part of the
Web page document by using an HTML tag calledappl et . Here' s an example (the specifics of thisappl et tag

will be explained in much greater detail later in this book):

Barry Boone and Dave Mark Learn Java on the Macintosh 29

<appl et code=Hel | oWorl d. cl ass wi dt h=250 hei ght =50> </ appl et >

The name of the application to run is given after the wordscode= and, in the above example, is named
Hel | oWbr | d. cl ass. When the Web browser encountersan appl et tag, it downloads the application referenced

by this tag from the Internet.

Internet

file

application | | find application

file

download applicatio

Web browser on your computer

FIGURE 3. 4 Downloading a Java application found on the Internet.

As with other Web page elements, the browser sets aside enough space on the screen to display the user
interface for the Java application. The amount of space required by the application isinitially provided in the applet
tag. The browser flows the text and the other Web page elements around this application as necessary to format the

rest of the Web page.

Barry Boone and Dave Mark Learn Java on the Macintosh 30

Web page

Welcome to my Web page!
- Come back
picture <oon!

User interface for a
Java application

table

FIGURE 3. 5 An application's user interface as part of a\Web page.

Web browsers that are capable of running software applications written in Java are said to be Java-enabled.
Java-enabled Web browsers include Netscape Navigator 2.0 and Sun's HotJava, and soon all Web browsers are likely

to incorporate support for Java applications.

When atraditional Web browser has downloaded an HTML document and formatted the display, that's the
end of the story. However, once a Java-enabled Web browser has downl oaded a Java application, that’ sonly the begin-
ning! After the Java application is downloaded, the Web browser runs the Java program—just asif you, the end user,
started a program by double-clicking an icon on the Mac. Now you can interact with the application that’s part of the
Web page just asif you had installed the application on your Mac's hard drive. Just as a store-bought application can

be anything at al, so, too, can a Java application be whatever the programmer has imagined.

Barry Boone and Dave Mark Learn Java on the Macintosh 31

Jazzing Up Your Web Page

In addition to writing full-fledged applications, there are also other ways for adding pizzazz to your Web page. Some
of these ways include using extensions to Web browsers that allow you to create animation (such as with a product
called Shockwave). Some extensions allow you to perform simple tasks such as finding the average of a set of num-

bers (by using a scripting language such as JavaScript or VisualBasic Script).

Some of these options make a Web page more interactive; some only provide a“specia effect”—whichis
nice, but that’s as far as these options go. While these Web page elements have their places, and in some situations
may do the job just fine, it'simportant to know that these other approaches are not programming languages. Only

Javais acomplete programming language for the Web. The next section explains why this distinction is so important.

Reasons for Programming

When you write a program you can make anything occur that you can imagine. With afull programming language,

such as Java, there are no limits to what you can accomplish.

People have long dreamt of achieving what today’ s computer technol ogy makes possible. Back in the 1800s,
mathematicians and inventors theorized about machines that could perform complex calculations and follow instruc-
tionsto solve problems. Since the 1940s and 1950s, when modern computers were first invented, people have written
programsto perform tasks that woul d have been impossible without these computers and the programs that controlled
them. These tasks range from landing a man on the moon to creating feature-length movies with computer-generated

astronauts and cowboys.

Y ou might have amore pressing need to write aprogram than space exploration or movie making. Y ou might

want to find asimple way to cal culate your mortgage payments. Y ou might want to maintain your favoriterecipesina

Barry Boone and Dave Mark Learn Java on the Macintosh 32

home-grown database. Y ou might want to create a nifty computer game you’ ve dreamt up. Or you might want to pro-
mote your company on the Web by creating a software application that illustrates and perhaps even sells your com-

pany’s products or services.

All of these examples require that you control the computer to makeit do the things you want. To control the
computer, you need to write aprogram. There is no other way to do it. If you' re new to programming, you' Il find that
writing programs and making the computer do what you tell it to do can be avery fun, exciting, and rewarding expe-

rience.

What is a Program?

A program defines the exact steps that a computer must follow to perform some action. For example, if you wanted to

explain to a person (rather than to a computer) how to call for help in an emergency, you might say:

e First, pick up atelephone hand piece.

* Then, dial 911.

These instructions are concise and explicit. Y ou need to do the same kind of thing when you write computer
programs. For a more computer-oriented example, check out the following. If you wanted to add some numbers

together, it would be nice to be able to create afile for the computer that read:

H , Conputer!
Do ne a favor. Ask ne for five nunbers, add them together, then
tell nme the sum

Barry Boone and Dave Mark Learn Java on the Macintosh 33

These instructions are understandabl e to an English-speaking person. Computers, however, don't understand
English. Instead, computers understand something called, naturally enough, machine language. So, if you want to

tell a computer what to do, you need to tell it what to do in machine language.

Unfortunately, machine language is difficult for people to speak and understand. Machine language is writ-
ten using only 1s and Os, and people don't usually want to communicate using only 1s and Os. People want to use

words. So, instead, programmers perform the following steps.

First, they use aprogramming language, such as C, PASCAL, or Java, to write out words that describe how
the program should work. L earning acomputer language is somewhat analogousto, in its objective, learning to speak
aforeign language. For example, if you want to communicate effectively when you are in Rome, you need to learn

Italian. Similarly, if you want to communicate instructions to your computer, you need to learn a programming lan-

guage.

After the programmer has used a programming language to describe how the program should work, the pro-
grammer compiles the program. To compile a program means to turn the C, PASCAL, or Javainstructions into
machine language. Compiler s know how to perform this translation from words to 1s and 0s. Compilers save you,

the programmer, from needing to speak in 1s and Os yourself.

By writing in a programming language, programmers bridge the gap between people and computers. Pro-
grammers can write in acombination of English and special words and symbolsto tell the computer what to do. This
book will teach you all about writing in the Java programming language. That's what you'll be doing when you write

Java programs—you’ll be telling the computer exactly what to do!

Barry Boone and Dave Mark Learn Java on the Macintosh 34

part of a program machine language

display atext field 110010100111100
ask the user to enter 101110010100110

anumber compile 0110001001
multiply thenumber | o | .

by 2

FIGURE 3. 6 Programmers write in a programming language; compilers translate this to 1s and 0Os.

(Even though Figure 3.6 shows part of a program written asif it were in English, thisis not quite how Java
programsreally look. You'll see soon what programs actually look like when you start programming in Javain Chap-

ter 5.)

How is Java Different from HTML?

If you're familiar with HTML, you may be saying to yourself, “I've written HTML documents that also tell the com-
puter what to do—how to format text, how to lay out atable, and more. Is a software application just a glorified

HTML document?’

Not quite. Computer languages such as Java address a different need than HTML. HTML istailored to one
specific task—page formatting. However, you cannot use HTML to store data, implement algorithms, or communi-
cate with other parts of your computer or network. For example, it would be impossible to use HTML, and only
HTML, to perform even simple tasks such as calculating the area of atriangle, drawing a squiggly line as the user

moves the mouse across the screen, or creating a game of Tetris. In Java, these things are easy. Some of these objec-

Barry Boone and Dave Mark Learn Java on the Macintosh 35

tives are easier to achieve than others, of course—Tetris being alittle more difficult than cal culating the area of atri-
angle. But the point is that these examples are impossible to accomplish in HTML, while quite natural to implement

in Java.

Other Programming Languages

Javais not the first programming language to come along. The most popular languages of the recent past include
BASIC, FORTRAN, PASCAL, C, and C++. Each of these languages was developed with particular objectivesin

mind, and each was quite successful in achieving these objectives.

For example, BASIC is an acronym for Beginner’s All-purpose Symbolic Instruction Code. It was designed
in the 1960s, and asits nameimplies, it was meant to be a simple language for people new to programming. While the
origina BASIC language is not used much today, there are quite afew people programming in a Microsoft variant of

BASIC called Visual Basic. (The main reason for thisisthat Bill Gatesloves BASIC.)

The name FORTRAN came from combining the two words “Formula Trandation.” The FORTRAN lan-
guage was invented in the 1950s and is adept at manipulating and displaying large values and writing mathematical

equations. Engineers and scientists still use FORTRAN alot for solving problemsin their fields.

PASCAL was named in honor of the 17th-century French mathematician, Blaise Pascal. The goal behind
PASCAL wasto create alanguage that encouraged computer science students to write good, structured programs.
PASCAL was introduced in the 1970s, and it was hot for atime. It s till in use today, though it’s not as popular asit

once was.

Cwasdeveloped at AT&T. Believeit or not, it's name comes from the third attempt at creating alanguage.

(Thefirst was named A, the second was named B.) C provides a kind of combination of being able to program at a

Barry Boone and Dave Mark Learn Java on the Macintosh 36

high level while still being able to get down to the details of machine language and manipulate 1sand Os directly. Cis

good for writing system software, and the Unix operating system, for example, is usually implemented in C.

All of these programming languages basically encourage the programmer to write abig list of instructions
for the computer to follow. This approach works fine for simple programs, but over the years programmers began to
realize that while these languages were powerful, they did not always work well when writing large or complex pro-

grams.

In the 1980s, a new way of thinking about software began to emerge. Programmers found a better way to
program complicated applications such as drawing programs, spreadsheets, scientific simulations, and so on. This
better way was to think of the application not as one big list of instructions, but as a collection of objects. The next
chapter gets into the details of what objects are. For now, here’ s a simple example. Suppose you want to write a pro-
gram that represents something in the real world—say the flow of traffic through your city. Y our program will have
streets, cars, traffic lights, draw bridges, and everything else that affects the flow of traffic. If you were using a pro-
gram that supported objects, each of these real world elements—the streets, cars, and so on—would be represented by

an object in your program.

The language called C++ is alanguage that uses objects. (It was hamed C++ asaway to indicate it was
incrementally better than C!) While C++ was not the first language to use objects, many programmers have used C++
in recent years because they already knew C, and C++ isbased on C. It wastherefore easier for experienced program-

mers to figure out C++ than to learn a new language altogether.

Barry Boone and Dave Mark Learn Java on the Macintosh 37

Developing Software Using These Languages

There are many other programming languages than the five mentioned above, and you may have some background in
one of these other languages. But the basic characteristics of just about any language that came before Java are the
same. Almost all of the pre-Java languages (including BASIC, FORTRAN, PASCAL, C and C++) were built for a
world in which the application that resulted from compiling the program would run on one (and only one!) type of
computer. If you wanted to run the application on a different type of computer, you would have to recompile the pro-

gram for that type of computer. Thisis crucial to understanding one of the primary reasons for Java's existence.

Every computer is based on aparticular chip. In fact, chips are so central to a computer that computers are
often identified by the kind of chip they contain: People talk about a“386,” a“486,” or a“Pentium,” for example.
However, chips know nothing about C, PASCAL, or any other language; they only understand machine language. (To
recap, that’s what happens when you compile a program: Y ou turn the program written in a programming language
into machine language for your specific type of computer.) What's more, each type of chip speaksits own brand of

machine language.

With each type of chip speaking a different machine language, a programmer must compile the same pro-
gram separately for each type of chip on which the application will run. Sometimes the programmer must even

change the program alittle to get it to run correctly on anew type of chip. This process is known asporting.

Now, so far, by talking about computer chips, we've just been considering the hardware side of things. If
you've used both Windows and the Mac, you'll notice there are many differences, both large and small, in how appli-
cations look. For example, the icons along the top of the windows are different. Windows 95 reacts to two mouse but-
tons, whilethe Mac only reactsto one. And if you've ever programmed in these different environments, you know that
the way you create awindow on the Mac, for example, is nothing like how you create one in Windows 95. Y our code

looks completely different. This meansthat the code that creates your user inter face (the way in which the user inter-

Barry Boone and Dave Mark Learn Java on the Macintosh 38

acts with the application by using windows, buttons, check boxes, and so on) must be rewritten every time you port

your application to a new operating environment.

By the Way

Windows 95, Windows NT, the Mac OS, Solaris, 0S/2, Linux, and DOS are all examples of operating environments.

Pentiums, SPARCs, 486s, and PowerPCs are examples of computer chips.

computer computer computer
program program program
version 1 version 2 version 3
compile compile compile
personal computer Power PC running Sun SPARCstation
running Windows theMac OS running Solaris

FIGURE 3. 7 Compiling different programs for different types of chips and operating environments.

Why Java Is Perfect for the Web

While other languages were created with the intent that programs written in those languages would be developed for
onetype of chip and one operating environment, the Javalanguage was devel oped with adifferent ideain mind. Java's
creators envisioned the same Java program running on many different types of computer chips and in many different

operating environments—without modification.

While writing a program expressly for one type of chip and one type of operating environment works great

when you know what kind of computer the end user has, thisis not a good solution for the World Wide Web. On the

Barry Boone and Dave Mark Learn Java on the Macintosh 39

Web, everybody is using adifferent computer. If you develop an application and placeit on your Web page, you have
no way of knowing who will access this page and its corresponding application. Will it be Windows NT users? Mac
users? Unix users? OS/2 users? Be Box users? Thelist goes on and on! In fact, all of these userswill likely access

your Web page, and all will want to run your application.

If you develop your application using atraditional language, you'll have to create different versions of this
program and compile these different versions for different computers. By contrast, the same compiled Java program
runs on any hardware and software combination. Thisis perfect for the Web, and thisis one reason why Javais so hot.
Applications written in Javawork on the Web regardless of the computer that accesses them. Applications written in

other languages do not.

computer
program
version 1
download download download
personal computer Power PC running Sun SPARCstation
running Windows theMac OS running Solaris

FIGURE 3. 8 Downloading the same Java application for different chips and operating environments.

There are aso anumber of other reasons why Javais perfect for the Web. Here are two:

1. Itisvirtually impossible to write a computer virusin Java. Thisis much more crucial on the Web thanitisfor
shrink-wrapped products. When you buy a program in a store, there is some accountability; you know where you
purchased it and who was responsible for the software. When you encounter a program on the Web, you’ re much
less sure of who wrote it, why they wrote it, and what the program will do. It’'s great to know that a Java program

that you encounter on the Web will never wreak havoc with your computer.

Barry Boone and Dave Mark Learn Java on the Macintosh 40

2. Javaprogramsare small compared with programswritten in other languages. Thisisimportant when programs are
transferred over the Web. Users don’t want to spend alot of time waiting for a program to appear on their comput-

ers. Java helps make this waiting time as small as possible.

By the Way

What' sthe history of Java? Javawasinvented at Sun Microsystemsin the early 1990s. The developer’ soriginal intent
was to create alanguage that was safe to run (impossible for viruses and easy for the programmers to write error-free
software) and that could run on any type of computer. When the Web came along, people began to realize that Java

was perfect for the Web. When Sun built Javainto a Web browser and showed the world what was possible, Web &fi-

cionados were hooked!

In case you' re wondering where the name Java come from: The name was hit upon at a favorite cafe fre-

quented by the developers of this new language.

Runtime Environments

So by now you might be asking, “How isit possible to have the same Java program run on different types of chipsand
operating environments when other programs can’t do the same thing? If different types of chips speak different
machine languages, and if different operating environments have different types of user interfaces, what makes Java

programs so special that they don’t care what chip or environment they run on?”’

The key to making the same Java program work on different computers with different types of chipsand
environmentsis the Java inter preter. What actually happensis asfollows. Y ou write a Java program and compileiit,
just as you do with any program written in any language. However, the Java compiler does not convert your program
to machine language specific to the computer on which you want to run. Instead, the Java compiler converts your pro-

gram to machine language that runs on atheoretical machine. This theoretical machine speaks its own brand of

Barry Boone and Dave Mark Learn Java on the Macintosh 41

machine language. This theoretical machineis called, appropriately enough, the Java Virtual Machine, or VM. Fig-

ure 3.9 shows this part of the picture.

Java program

L compile

compiled code ready
to run on the Java
Virtua Machine

FIGURE 3. 9 Java programs are compiled for the Java Virtua Machine.

So whereisthis JavaVirtual Machine? Where doesit exist on your Mac? All you have isthe Mac hardware,

right? Right! The Java Virtua Machineisimplemented in software. The JVM runs as a program, and this program is

caled the Javainterpreter. Figure 3.10 takes Figure 3.9 one step further.

Barry Boone and Dave Mark Learn Java on the Macintosh

42

Java program

L compile

compiled code ready
to run on the Java
Virtua Machine

L run

the Javainterpreter

your Macintosh
(or any other computer)

FIGURE 3. 10 Java programs run in the Javainterpreter, which simulates the Java Virtual Machine on your Mac.

The Javainterpreter iswhat is different from chip to chip and operating environment to operating environ-
ment. It's the Javainterpreter that trand ates between the Java Virtual Machine's machine language and the machine
language spoken by your computer. There's a Javainterpreter for Windows 95; there' s a Javainterpreter for the Mac

(for CodeWarrior, it' s the one supplied by Metrowerks called Metrowerks Java); and so on.

The different Javainterpreters allow the same Java program you write to run on different machines. In fact,
you can take the same HTML file you used in Chapter 2, and the same compiled classfile generated by CodeWarrior,
and run them on Windows 95, Windows NT, Solaris, and anywhere el se that a Web browser with a Javainterpreter

exists. Thisisdepicted in Figure 3.11.

Barry Boone and Dave Mark Learn Java on the Macintosh 43

[
1“1-

HelloWworld.class

¢ ¢ l

Java-enabled Java-enabled Java-enabled

Web browser Web browser Web browser

for the Mac for the Windows 95 for the Solaris 2.4
Mac PC Workstation

FIGURE 3. 11 Running the same class file on multiple platforms.

Figure 3.11 really shows the same thing as Figure 3.10 but with theHel | oWbr | d. cl ass filebeing
loaded into a Java-enabled browser. Y ou’ |l work on the Macintosh while using thisbook, but al of the Java programs

presented here, and all of the Java programs you write, will run just fine on any other computer, as well.

Review

By writing aprogram, you can tell acomputer exactly what stepsto perform. Y ou can make the computer do anything
at all. Thisallowsyouto create very exciting Web pages. With Java, Web pages can contain software applications, and

browsing the Web becomes a much more interactive and rewarding experience.

Why use Javato write Web applications? Why not use a language that came before Java, such asBASIC or

C? Javais aprogramming language that is perfect for the Web. Javais an inter pr eted language, which means that it

Barry Boone and Dave Mark Learn Java on the Macintosh 44

can run on any computer that has a Javainterpreter. Javais also a modern language that uses objects, and it isimpos-

sibleto write avirus using Java that can be downloaded over the Web.

What's Next?

Now that you have an understanding of how Javafits into the overall Web programming picture, we'll look at a pro-
gramming problem and find asolution for it that’ stailored to Java. Y ou' Il learn how to approach Java devel opment so

that the solutions you plan before you begin writing your programs are easy to implement in Java.

Barry Boone and Dave Mark Learn Java on the Macintosh 45

CHAPTER 4 Problem Solving In Java

Writing acomputer program isalot like solving apuzzle. Y ou’ ve got to understand your objective. Often, it’ s helpful

to be creative. And perhaps most importantly, you need a strategy for solving the problem at hand.

When you program in Java, it's important to know how to solve the problem in front of you in such away
that you can implement your solution in Java easily. Put more concretely, Javaisthe tool at your disposal; it'simpor-

tant to know how to use thistool most efficiently.

This chapter will explain how to solve programming problemsin away that makesit easy to write Java pro-
grams. We'll introduce three terms that you' |l become quite familiar with by the time you’ ve written afew Java pro-
grams. These three terms are obj ect, class, and method. Y ou don’t know yet what these words mean asfar as Javais

concerned, but by the end of this chapter you'll have a pretty good idea.

While introducing these terms, we' Il also cover afew Java keywords so that you can begin to see how to pro-

gram in Java. However, we won't compile any of these programs until the next chapter.

Before we explain how to solve problemsin Javaand discuss what the terms* object,” “ class,” and “ method”

mean, we'd like to make afew comments about what it’s like to be a programmer.

What It’s Like to Be a Programmer

Programming is an extremely rewarding experience. When you program, you find ways to structure your ideas that
are both logical and creative. Even though both the programs and the computers that programs run on are based on

logic, that does not mean that programming is a science.

Barry Boone and Dave Mark Learn Java on the Macintosh 46

An important part of programming is recognizing that there is not necessarily a“right” or “wrong” way to
write a program. Many times, the definition of “right” is simply that the program behaves as you expect it to. How-
ever, whilethisismostly true, you'll cometo realize that some Java programs are “better” than othersin terms of how
easy they are to maintain, how fast they run, and how efficiently they use the resources of the computer on which they
run. This book is filled with examples that help show you how to write fast, efficient programs that are easy to main-

tain. But keep in mind, your primary concern is always going to be: Does the program do what you intended it to do?

Why learn how to approach Java programs before you learn the language? Why not just jump in and start
programming? One of the most crucial lessonsto learn in programming is that the better prepared you are, the more
quickly and easily you'll be able to write your program. Examples abound in real lifein regardsto other activities. For
example, architects create blueprints before the construction crew begins erecting the building. Pilots plot their
courses before they take to the skies. Doctors plan out an operation before they place the patient under anesthesia. So,
too, as a programmer, you should plan your application before you start writing code. In addition to learning the Java

language, this book will also teach you how to plan your programs before you begin clicking away at your keyboard.

So, now that you’' re warmed up, let’ s discuss the programming process and learn how to plan your programs.

The Programming Process

Here's the process we'll use to solve programming problems in this book. First, we'll answer these four questions:

Question 1: What will the program do?

For some programs, this might seem like a simple question to answer, but there is more to this question than
first meets the eye. Answering this question involves clarifying your objectives for the program and considering what

your program will look like to the user when your program runs.

Barry Boone and Dave Mark Learn Java on the Macintosh 47

Definition

What your program looks like when it runs and how users interact with your program is referred to as a program’'s
user interface. If the program takes advantage of graphical elements, such as windows, buttons, and pictures, the
user interface is called agraphical user interface, or GUI (often pronounced “gooey”). Programs that don’'t use a
GUI, but instead write characters to the screen without taking advantage of any graphics capabilities, use acharac-

ter-mode user interface.

Question 2: What are the different parts of your program?

Answering this question means first thinking about how your program will be put together. Y ou might have
parts of the program that perform calculations; you might have parts of the program that display text fieldsin which
the user enters numbers; other parts of your program might draw windows that display results cal culated by the pro-

gram.

Question 3: What are the sequence of tasks your program will perform?

All programs perform a sequence of tasks. It's important to write out this sequence of tasks before you get

involved in writing Java code so that you'll know what code you need to write in the first place.

Question 4: What data will your program need?

Most programs you write will need to keep track of certain data. Once you know what your program will do

and how it will do it, you can think about what data you'll need to keep track of.

This chapter will explain what each of these questions means and how you can go about answering them.
Once you have answered these four questions, you will be ready to actually write your program. Starting with the

next chapter we'll cover what it's like to develop a Java applet and we' Il begin to write working applets using Java.

Let'slook at afew examplesto see how you can go about answering these four questions.

Barry Boone and Dave Mark Learn Java on the Macintosh 48

Designing Your Program

Y ou can tinker with the completed SimpleDraw application by going to the Learn Java Projects folder. Open the

folder named SimpleDraw and double-click the file named Si npl eDr aw. ht i . Y ou can create squaresand circles

in different colors by selecting the shape to draw and the colors in which to draw them. Click in the applet to create a

shape at that location. Figure 4.2 shows atypical SimpleDraw session.

=[d= Applet Viewer: SimpleDraw.class

applet started

Circle

&

FIGURE 4. 1 SimpleDraw in action.

Let’ slook at this applet from the programmer’ s perspective. How would you go about designing this applet?

If you're unsure, you can always start at the first question listed above, and see where that takes you.

Barry Boone and Dave Mark Learn Java on the Macintosh

49

Question 1: What will the program do?

If you had a chance to experiment with this applet, you'll be able to formulate a description of this applet that goes
something like this: The user interacts with this simple drawing applet by first indicating which shape to draw. The
user has a choice of drawing a circle or asquare. The user can aso indicate which color to use when drawing the
shape: Red, green, or blue. To select the shape to draw and the color to use, the user picks from alist of possible
options. The user then clicksin the applet window, and the applet draws the indicated shape at the location of the

mouse click.

Question 2: What are the different parts of your program?

Once you can describe the things you expect your applet to do, you can start to plan out how to set up your program
to do them. In Java, your program will consist of a collection of different parts, and each of these partswill have adif-
ferent task. For example, a spreadsheet applet might consist of cells and formulas; the cells’ task would be to display
numbers, and theformulas’ task would be to cal culate the numbersto display. Asasecond example, an applet used by
NASA (the National Aeronautic and Space Administration) to send an unmanned space-probe to Jupiter might consist
of anumber of parts: The space-prabe, Jupiter, Jupiter’s moons, and the earth. This applet would use these different
parts of the program to calculate things like the path of the probe due to gravity and when the probe would arrive at its
destination. For athird example, consider a payroll program. This might consist of a collection of employees, checks
to print, aswell as avariety of graphical user interface elements that would allow a user to interact with the employ-

ees and checks that make up the program.

Let’ sintroduce oneword of terminology at this point. Instead of saying that we want to identify the * parts of

the program,” let’s give these “parts’ an official term. In Java, these parts are called obj ects.

Barry Boone and Dave Mark Learn Java on the Macintosh 50

Objects

What are objects? Objects represent “real world” or conceptual parts of the “thing” you are trying to program. (We're
being vague on purpose by saying “thing,” because you can program so many things. What you are trying to program
might be amodel of areal world domain such as a chemical experiment or the stock market; the elements of agame;

or even the concepts of supply and demand in a business application—your choices are never ending!)

All of your Java appletswill consist of objects. Put dightly differently, everything in your Javaapplet will be
an object. You will always create at |east one object for every applet you write, because your applet itself is defined as
an object. Objectsinclude al theitemsin a graphical user interface, such as the windows that appear on the screen,
the buttons the user can click with the mouse, and text fields that allow the user to type in characters. For our exam-
ples given above, each cell in the spreadsheet could be an object in a Java program. Each formula could also be repre-
sented by an object. Each moon and planet in the solar system could be an object in a Java program used by NASA.

Each employee and check in the payroll program would likely be an object, as well.

Objects Equal Data and Behavior

When you use objects, these objects “know” how to take care of themselves. Thereisno overall part of your program
that controls everything. For example, for the spreadsheet program, a cell object might use its formula object to deter-
mine what it should display. The formula object would know how to use the data it stores to calculate the number to
display. The cell object would know how to display this number. For the payroll program, each employee object
might know its hourly wage and how many hours the employee worked that month. The employee object would know
how to use the values it keeps for the hourly wage and number of hours worked to cal culate the employee’ s earned

income for that month.

These examples imply that objects consist of two parts: Data and behavior. Figure 4.2 provides a high-level

schematic of an object.

Barry Boone and Dave Mark Learn Java on the Macintosh 51

object

data

FIGURE 4. 2 Objects consist of data and behavior.

Objects equal data and behavior. Asfor data: Objects need to keep track of the information that makes each
object unique. For example, each employee object in the payroll program might have adifferent hourly wage. For the
simple drawing program, each shape that the user draws is an object, and each circle and sguare might have a differ-
ent position on the screen. In addition to data, objects can also do things with their data. What an object can do with
its data defines its behavior. For example, the space-probe object in the NASA program knows its current speed and
direction and can calculate where it will be at some future time. Employee objectsin the payroll program could calcu-

late their earned income. Figure 4.3 illustrates how you might think of a specific employee object.

empl oyee object

hourly wage = $1
hours worked = 40

calculate

this month’s,
income

FIGURE 4. 3 A specific employee object would maintain data for a particular employee’s hourly wage and hours
worked this month, and it would provide behavior for calculating the employee’s earned income for the month
based on its data. (In this case, it could multiply the hourly wage by the hours worked to arrive at the earned

income for the month.)

Barry Boone and Dave Mark Learn Java on the Macintosh 52

Creating Objects

So you know you will need to create objectsin your programs. When will you create these objects? That is, how does

your program know when it istime to create the objects you'll need?

The answer is that the applet object can tell when to perform all theinitialization for your program. Y our
applet knows when it is starting and stopping, and when it is on the user’ s screen. Y ou' ll write Java code for your
applet that creates the appropriate objects when your applet is doing one of these tasks: Initializing, starting, stopping,
or displaying itself on the screen. Chapter 9 delves into the phases of a Java applet in detail and shows you how to

write code that executes at the appropriate timesin an applet’slife.

Y ou might notice, thinking over some of the candidates for objects provided so far, that some objects are
amost identical to each other. For example, for the payroll program, you probably don’'t have to provide a separate
definition for each employee object. Employees only differ by the data they contain. For example, you might have
100 employees in your company. Each employee maintains an hourly wage and the number of hours worked. Each
employee knows how to calculate its income for the month. When we get around to defining an employee object
using Java code, they're all likely to look pretty similar. Employee objects could all be considered to be part of the

same group.

For the NASA program, all the planets are pretty similar, when it comes down toit. They all obey Newton’s,
Einstein's, and Kepler'slaws. They only differ in their mass, rotation, distance from the sun, current position, and so
on. That is, they have the same behavior, just different data. All of the planet objects could be said to belong to the

same group, or class, of objects.

In Java, when objects have similar definitions and only differ by the data they contain, they all belong to the

same class. In fact, objects are defined by their classes.

Barry Boone and Dave Mark Learn Java on the Macintosh 53

Classes

Here are some examples of classes. For the spreadsheet application we mentioned, we' d have two classes: A Cell
class and a Formula class. For the NASA program above, we' d have a Probe class, a Planet class, and maybe a sepa-

rate Moon class. For the payroll program, we' d have an Employee class, and maybe a Check class.

Classes define objectsin ageneral way. A classdefinition in a Java program might say something like: “I am
an Employee class. All employee objects will maintain two pieces of data: Their hourly wage and the number of
hoursworked. All employeeswill know how to calculate their earned income by multiplying their hourly wage by the
number of hoursthey worked.” Another class definition might say, “1 am a Planet class. Each planet object will main-
tain its name, diameter, and distance from the sun. Each planet can determine where it will be at some future time

givenits current dataand Kepler'sLaws.” A schematic for aPlanet classisillustrated in Figure 4.4.

Planet class

name
diameter
distance from sun

determine future
position

FIGURE 4. 4 The Planet class defines a planet in a general way, specifying the data it will maintain and the

behavior it will have.

Classes are central to Javaprograms. Y ou use classes to create objects. In fact, all Javaprograms consist of a

collection of class definitions.

Barry Boone and Dave Mark Learn Java on the Macintosh 54

Class definitions define the data your objects will maintain. Class definitions also specify the behavior for

your objects. Y ou will base al of your objects on a class that either you define or that comes predefined as part of

Java. Figure 4.5 shows that the Planet class can be used to create individual planet objects.

Planet class

[/ diameter

\ distancefromsun
[-

O ——

~ . T~
(¢ determine future\
~_ position

—

~

planet object

hame = Earth
diameter = 12,756 km
distance from sun =

148,000,000 km

determine futur
position

planet object

name = Mars
diameter = 6,794 km
distance from sun =

228,000,000 k

determine futur
position

FIGURE 4. 5 When planet objects are created, they are based on the Planet class. Each planet object maintain its

own unique data and uses the behavior defined by its class.

What's In Your Java Source File?

Aswe're beginning to hint at here, your entire application will consist of a collection of class definitions. For exam-

ple, you might have a Java program that implements the spreadsheet application. This program could be contained in

afile on your Mac. Thisfile would define the three classes that you need. First, the file would contain the definition

for the Applet class (all applets contain adefinition for an Applet class); after this, the file would contain a definition

for the Cell class; following this, the file would contain the definition for the Formulaclass. A simplified outline of

this file would be:

Barry Boone and Dave Mark

Learn Java on the Macintosh

55

start definition for the Applet class
Java code that describes the objects created fromthis class
end definition for the Applet class

start definition for the Cell class

Java code that describes the objects created fromthis class
end definition for the Cell class
start definition for the Fornula cl ass

Java code that describes the objects created fromthis class
end definition for the Formula class

How you write these classesis what Java programming is all about. In fact, it’stime to look at your first
piece of Java code! Here's how you define a class, devoid of Java code that describes the objects created from this

class:

cl ass Your C assNane {

}

Y ou would replace Your ClassNamewith the name of the class you wanted. Let’s put this into action. How

would you define a class for aRomulan War Bird? Y ou’ d write the following:

cl ass Romul anVarBird {

}

Barry Boone and Dave Mark Learn Java on the Macintosh 56

Asyou might surmise from these two examples of a class definition, Java uses symbols to indicate where a

class begins, and another, similar symbol to indicate where a class ends. These symbols are called “ curly braces’ and

are:
symbol name usage
{ left curly brace indicates where a class begins
} right curly brace indicates where a class ends
By the Way

On most keyboards, the l€eft curly brace islocated on the third row up on theright, above the left bracket ([). Theright

curly brace should be next to the left curly brace, above the right bracket (]).

All of the Java code that describes these classes would be placed between the right curly brace ({) and the
left curly brace (}) for each class. Even empty classes would compile, but they wouldn’t do much, because we haven't

put any Java code between their left and right curly braces.

Let’sreturn to SimpleDraw. Aswith most programs, this one can be divided into two broad areas: a) the user
interface and b) therest of it. What are the elements of the user interface? To answer that, we can examine what we
said the program will do. We need away to select the shape to draw, and we need away to select the color to use for
the shape. We can click right on the applet itself to draw a shape there. What about the rest of it? We need a definition

for two shapesto draw: The circle and the square.

What are the objects we might need for this program, then? Based on the previous paragraph, we could use
an object that offers a selection list to pick the shape to draw and another selection list object to choose the color in
which to draw it. We can draw right on the applet; we will make our applet able to detect mouse clicks so that we
know where to draw. We also need shape objects. Y ou know that objects come from classes. Thismeanswe’ll need a

Square class and a Circle class. Figure 4.6 points out where the objects are in the SimpleDraw applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 57

E[@= Applet Viewer: SimpleDraw.class

—— choice objects

[Circle w Elue w

—— applet object

.

| square objects

circle objects

applet started

]

FIGURE 4. 6 The objectsin the SimpleDraw applet.

Let’'s start by looking at the shapes. We can create classes for these—and you already know how to start to

define classes:

class Circle {

}

cl ass Square {

}

The classthat will be an applet isan interesting animal; let’ s take a moment to see what an applet’ s class def-
inition looks like. We'll create a class called SimpleDraw that will take on the roles and responsibilities of being the

Applet class. Here's how we can define this class:

Barry Boone and Dave Mark Learn Java on the Macintosh 58

public class SinpleDraw extends java. appl et. Appl et {
}

In addition to what you saw already for defining classes, this class definition introduces two new keywords:
publ i c andext ends. Thepubl i ¢ keywordsindicatesthat this class can be referenced by any other class (not all
classes can be referred to by any other class, asyou'll seein Chapter 10). Theext ends keyword indicates what
roles, responsibilities and default behavior the class will take on (as you' |l also learn more about in Chapter 10). For

now, it’s enough to know thisis how you define an Applet class.

Let’ sthink about what we have so far. Y ou know that you need to identify the parts of your application. Each
part of your application will be an object. Y ou create objects based on class definitions. We' ve even looked at some
very simple class definitions. Now, what moreis there to a class? We defined a class called Circle and aclass called

Square. We' ve also defined an Applet class called SimpleDraw. But these classes don’t do anything yet, do they?
No. Not yet. You haveto tell them what to do. That’ s the programmer’ sjob. So, what do you need to do to
create afull-fledged class that does things? Y ou need to tell the class two things:

1. What tasks the objects based on the class will perform.

2. What data the objects will need to keep track of.

From these two items, you can see how answering our four questionsis leading us along in Java develop-

ment. In fact, we're now up to question 3.

Question 3: What are the sequence of tasks your program will perform?

All programs perform a sequence of tasks. It’ simportant to write out this sequence of tasks before you get involvedin

writing Java code so that you'll know what code you need to write in the first place.

Barry Boone and Dave Mark Learn Java on the Macintosh 59

What is the sequence of tasks our simple drawing program will perform? We've already determined a great
deal of thisfrom answering question 1: What will the program do? Based on what we've said so far, there are two
parts to the simple drawing program: The user interface and the rest of it. Each part has its sequence of tasks, and

these tasks do not require more than a few steps each.

First, the simple drawing program will need to arrange its user interface. This means:

1. Displaying selections for shape types and color.

2. Making the applet’s window big enough to draw in.

Second, when the user clicks in the applet, the program will:

1. Determine the shape type to draw and color with in to draw it.
2. Create a new shape aobject for the appropriate shape type.

3. Draw this new shape object at the location clicked in the proper color.

This seems simple enough. In fact, step 3 in the task list above provides agood illustration of where and
when a program creates objects. The following three screen shots show atypical user progressing through the simple

drawing application. Take alook at what's going on starting in Figure 4.7.

Barry Boone and Dave Mark Learn Java on the Macintosh 60

=[d= Applet Viewer: SimpleDraw.class

| Square + | | Red |

applet started

=]

FIGURE 4. 7 The user hasjust drawn one square by selecting “square”’ from the shape selection list and clicking on

the applet.

When the user draws anew square by clicking on the applet, the simple drawing program creates a new

object based on the Square class. The program fillsin the data for the square class (it's position and color) and draws

it on the applet.

Barry Boone and Dave Mark Learn Java on the Macintosh

61

EM= Applet Viewer: SimpleDraw.class =

| Circle « | | Green |

applet started

[

FIGURE 4. 8 Now, the user has selected “circle” and has drawn acircle by clicking on another location on the

applet.

As shown in Figure 4.8, the user clicks on the applet with the circle choice selected. Y ou know what to do:
Create acircle object based on the Circle class. Fill in the circle object’s data (position and color) and draw it on the

screen.

Barry Boone and Dave Mark Learn Java on the Macintosh 62

=[0= Applet Diewer: SimpleDraw.class

| Square + | | Green |

applet staried

El

FIGURE 4. 9 Here, the user has drawn a second square by selecting “ square” from the shape selection list and then

clicking on the applet.

The user can continue on indefinitely. Figure 4.9 shows the user creating a second square. The program will
create a second square object based on the Square class. This second square object will contain the data that makes it
unique and different from the first square object. It will have a different position on the screen, maybe a different

color. And the user can keep on going. In fact, the user can create as many shapes as he or she desires!

This shows that Square and Circle classes acting like “templates’ or “rubber stamps’ to “stamp out” shapes
when the user draws on the applet. Notice that the same shape classes are used again and again to stamp out different
objects. Another analogy would be something like a cookie cutter. Y ou wouldn’t use a cookie cutter once and then
throw it away! Instead, you’ d use the same cookie cutter over and over again, creating as many cookies asyou'd like
to (or at least, as many cookies as you have the dough for!). Each cookie can be decorated alittle differently, blue-col-

ored sprinkles on one, red-colored sprinkles on a second, green on athird, but each cookie is essentially the same.

Barry Boone and Dave Mark Learn Java on the Macintosh 63

With our drawing program, our Square class and our Circle class act like cookie cutters. Since classes are
like cookie cutters, we can use them to create as many sguares and circles as we need. In particular, we can stamp out

anew sguare or anew circle every time the user draws a new shape by clicking in the applet.

Each object will ook to its class for its behavior. Each object will also look to its class to see what data it

should keep track of. Thisisillustrated in Figure 4.10.

class Circle{
datato maintain in the objects
. behavior for the objects

} ook to
he class
for the answer
stamp out a
new object
look to
the class
for th
ansver circle object

what data should | keep track of ?
-~ what can | do?

FIGURE 4. 10 Objects ook to their classes for their behavior and to see what data they should maintain.

These diagrams show what’ s happening conceptually with classes and objects, but what's going onin the
computer with classes and objects? Here' sthe basic idea: Classes are part of your application. Y ou define classes

using Java code. Thisisshownin Figure 4.11.

Barry Boone and Dave Mark Learn Java on the Macintosh 64

Your Application

definition for the Circleclass:
data that objects need to keep track of:
- position on the screen
- color

behavior for the objects

FIGURE 4. 11 Classes are defined in your application.

When you create objects, you are asking the computer to set aside some memory to hold the data for that
object. For acircle object created from the Circle class, that data might include the circle’ s position on the screen and
its color. The computer would set aside the appropriate amount of memory to hold this data, based on what the class
indicated every object needed to keep track of. Thisisshown in Figure 4.12. (Thisfigure containsadightly simplified
diagram—uwhile both your application and the data created by your application are maintained in your computer’s

memory, they are maintained in separate regions of memory.)

Your Application Your Computer’sMemory
that Maintains Data
definition for the Circle class: memory set aside for
data that objects need to keep track of: acircle object
- position on the screen
- color

memory set aside for
behavior for the objects another circle object

Barry Boone and Dave Mark Learn Java on the Macintosh 65

FIGURE 4. 12 Objects are created in your computer’s memory. Enough memory is set aside by the computer to
hold all the data that the class indicates the object needs to keep track of. Notice that your application can fill up

memory with as many objects asit needs.

Some programs are simple enough that they never need to define a class other than an applet class. In these
cases, the applet itself can handle all the details of the program. The HelloWorld applet that you saw in Chapter 2 was

an example of an applet that did not use any additional classes or objects.

Defining Behavior

How do we define an object’s behavior? To do this, we tell the class the approach, or method, its objects will useto
perform a particular task. We describe behavior by writing out a sequence of instructions. This sequence of instruc-
tionsisofficially called amethod. Thisisour third technical term, after “object” and “class.” “Method” is Java sterm

for a sequence of instructions that define a particular task that an object will perform.

For now, al you need to know concerning methods is that they define an object’ s behavior. To recap, here's
what you know so far: Y ou need to define classes. Y our classes will be used like cookie cutters to stamp out objects.
Each object will maintain data that makesit unique. Y our classeswill provide the instructions that tell objects how to

behave. These instructions will be contained in methods.

Y ou also know that objects keep track of the data that makes them unique. Thisleads usto question four.

Question 4: What data will your program need?

Based on our discussion of Question 3, can you determine what datawe' |l need to write the simple drawing program?

We need to know three pieces of information:

1. The shape type to create an object for.

2. Thecolor to use for that shape object.

Barry Boone and Dave Mark Learn Java on the Macintosh 66

3. Thelocation where the user clicked.

The Circle class, for example, might look like what’s shown in Figure 4.13.

Circleclass

color
position

FIGURE 4. 13 The Circle class would specify that a circle object should maintain two pieces of data: It's color and

where it should appear on the screen (that is, where the user clicked). The circle object’s behavior, as supplied by
the class, includes being able to draw itself at the proper location and in the proper color. The Square class would

be similar to this, but it would draw differently.

Let'salso givealittle bit of thought to the Applet class. Remember, each applet contains at least one Applet
class definition. Based on what we said the simple drawing application would do, the Square class and Circle class
only provide part of the functionality for this application. The rest must be supplied by the applet. For example, Fig-

ure 4.14 shows a possible Applet class.

Barry Boone and Dave Mark Learn Java on the Macintosh 67

Circleclass

SimpleDraw class (Applet)

current color »
current shape

create user interface
detect user click
create shape

color
position

Square class

color
position

FIGURE 4. 14 An Applet class for the simple drawing program that interacted with the Square and Circle classes.

Asyou can see, the applet will need to work with the shape classes to make the program work. Thisis typi-
cal in a Java application, where different classes implement their own parts of the program and work together to get

the job done.

The Final Result

The outcome of answering these four questions (what your program will do, what the different parts of it are, what
tasksit will accomplish, and what data it needs) is agame plan for writing your Java program. Once you know where

you're going, you can get there much more easily!

Barry Boone and Dave Mark Learn Java on the Macintosh 68

Review

Before you begin writing your Java applet, it'sagood ideato plan out your program. One way to proceed isto answer

the following four questions:

Question 1: What will the program do? Answering this question involves determining what users will see when

they run your program.

Question 2: What are the different parts of your program? Answering this question leads to determining the

classes you' Il define for your program, and what objects they will create when the user runs your program.

Question 3: What are the sequence of tasks your program will perform? Answering this question leads to finding

the methods for your classes. M ethods contain the instructions the computer must follow to make your applet do

the things you want it to do.

Question 4: What data will your program need? Answering this question helps you plan out what datayou’ll keep

track of in your objects.

Let’s recap some terminology before moving on. This chapter discussed objects, classes, and methods.

Objects describe the different parts of your application. Each object maintains data that makes it unique and has

access to behavior that enables the object to perform cal culations and do things.

Classes are a“ cookie cutters’ that stamp out objects. Classes define what data an object should maintain and what

behavior they have.

Methods are sequences of instructions that give your objects behavior.

You've adso learned asmall but highly important bit of Java syntax and grammar: Y ou how know how to

define aclass (albeit an empty class). Y ou know how to design objects, thinking through the data they should contain

and the behavior they’ll have. You'll see more examples throughout this book to get you into the swing of things.

You'll define classesin your program by writing theword cl ass, followed by your cl ass narre, and you indicate

Barry Boone and Dave Mark Learn Java on the Macintosh 69

the start and end of the class using aleft and right curly brace. Y ou'll place all your Java code that describeswhat data
the object should keep track of and what behavior they have between the left and right curly braces. An example of an

empty class called PlanetEarth is:

class PlanetEarth {

}

All of your Java applets will be a collection of some number of classes—at |east one, because you always
need a class that takes on the roles and responsibilities of an applet (you'll learn what some of these roles and respon-
sibilities are in the next chapter, and you'll learn more as you progress). Y ou might have one applet class that defines

your entire program; more complicated programs might define many additional classes.

What's Next?

Once you plan out your program, you' re all set to write Javacode. In fact, it’ stimeto take off the glovesand really get
toit! Inthe next chapter you'll take alook at how to write, edit, and test a Java program by implementing the simplest
applet possible and learning what the Java development cycleis all about. You'll also learn how to write messages to
the Java Output window so you can see what’ s going on as your program runs. In other words, you' re about to write

your first applet!

Barry Boone and Dave Mark Learn Java on the Macintosh 70

CHAPTER 5 The Development Cycle

Now you're al set to go. Y ou know how to approach designing your applet. Y ou know to first answer four basic ques-
tions, starting with determining what your applet will do. Y ou've been introduced to the terms class, object, and
method. To review: Y our applet consists of classes, and classes define sets of instructions called methods. Classes can
be used as templates to create objects. Objects maintain data that make individual objects unique. Objects look to

their classes for their behavior.

Onceyou' ve planned out your applet, the next step isto write the program. This means programming in Java

by defining classes, creating objects, and writing methods.

This chapter introduces you ever-so-gently to Java programming. We'll write a simple program by defining
three empty classes. Chapter 5'sreal mission isto introduce you to the Javadevelopment cycle In fact, we'll start so
simply that our three classes will not even define any behavior or data. Y ou will learn how to begin a program, edit a
program, compileit, and run it. You'll learn what happens when the compiler complains about your program due to
typos and how to go about fixing them. Y ou’ll also learn how to write asimple message to the Java Output window to
help you see how your program isworking. This chapter provides an introduction to Java programming; the details of

Java programming are what the remaining chapters are all about.

An Overview

Once you have past the planning stage, you are ready write the program. Programmers often speak about a“ develop-

ment cycle.” You'l find that you iterate through this cycle with every program you write.

Barry Boone and Dave Mark Learn Java on the Macintosh 71

What' sadevelopment cycle? A development cycleis made up of the steps required to develop a Java appl et.
These stepsinclude creating afile to hold your program, editing the file to create your classes and methods, running

and testing your program, and making changes to your program as necessary.

The reason that developing in Java (or in any programming language, for that matter) involves a devel op-
ment cycleisthat programsrarely, if ever, work correctly on a programmer’ s very first attempt. Programs are usually
just too complex to write al in one shot and get working the very first time. That is, instead of a one-time progression
that involves writing the program, compiling it, running it, and then distributing 10,000 copies, programmers often
repeat these steps as often as necessary, returning to rewrite and re-edit the program, compiling again, running again,

then—you guessed it—editing the program again, and so on, until it al works as intended. Figure 5.1 shows this

cyclein action.
create afileto write/edit
hold the program the program
not yet
test the
perfectly” | program - compilethe
doesthe program
program work?,
k run the 4/
program

FIGURE 5. 1 Rather than a one-shot process, programming usually involves a cycle that repeats the programming

steps a number of times.

Aswe've already covered, the more you plan out your program, the better off you'll be, because you'll
increase your chances of having your program work in fewer attempts. This, in turn, will save you hours of program-

ming time and confusion. The less debugging you have to do, the happier you'll be as a programmer.

Barry Boone and Dave Mark Learn Java on the Macintosh 72

Definition
The term debugging refersto the process of removing the bugs, or problems, in a program. The term comes from the
early days of computers when problems arose because of actual bugs (ants, spiders, and so on) that got into in the big,

room-sized computers that scientists and engineers once used. Back then, when you said you were debugging your

program, you weren't kidding!

Organizing Your Files

Before you write your first program, let’s take a brief moment to gain an overview of what files you'll need.

Source File

Y our Javaprogram will be contained in atext file that you’ Il work with directly. You'll open thisfile and typein your

Java program. If you want to change the program, you'll edit thisfile.

Thefilethat contains your Javaprogram is called your sour ce file. The Javainstructions contained in thisfile
arereferred to as your sour ce code. (The main purpose of this book is to teach you how to write Java source code—
that is, what to put inside your Java source files.) By convention, al of your Java source fileswill end in the file exten-

sion. j ava.

Project File

Sinceyour program can be contained in more than onefile, CodeWarrior providesaway for organizing your different
source filesinto one project. You'll need to create a project for your Java program when using CodeWarrior, even if
your program is contained within onefile. (Y ou’ ve already seen thisin action in Chapter 2 and this chapter will

review how this works.)

Barry Boone and Dave Mark Learn Java on the Macintosh 73

HTML File

To run your applet, you need to define a Hypertext Markup Language (HTML) file to invoke your applet. This can be

avery simple, one- or two-line file that usesthe <appl et > and </ appl et > tags.

Compiled Class File

Once you' ve written your Java source code and have defined a project file for CodeWarrior, you can compile your
program. As discussed in Chapter 4, compiling a Java program means generating instructions that are ready for the

Javainterpreter to execute on your computer.

When you compile your program, the compiler creates a new file that endsin the extension. cl ass. The
compiler will createone. cl ass filefor each of the classesyou’ ve defined, even if you have defined multiple classes
within the same. j ava file. For example, say you have a Java source file named MyCl ass. j ava that contains two
class definitions, one for a class named MyClass, and another for a class named Y ourClass. When you compile this
program in CodeWarrior, the compiler will create two new files (or will overwrite thesefilesif they aready exist):
Thefirst file the compiler will createisafile named Myl ass. cl ass, and the second is afile named
Your Cl ass. cl ass. Thesefiles generated by the compiler that end in the extension. cl ass are known, asyou

might expect, as class files or compiled classfiles. Figure 5.2 diagrams this situation.

Java source file named MyClass.java

(class named MyCIa&) classfile named MyClass.class
compile

Cclass named AnotherCIasg :
class file named AnotherClass.class

Barry Boone and Dave Mark Learn Java on the Macintosh 74

FIGURE 5. 2 When you compile a Java source file, the compiler creates a class file for each class defined in your

Java sourcefile.

Detail

Y ou might hear some Java programmers using the term bytecodes. Bytecodes refer to the compiled classinstructions,

which are the machine language instructions contained in the compiled classfiles (thefilesthat endin. cl ass).

An Example: The Simplest Applet

Let'stake everything we've learned so far and put it all together. We' re going to lead you through the development of
asimple Java program that simply displays awindow on the screen. For thisfirst example, we'll lead you step by step

through each word and symbol. By the end, you'll have written your first applet.

First, let's answer the questions we set for ourselves in the previous chapter. Thiswill allow usto plan out

our applet.

Question 1: What will the program do?

The program will display awindow on the screen.

Barry Boone and Dave Mark Learn Java on the Macintosh 75

Question 2: What are the different parts of your program?

All we haveto do isdisplay awindow, so the only part of the program we need to think about isthe part that doesthis
one thing. We already know that every program is made up of at least one class. An applet. One of the things that an

applet can do by default is display awindow on the screen. This makes our task quite straightforward. All we need to
do, then, iscreate an applet class. We'll call our class SimplestApplet. This program is also simple enough that we do

not need to create any objects.

Question 3: What are the sequence of tasks your program will perform?

Thereisonly onetask: Display awindow.

Question 4: What data will your program need?

This program will not need any data.

So here we go. How do we create a class? Y ou already know how to do thisfirst step from the previous chap-
ter! To defineaclassin Java, you writetheword cl ass followed by the name of the class. We can call our class any-
thing we want to. As we mentioned above, we'll call our class SimplestApplet. We'll also indicate we're creating an
applet by using the keywords you learned about in Chapter 4: publ i ¢ and ext ends j ava. appl et . Appl et .
(Just what these keywords are actually doing will be explained in Chapter 10. For now, it’'s enough to know thisis

what you do when you define a class that will take on the roles and responsibilities of an applet).

Style

A word about naming classes and methods: In this example, the name HelloJavais an arbitrary name. We could also
cal our class Hello, FirstExample, or Fred. It doesn’'t matter. While it might be funnier to call the class Fred, such a
name would not be very descriptive. Someone else reading your code would have no ideawhat this classwas all

about. Therefore, you should always take a stab at naming the classin such away that it provides a clue to its exist-

ence.

Barry Boone and Dave Mark Learn Java on the Macintosh 76

Defining an applet class named SimplestApplet, we have:

public class SinplestApplet extends java. appl et. Appl et {

}

Even though our SimplestApplet class does not contain any Java code between the curly braces, it will com-
pile and run just fine. The Java compiler will understand that we are defining a class that’ s an applet, even though we
have not yet provided any code for this class. That' s fine with the Java compiler. We can aways change thisfile later.
Let's go ahead and create afile that contains this simple class definition for an applet. Here are the steps you can fol-

low:

1. Normally, you would create anew project file and anew Java source filein CodeéWarrior to hold your new
program. While the full version of CodeWarrior obviously allows you to do this, the version of CodeWarrior Lite
that’ s on the CD restrictsthis functionality. (They can’t just give away their crown jewels, after all.) So, if you do not
have the full-blown version of CodeWarrior and instead are using the version of CodeWarrior Lite found on the CD,

we have supplied a project file with an empty Java source file that you can use for this exercise.

To find this empty project, go to the Learn Java Projects folder and open thefile05. 01 - enpty
pr oj ect . Double-click Si npl est Appl et . p to start up CodeWarrior Lite if it's not already running. Open the

fileto edit by double-clicking Si npl est Appl et . j ava in the project window.

Barry Boone and Dave Mark Learn Java on the Macintosh 77

S[I=———— SimplestApplet. jara

Bl

@]

EIEE] |Line: [kt

FIGURE 5. 3 The empty Java source file, ready for your code!

2. Once the empty project window appears named Si npl est Appl et . j ava (Figure 5.3), type the fol-

lowing two lines into this window (Figure 5.4):

public class SinplestApplet extends java. appl et. Appl et {
}

= simplestApplet. java ===
plubl ic class SimplestApplet extends java.applet.Applet { E
1 EE|

_ £z

|I|| |Lir'|e: z ||¢llllllf {2

FIGURE 5. 4 The Si npl est Appl et . j ava window after you' ve entered the empty class definition.

Barry Boone and Dave Mark Learn Java on the Macintosh

78

3. Compile this Java source file. Select the Make command from the Project menu (just be certain you
have selected a current project, the project Si npl est Appl et . W, to enable this menu option). Executing this com-
mand creates the type of folder and file you’ ve seen before: The folder is named SimplestApplet, and the compiled

filewithin thisfolder isnamed Si npl est Appl et . cl ass (Figure5.5).

Sf=——— 05.01 - empty project =———Hi-
4 items 1705 ME in disk 60.4 ME available
s ; -
: | =
Simplestapplet.p simplestapplet.java Simplestapplet.html
SimplestApplet I
=l EBE

FIGURE 5. 5 The new folder named SimplestApplet in your project’ sfolder after compiling your Java source code.

This new folder contains the compiled classfile.

To execute this applet, you have to supply an HTML file to drop onto the Metrowerks Java application icon.
Once you perform this drag-and-drop operation, your applet will load and run automatically. We've already supplied
an HTML file in the SimplestApplet project for you to use. (For testing purposes, you'll often create HTML filesfor
your new projects by cutting and pasting from existing HTML files and changing the name of the applet classreferred
to by the HTML file.) Take alook at the HTML file now by double-clicking thefile Si npl est Appl et. ht i in

the project window (Figure 5.6).

Barry Boone and Dave Mark Learn Java on the Macintosh 79

Ef=——"—"———— simplestApplet.hitml 00—

“applet cndebqse="5implesthpIet"| code="SimplestApplet. class" width=250 height=50> P
<fapplet: =t

MEIE| [Line: 1 |15 [

FIGURE 5. 6 The Si npl est Appl et. ht i file.

There aretwo linesin thisfile. The first line begins the applet definition:

<appl et codebase="Si npl est Appl et” code="Si npl est Appl et . cl ass"
wi dt h=250 hei ght =50>

Thisline of HTML code does the following two things:

First, it identifies which class defines the applet through the use of the keyword code=. The name of the
compiled classfile that contains the applet is supplied in quotes. It also identifies where to find this compiled class. It

isin the folder named SimplestApplet, which isidentified by the keyword codebase=.

Second, it provides aninitial sizefor the applet. If the applet were running in aWeb browser, rather thanin a
special window for testing that's supplied by Metrowerks Java, then the browser would be able to arrange the other
elementsin the Web page around the applet, because the browser would know how much room the appl et needed. The

keywordswi dt h=and hei ght = indicate that the applet is being sized to the values provided.

The second line ends the applet definition:

Barry Boone and Dave Mark Learn Java on the Macintosh 80

</ appl et >

This, my friends, is a perfectly valid applet and HTML file! What's more, since an applet automatically dis-

plays awindow, and since we' ve set the size for this window in the HTML file, we're done.

The SimplestApplet class should compile fine. If for some reason a window appears indicating that some-
thing went wrong, close this window and look over your Si npl est Appl et . j ava file very carefully. Be sure
you' ve typed in everything exactly as shown in this book. Remember, Java, like al programming languages, is very
picky about what |etters and symbols you type and will become confused if you don’t follow the rules of the language

exactly.

Once your applet compiles, you can run the applet. Just asin Chapter 2, drag theicon for the HTML file
called Si npl est Appl et. ht il fromthefolder 05. 02 - enpty proj ect anddrop it onthe Metrowerks
Java application icon. When you do, the Javainterpreter (called Metrowerks Java) will start and run your applet. Fig-

ure 5.7 shows what thiswill look like.

T
[
T

Applet Viewer: SimplestApplet.class

applet started

E

FIGURE 5. 7 The SimplestApplet.

Barry Boone and Dave Mark Learn Java on the Macintosh 81

We've created an actual, working applet, even though it’s not doing much yet. Don’t worry about that yet.
Starting in Chapter 6 you'll begin to write some Java code for real. For now, just think about the steps that are occur-
ring when you create, compile, and run a Java applet. Think about launching the Javainterpreter and Applet Viewer
called Metrowerks Java by dropping the HTML fileicon onto the Metrowerks Java application icon; how Metrowerks
Javaloads the class referred to in the HTML file; and how it sizes the window according to the dimensionsin the
HTML file. Keep in mind that the applet class knows how to display awindow on the screen without you doing any-

thing. All you have to doistell it its default size.

Editing the Source File

Now you get to see the development cyclein action. In the next few sections, you'll edit the source file, add some
classes, and even generate some syntax errors so you can see what to do when something unexpected happens at com-

piletime.

Let’ s start by adding a couple of new classes to the SimpleDraw application. Return to the source file for the
SimpleDraw project. (The sourcefileisnamed Si npl eDr aw. j ava.) Openthisfileif it isnot already open by dou-

ble-clicking the file icon or by double-clicking the file name in the project window.

Let’s add a class definition for a Circle class and a Square class. Y ou aready know how to create asimple,

empty class definition. For these two classes, you can write:

class GCrcle {

}

cl ass Square {

}

Barry Boone and Dave Mark Learn Java on the Macintosh 82

Put these definitions after the definition for the applet class called SimplestApplet. Figure 5.8 shows what

your source file will look like after you’' ve added these two classes.

" Simplestﬂpplet.jﬂua a|dI=
public class SimplestApplet extends java.applet.Applet {
¥

class Circle {

¥

class Sgquare §

i

IEIE] [Lire: = | |l

FIGURE 5. 8 Si npl est Appl et . j ava after adding two new, empty classes.

Now recompile the SimplestApplet project (select Make from the Project menu). If you run the applet
again, you'll find it hasn’'t changed. Y ou will have created two new class files, however. Each of these class files will
be named after the new classes you defined: Ci r ¢l e. cl ass and Squar e. cl ass. You'll find these in the folder

containing your project—the folder named 05. 01 - enpty proj ect.

From this basic skeleton of three classes, you can start defining the rest of your SimpleDraw application.
That would include things like adding graphical user interface elements to your applet window to allow the user to
draw; making new circle and square objects out of the Circle class and Square class when the user clicked in the
applet; and defining the appropriate data and behavior needed by the circles and squares in this application. You'll

learn how to do all of these things very soon.

Barry Boone and Dave Mark Learn Java on the Macintosh 83

Syntax Errors

Sometimes, you'll find that your program won’t compile, even though you thought you typed in your program as it

should appear. When this occurs, you're most likely dealing with asyntax error.

What Are Syntax Errors?

You'll generate asyntax error when you use the wrong word or symbol in your program. For example, if you forget to
use aclosing right curly brace (}) to end a class definition, you' [l generate a syntax error. If you make atypo, you'll
generate asyntax error. Sometimes, when you're just starting out, you'll stare at a program and be convinced you' ve
typed it in correctly, yet the compiler still complains about syntax errors. How annoying! When that occurs, it’s very
likely you' ve used a keyword or a symbol incorrectly and the compiler really isright after al. Y ou can browser

through the appendices to find examples of how to use Java' s keywords and symbolsif you do get stuck.

Generating Syntax Errors

Let’s generate a syntax error so you can see what happens (in case you haven’t run into any already!). Our Simple-
stApplet program currently contains six lines of code (counting the lineswith the single, closing right curly brace, but
not counting the blank lines). Let’ s leave off thefirst left curly brace in this file and see what happens. Now, the pro-

gram should appear asin Listing 5.3.

Listing 5.3—Note that this will not compile!

cl ass Si npl est Appl et extends java. appl et. Appl et
}

class Crcle {

}

cl ass Square {

}

Barry Boone and Dave Mark Learn Java on the Macintosh 84

Go ahead and attempt to compile this program now (select Make from the Project menu). What happens?

Y ou get asyntax error! Figure 5.9 shows what a syntax error looks like.

Si=————————— Message Window ——————[i7]
K@ 2 Ay o OB o Oeao [2] [5]

& Ertor SR

SimplestApplet. jova line 1 public class SimplestApplet extends java.applet Applet_

I
o] EE

FIGURE 5. 9 The Java compiler generates a syntax error if there's a problem with the source code.

Cool! Not only did the Java compiler find that there was a problem, but it also identified what the problem
was and where it occurred. Y ou can open the file and jump right to the line that contains the error by double-clicking

the syntax error. You'll notice alittle arrow identifies where the compiler thought there was a problem (Figure 5.10).

=[I=——— SimplestApplet. java ETE
B public class SimplestApplet extends java.applet.Applet]] E
} BEx
class Circle {
¥
class Square 1
B
MEIE] [Line: 1 | |}]

FIGURE 5. 10 The arrow identifies where the compiler has identified a syntax error.

Barry Boone and Dave Mark Learn Java on the Macintosh 85

Tofix this, all you haveto do is enter the left curly brace as appropriate and recompile.

Warning

The messages indicating a syntax error has occurred will not always correctly identify where the error exists, though
it will usually be close by (within aline or s0). The reason this can happen is that the compiler must make a guess as
to what went wrong while it was looking over your program; since it doesn’t always know what you were trying to
do, it sometimes makes assumptions. If the line identified by the compiler does not look incorrect, try checking out

the line above it before pulling your hair out.

Displaying Messages

Even though we won't start displaying things inside the applet’ s window until Chapter 11, our programs are still
capable of displaying messages. Y ou can do this by writing to the Java Output window. (Remember, the Java Output

window is always displayed by Metrowerks Java when you run your applet.)

Definition

The Java Output window plays the role of thestandard output when running applets using Metrowerks Java. In the
old days of writing software, computer terminals didn’t have such things as windows, menus, and so on. They only
displayed characters. Back then, programmers didn’t have to worry about where text they displayed would end up—
as long as they wrote to the standard output, it would end up on the device being used to interact with the computer.
That device might be ascreen, or it might even be aline printer. But there wasn't any possibility of it being displayed

in some window floating on the screen; there simply weren’'t any windows!

In these modern times, things are more complicated, but even new languages still retain the concept of writ-
ing text to the standard output. Even in a sophisticated language like Java, thisideais till around. CodeWarrior

alows you to write to the standard output by supplying the Java Output window.

Barry Boone and Dave Mark Learn Java on the Macintosh 86

The Java Output Window

Even if you don’t write anything to the Java Output window yourself, Metrowerks Java still writes its own messages
to thiswindow. Asyou saw in Chapter 2, thisincludes messages indicating that a particular applet classisloading and

running.

To make amessage appear in this Java Output window (that is, the standard output) from your own program,

you use a command that looks like this:

System out. println(“Your nessage goes here.”);

This cryptic-looking line of code contains afew aspects to Javathat will be fully explained later. Until then,
it's best to just accept that this works when we use thisin our own sample programs. Thiswill display aline of text

like thisin the Java Output window:

Your nessage goes here.

Y ou can put almost anything between the parentheses and quotes and have it appear in the Java Output win-

dow. As another example, to write the message “| like Javain the springtime,” you could write aline of codelikethis:

Systemout.println(“l Iike Java in the springtine”);

Asyou might guess, this makes the line:

Barry Boone and Dave Mark Learn Java on the Macintosh 87

I like Java in the springtine

appear in the Java Output window.

Static Initializers

Now, where do weput these lines of code? We can put them in two places: Methods and static initializers. We
haven’t learned how to define our own methods quite yet; that’s to be covered in Chapter 7. So for now, let’ sturn our

attention to static initializers.

What is a static initializer? When you drop your HTML file onto the Metrowerks Javaicon, Metrowerks
Javastarts up. It loads the applet class listed after the code= keyword in your HTML file. When your class |oads,

Javalooksto seeif the class has defined a static initializer. If it has, then Metrowerks Java executes this code.

The way you define a static initializer isby using the st at i ¢ keyword and an opening and closing curly

brace, likethis:

public class Staticlnit extends java. appl et. Appl et {

static {
Systemout.println(“l Iike Java in the springtine”);
}

Aswe indicated, the code between the opening and closing curly brace after the keyword st at i ¢ isexe-

cuted when this classis loaded. Hey—this means we have written a Java program that actually does something! To

Barry Boone and Dave Mark Learn Java on the Macintosh 88

see thisin action, drag and drop the St ati cl ni t. ht m fileicon onto the Metrowerks Java application icon. Y ou
canfind thisHTML filein the folder named 05. 02 - st ati ¢ located inLearn Java Projects Wheniit runs, you'll
see that, as before, the applet window itself is blank. However, our new message appearsin the Java Output window.
Figure 5.11 shows what the Java Output window looks like when this static initializer code is added to an otherwise

empty applet class definition.

LE|
L §

EDE Java JQutput
Executing: jawvai sun.qpplet. Appletliswer
JBlueHorze /LearnB20davalB20Pro jectsB20KR /05 . 02820-B20=tatic/Staticlnit. himl

| like Jdauwa in the springtime
Comp leted{02

[

2
&<

&l

FIGURE 5. 11 A dtatic initializer message in the Java Output window.

Definition
Each line of Java code that actually does something is referred to as astatement. Each statement must always end in

asemicolon (;), similar to the way that each English sentence endsin a period. Notice the semicolon at the end of the

line:

Systemout.println(“l Iike Java in the springtine”);

Barry Boone and Dave Mark Learn Java on the Macintosh 89

Y ou would receive a syntax error from the compiler without this ending semicolon. Look for the semicolon

in the lines of code that follow in this chapter and through the rest of this book to become familiar with it.

What if you wanted to write a second message in addition to singing about Javain the spring? How could
you also write out amessage about preferring another drink inthe summer? Y ou could write another line of code right

after thefirst, like this:

static {
Systemout.println(“l like Java in the springtinme”);
Systemout.printin(“l like iced tea in the summer”);
}

Notice that each line of code endsin asemicolon. Y ou can write as many lines of code asyou’'d like. Just put

them all between the starting, |eft curly brace and the ending, right curly brace and you'll be fine.

Warning

With Metrowerks Java and the Applet Viewer, if you want to make a change to your Java source code and rerun your
applet, you should not drag and drop the HTML file onto the Metrowerks Javaicon again. Aslong as Metrowerks

Javais still running, you should select Reload from the Applet menu.

More Complicated Messages

Y ou must place al the text you'd like to appear in the Java Output window within quotes. In addition to writing text,

you can also write other types of information. For example, you can display a number like this:

System out. println(99);

Barry Boone and Dave Mark Learn Java on the Macintosh Q0

Y ou can even combine text and numbers by using plus sign (+), like this:

Systemout.println(“My agent nunber is “ + 99 + “17);

Thiswould display:

My agent nunber is 99!

In the next chapter, you'll see how you can take advantage of this technique to write even more sophisticated

messages to the Java Output window.

Review

This chapter outlined the development cycle for programming in Java. You'll always follow these basic steps when
writing your Java programs. Create and edit afile to contain your Java source code, compile this code, and run your
program. When you want to make changes, repeat these steps. Y ou now know how to create . | ava files, compile

themto create. cl ass files, and you even know how to fix syntax errors should you ever see these beasts.

This chapter stepped through the simplest possible Java applet. Y ou are probably beginning to get a sense
that applets are pretty powerful. For example, your applet class knew how to put awindow up on the screen al by
itself. Y ou also learned how to make messages appear in awindow on the screen. Soon, you' || be displaying messages
in the appl et window itself, adding graphical user interfaces, and more. In the upcoming chapters, you'll gaininsights

into this as well as other mysteries of Java programming.

Barry Boone and Dave Mark Learn Java on the Macintosh 91

What's Next?

For our first formal programming chapter, you'll learn how to work with data. The next chapter discusses how to
maintain datain your program by using variables, and how to use operators to change the values in those variabl es.

Thiswill provide the basis for al of the programming chapters that follow.

Barry Boone and Dave Mark Learn Java on the Macintosh 92

CHAPTER 6 Variablesand Operators

Congratulations on reaching Chapter 6! Y ou’ ve travelled along way, and you' re on the verge of becoming a Java pro-

grammer. Let’ s take stock of where you stand right now.

Y ou' re beginning to get comfortable with the CodeWarrior environment. In particular, you know how to
open aproject and edit a project’ s source code. Y ou know how to run a Java program, and you’ ve run a number of
Javaprograms as you progressed through thefirst five chapters. Y ou created avery simple applet in Chapter 5, having
learned the stages of the development cycle and one or two Java keywords relating to applets. Y ou even know what to

doif you run into any syntax errors, and you’ ve experienced how to go about fixing them.

You'velearned alittle what it’ s like to develop a program using Java, including how to think through your
program’s design by answering four questions. Y ou’ ve also put together classes that will become the framework for
your application. Y ou even know how to write messages to the Java Output window. Y ou know that each line of code

is called a statement, and each statement ends in a semicolon.
Doesn't that sound like you' re on the road to becoming a programmer? Now it’stimeto go alittle further.

One of the primary tasks of a program isto work with data. Programswork with just about every type of data
you can imagine, ranging from a person’ s hourly wage in apersonnel file, to abank balance in a checking account, to
aflight path for a space-probe, to the colors of circles and squares. To write programs, then, you need to know how to
work with the data required by the program. So far, we' ve hinted at how to begin planning to work with data but we

haven't gotten into the details. This chapter shows you what you need to know to work with data using Java.

This chapter uses parts of Chapter 5 from the book Learn C on the Macintosh, by Dave Mark. The C lan-
guage was a direct predecessor to Java, so the approaches for maintaining and manipulating data are quite similar

between C and Java. We took advantage of this situation to present text that has already been tested in production, as

Barry Boone and Dave Mark Learn Java on the Macintosh 93

it were, and run through the gamut by tens of thousands of readers of Dave' s other book. Where necessary, we

updated this text to take into account the differences with Java.

An Introduction to Variables

A large part of the programming process involves working with data. In Java, datais represented by using variables.
Variables can be thought of as containersfor your program's data. | magine three containers on atable. Each container
hasalabel: “cupl,” “cup2,” and “cup3.” Now imagine that you have three pieces of paper. Write a number on each

piece of paper and place one piece inside each of the three containers. Figure 6.1 shows what this might look like.

cupl cup2 cup3

FIGURE 6. 1 Numbers placed in cups.

Now imagine asking afriend to reach into the three cups, pull out the number in each one, and add the three
values. Y ou can ask your friend to place the sum of the three valuesin afourth container created just for this purpose.

The fourth container islabeled “sum” and is shown in Figure 6.2.

Barry Boone and Dave Mark Learn Java on the Macintosh 94

FIGURE 6. 2 Adding three numbers and placing them in a container labelled “ sum.”

Thisis exactly how variables work. Variables are containers for your program's data. Y ou create avariable
and place avalueinit. Y ou then ask the computer to do something with the value in your variable. Y ou can ask the
computer to add three variables and place the result in afourth variable. Y ou can even ask the computer to take the

value in avariable, multiply it by 2, and place the result back into the original variable.

Getting back to our example, now imagine that you changed the valuesin cupl, cup2, and cup3. Once again,
you could call on your friend to add the three values, updating the value in the container sum. Y ou've reused the same

variables using the same formula to achieve a different result. Here's the Java version of the formula:

sum = cupl + cup2 + cups3;

Every time you execute this line of source code, you place the sum of the variablescupl, cup2, andcup3
into the variable named sum At this point, it's not important to understand exactly how this line of Java code works.
What isimportant to understand is the basic idea behind variables. Each variable in your program is like a container

with avalueinit. This chapter will teach you how to create variables and how to place avaluein avariable.

Barry Boone and Dave Mark Learn Java on the Macintosh 95

Working with Variables

Variables comein avariety of types. A variable's type determines the kind of data that can be stored in that variable.
Y ou determine avariable'stype when you create the variable. (We'll discuss creating variablesin just asecond.) Some
variable types are useful for working with numbers. Other variable types are designed to work with text. Still others
are good for maintaining true/false values. In this chapter, we'll discuss only one type of variable. Thiswill be vari-

ablesof typei nt (i nt standsfor “integer”). A variable of typei nt can hold anumerical value, such as 27 or -589.

Working with variables is a two-stage process. First, you create a variable; then you use avariable. In Java,
you create a variable by declaring it. Declaring a variable tells the compiler, “ Create a variable for me. | need a con-
tainer in which to place a piece of data.” When you declare avariable, you have to specify both the variable's type and
itsname. In our earlier example, we created four containers, or cups, each having alabel. In the Javaworld, this
would be the same as creating four variables with thenamescup1, cup2, cup3, and sum In Java, if we want to use

the value stored in a variable, we use the variable's name. We'll show you how to do this later in the chapter.

Here's an example of avariable declaration:

I nt nmyVar i abl e;

This declaration tells the compiler to create a variable of typei nt (remember, ani nt isused to work with
numbers) with the namenyVar i abl e. Thetype of thevariable (inthiscase, i nt) isextremely important. Asyou'll

see, avariable type determines the kind and range of values a variable can be assigned.

Barry Boone and Dave Mark Learn Java on the Macintosh 96

Variable Names

Here are two rules to follow when you create your own variable names;

¢ Variable names must always start with an uppercase or lowercase letter (A, B,..., Z or a, b,...,) or with an under-

score ().

e Theremainder of the variable name must be made up of uppercase or lowercase letters, numbers (0, 1,..., 9), or the

underscore.

These two rulesyield such variable namesasnyVari abl e, TH S_NUMBER, VaRi AbLe 1, and
A1234 4321. Notethat a Javavariable may never include a space or a character such as & or * . These two rules

must be followed.

On the other hand, these rules do leave afair amount of room for inventiveness. Over the years, different
groups of programmers came up with additional guidelines (also known as conventions) that made variable names

more consistent and a bit easier to read.

Macintosh programmers tend to use the following convention (which we'll also use throughout this book):

e We'll form our variable names from lowercase | etters and numbers, always starting with alowercase letter. This

yields variable names likenunber or di gi t 33.

* When we create avariable with more than one word, we' Il start the variable name with alowercase letter and each
successive word in the variable name with an uppercase letter. Thisyields variable nameslikenyVar i abl e or

howivany.

As mentioned earlier, Javais a case-sensitive language. The compiler will cough out an error if you some-
timesrefer tormyVar i abl e and other timesrefer tomyvar i abl e. Adopt anaming convention and stick withit: Be

consistent!

Barry Boone and Dave Mark Learn Java on the Macintosh 97

By the Way

Many times, programmers use avariable namedi orj to keep track of integers. In fact, this book uses these names
for some of itsvariables, aswell. Whyi andj ?Why nota and b, or g and z? Actualy, a and b (and any other |et-

ter—or any other word, for that matter) isjust asvalidasi andj . Usingi andj isjust aconvention.

The reason this convention arose has to do with the computer languages that come before Java. In particular,
at onetime, FORTRAN was one of the most popular computer languages around. FORTRAN is designed for math,
and in earlier versions of FORTRAN, the way the variables were named determined what types of values they could
hold. In particular, al variables that began with theletters ‘i’ through ‘n’ could hold aninteger value (‘i’ and ‘'n’ being
the first two letters of the word integer). So, whenever FORTRAN programmers needed a simple integer, they would
usei . If they needed another integer andi was aready in use, they would usej , and so on. This convention has

stayed with programmers and is still used all the time today.

The Size of a Type

When you declare a variable, the compiler reserves a section of memory for the exclusive use of that variable. When
you assign avalueto avariable, you are modifying the variable’ s dedicated memory to reflect that value. The amount

of memory assigned to avariable is determined by the variable’ s type.

For example, the following variable declaration reserves memory for the exclusive use of the variable

nmyl nt:

i nt myl nt;

Barry Boone and Dave Mark Learn Java on the Macintosh 98

If you later assign avalueto ny| nt , that valueis stored in the memory allocated for my | nt . If you ever

refer to the value of my | nt , you'll be referring to the value stored in this memory.

Operators

Oneway to assign avalue to avariable isto use the = operator, also known as the assignment operator. An operator
isaspecial character (or set of characters) representing a specific computer operation. The assignment operator tells
the computer to compute the value to the right of the = and to assign that value to the variable on the left of the=.

Take alook at thisline of source code:

mylnt = 237,

This statement causes the value 237 to be placed in the memory alocated for ny| nt . In thisline of code,
ny| nt appears on the left side of the = operator. A variable makes afine left hand side of an assignment. A humber
(like 237) makes aterrible left hand side. Why? Because values are copied from the right side to the left sideof the =

operator. For example, the following line of code asks the compiler to copy the valuein nyl nt to the number 237:

237 = nylnt;

Since you can’t change the value of a number, the compiler will report an error when it encounters thisline

of code (the error message will complain about an “Invalid left hand side of assignment”).

By the Way

Barry Boone and Dave Mark Learn Java on the Macintosh 99

Aswejust illustrated, you can use numerical constants (such as 237) directly in your code. In the programming
world, these constants are called liter als. Just asthere are different types of variables, there are a so different types of

literals. You'll see more on thistopic later in this book.

Look at this example code placed into a static initializer for an applet class:

public class Sanpl e0601 extends java. appl et. Appl et {

static {
I nt nmyl nt, anotherlnt;

myl nt = 503;
anot herlnt = nylnt;

Notice we' ve declared two variables in this program. One way to declare multiple variablesis the way we
did here, separating the variables by acomma (,). There' s no limit to the number of variables you can declare using

this method. (Just be sure to end this line with a semicolon.)

We could also have declared these variables by using two separate statements:

I nt nyl nt;
i nt anot herl nt;

Either way isfine. Asyou'll see, Javais an extremely flexible language. For example, you can declare vari-

ables pretty much anywhere in your program. Consider this example:

Barry Boone and Dave Mark Learn Java on the Macintosh 100

public class Sanpl e0602 extends java. appl et. Appl et {

static {
i nt nyl nt;

mylnt = 503;

i nt anot herl nt;
anot herint = nylnt;

Thiswill work perfectly fine, aswell. The only issue is amatter of style. Some programmersliketo place all
the variable declarations at the start of the method, so that they are easy to find. Some programmers like to declare
variablesjust before they’ re used. In thisbook, we' |l declare al the variables at the start of the method, which iswhat
the majority of programmers do, especially those who have programmed in less flexible languages that required all

variables to be declared first. Y ou should pick a style you like and be consistent, as well.

Let'stake alook at the static initializer for this program. This static initializer starts by declaring ani nt .

I nt nyl nt;

Next, this program assigns the value 503 to ry | nt :

nylnt = 503;

Barry Boone and Dave Mark Learn Java on the Macintosh 101

Then, the program declares another variable.

i nt anot herl nt;

Finally, thevalueinnyl nt iscopiedinto anot her | nt :

anot herlnt = nylnt;

After this last statement, the variable anot her | nt aso contains the value 503.

Now that you know how to declare a variable and use the assignment operator to set it to avalue, let’ slook at
some of the other operators in Java. Many of these operators have to do with arithmetic operations (such as addition,
subtraction, and so on). We'll look at these operatorsin this chapter. Other operators are useful for comparing two val-

ues and determining things like if oneis greater or less than another. We'll look at these operators later in the book.

Arithmetic Operators

The +, -, ++, and -- Operators

The+ and - operators each take two values and reduce them to a single value. For example, the following statement

will first resolve the right side of the = by adding the numbers 5 and 3.

Barry Boone and Dave Mark Learn Java on the Macintosh 102

mylnt = 5 + 3;

Once that's done, the resulting value (8) is assigned to the variable on the left side of the =. This statement
assigns the value 8 to the variablemy | nt . Assigning avalue to a variable means copying the value into the memory

alocated to that variable.

Here's another example:

nmylnt = 10;
anotherint = 12 - nylnt;

Thefirst statement assigns the value 10 torny | nt . The second statement subtracts 10 from 12 to get 2, then

assignsthevalue2toanot her I nt .

The++ and - - operatorsoperate on asingle value only. The ++ operator increments (raises) the value by 1,

and - - decrements (lowers) the value by 1. Take alook:

nylnt = 10;
nmyl nt ++;

Thefirst statement assignsmy | nt avalue of 10. The second statement changesthe value of my| nt from 10

to 11. Here's an example with - - :

mylnt = 10;

Barry Boone and Dave Mark Learn Java on the Macintosh 103

-- nylnt;

Thistime, the second line of code left ny | nt with avalue of 9. Y ou may have noticed that the first example

showed the ++ following my| nt , whereas the second example showed the- - preceding nyl nt .

The position of the++ and - - operators determines when their operation is performed in relation to the rest
of the statement. Placing the operator to the right of avariable or an expression (thisis called postfix notation)
resolves all values before performing the increment (or decrement) operation. Placing the operator to the |eft of the
variable (thisis called prefix notation) increments (or decrements) first, then the evaluation continues. The following

examples should make this point clear:

nmylnt = 10;
anotherlnt = nylnt--;

Thefirst statement assigns my | nt avalue of 10. In the second statement, the - - operator isto the right of
my| nt . Thisuse of postfix notation assignsny | nt 'svaluetoanot her | nt before decrementing my | nt . This

example leavesny| nt with avalue of 9 and anot her | nt with avalue of 10.

Here' s the same example, written using prefix notation:

nylnt = 10;
anot herint = -- nylnt;

Thistime, the- - isto theleft of myl nt . In this case, the value of nmy| nt is decremented before being

assigned to anot her | nt . Theresult? Both myl nt and anot her | nt areleft with avalue of 9.

Barry Boone and Dave Mark Learn Java on the Macintosh 104

The +=and -= Operators

In Java, you can place the same variable on both the left and right sides of an assignment statement. For example, the

following statement increases the value of ny | nt by 10:

nmylnt = nylnt + 10;

The same result can be achieved using the += operator:

mylnt += 10;

In other words, the preceding statement is the same as:

nylnt = nylnt + 10;

In the same way, the- = operator can be used to decrement the value of a variable. The following statement

decrementsthe value of my| nt by 10:

nmylnt -= 10;

Barry Boone and Dave Mark Learn Java on the Macintosh 105

The *, /, *= and /= Operators

The* and/ operators each take two values and reduce them to a single value, much the same asthe+ and - opera-

tors do. The following statement multiplies 3 by 5, leaving my | nt with avalue of 15:

mylnt = 3 * 5;

The following statement divides 5 by 2 and, if myl nt isdeclared asani nt (or any other type designed to

hold whole numbers), assigns the integral (truncated) result tomyl nt :

The number 5 divided by 2is2.5. Sinceny| nt can hold only whole numbers, the value 2.5 is truncated,

and the value 2 isassigned tony | nt .

Detail

Math alert! Numberslike -37, 0, and 22 are known aswhole numbers, or integers. Numbers like 3.14159, 2.5, and

.0001 are known as fractional number s or floating-point numbers.

The* = and/ = operators work much the same as their += and - = counterparts. The following two state-

ments are identical :

nylnt *= 10;

mylnt = nmylnt * 10;

Barry Boone and Dave Mark Learn Java on the Macintosh 106

The following two statements are also identical :

nylnt /= 10;

nylnt = nylnt / 10;

By the Way

The / operator doesn’t perform its truncation automatically. The accuracy of the result islimited by the data type of
the operands. Asan example, if the divisionisperformed using i nt s, theresult will be ani nt and istruncated to an
integer value. Several datatypes (such asf | oat , introduced shortly) support floating-point division, using the/

operator.

Operator Order

Sometimes, the expressions you create can be evaluated in many ways. For example:

mylnt =5 + 3 * 2

You can add 5 + 3, then multiply the result by 2 (giving you 16). Alternatively, you can multiply 3 * 2 and

add 5 to the result (giving you 11). Which is correct?

Barry Boone and Dave Mark Learn Java on the Macintosh 107

Javahas a set of built-in rulesfor resolving the order of operators. Asit turnsout, the* operator has a higher

precedence than the + operator, so the multiplication will be performed first, yielding aresult of 11.

Although it helpsto understand the relative precedence of the Java operators, it is difficult to keep track of
them all. That’ swhere parentheses comein. Use parentheses in pairs to define the order in which you want your oper-

ators performed. The following statement will leaveny| nt with avalue of 16:

nylnt = (5+ 3) * 2;

The following statement will leaveny| nt with avalue of 11:

mylnt =5+ (3 * 2);

Y ou can use more than one set of parentheses in a statement, as long as they occur in pairs—one |eft paren-

thesis associated with each right parenthesis. The following statement will leavenyl nt with avalue of 16:

nylnt = ((5+3) * 2);

Detail

Barry Boone and Dave Mark Learn Java on the Macintosh 108

There are afew special operatorsthat work with the individual bitsin avariable or number. These are most often used
only as advanced programming techniques, but we'll mention them here because you will run across them in your
travels, especially when combining variables that define properties and styles. For example, we' Il use these operators

when specifying afont style in Chapter 11. For now, here's what you need to know.

These bit-wise operators (that is, operators that work on bits rather than taking into account the number as a

whole) arelisted in Table 6.x.

TABLE 6.1 Bit-wise operators

operator description

>>> shiftsthe bitsin avariable to the right and fills the vacated bits with zero.

| performsa*“logical or,” which resultsin 1 if either of two bits are on, and 0 if both bits are off.
n performsa*“logical and,” which resultsin 1 only if both bits are on, and 0 otherwise.

<< shiftsthe bitsin avariable to the | eft.

>> shiftsthe bitsin a variable to the right.

Here' s a quick example using binary values, though binary math is abig topic; wewon’t go into how binary
arithmetic actually works here. Y ou might have avariabl e that takes up one byte (data types that take up only one byte
are described in Chapter 12). It might be represented by the bits 00100110 (there are eight bits here, because there are
eight bits for one byte). Y ou might have a second byte variable that is represented by the bits 01001110 (again there
are eight bitsin this one byte, but the bits are different in this particular byte). The way you represented such avalue
in Javais by using the notation Ox in front of the number. If you combined these two byte values using the “logical

or” operator (|), like this:

byte nyByte = 0x00100110 | 0x01001110;

Barry Boone and Dave Mark Learn Java on the Macintosh 109

my Byt e would take on avalue that represented a combination of the bitsin the first position, then a combi-
nation of the bitsin the second position, and so on, up to a combination of the bitsin the eighth position. Looking at
the table, you can see that the “logical or” operator resultsin a1 if either bit in the same positionis 1, and a0 if both

are 0. So here’ swhat would happen:

00100110 |
01001110

01101110

and my Byt e would be equal to 01101110. Y ou can check out Dave Mark’s Learn C on the Macintosh, pub-
lished by Addison-Wesley, for an explanation of the equivalent bit-wise operatorsin C and for a thorough discussion
of bits, bytes, and binary arithmetic. We'll also show how you can use this“logical or” operator to combine valuesin

Chapter 11 when we define afont’s style.

Sample Programs

So far in this chapter, we' ve discussed variables (mostly of typei nt) and operators (mostly arithmetic). The program

examples on the following pages combine variables and operators into useful Java statements.

Barry Boone and Dave Mark Learn Java on the Macintosh 110

Opening Operator.u

Our next program, maintained by the project file Qper at or . , provides atesting ground for some of the operators
covered in the previous sections. Oper at or . j ava declaresavariable (my| nt) and uses a series of statementsto
change the value of the variable. By including aSyst em out . pri nt| n() after each of these statements, Oper -

at or. j ava makesit easy to follow the variable, step by step, asits value changes.

Start up CodeWarrior by double-clicking on the project fileQper at or . p inside the Learn Java Projects

folder., in the subfolder named06. 01 - oper at or. The project window for Oper at or . W should appear (asin

Figure 6.3).

=[[lI=————— Operator.p g@gl

[#] File Code Data
= v Java Source 0: 0: Em ais
w Operator.java III III o
w classes zip 0 0 3}
= HTHL files l] l] =
..................... Operatorftmd b Dl nfal BN
r
3 file(s) 0 0 i

FIGURE 6. 3 The Oper at or . L project window.

Compile this applet by selecting Make from the Project menu. Once the code compiles, drag and drop
the HTML fileicon from thefolder 06. 01 - oper at or onto the Metrowerks Java application icon. CodeWarrior
will launch the Applet Viewer and run the program, displaying the output from the program in the Java Output win-

dow. Compare your output to that shown in Figure 6.4. They should be the same.

Barry Boone and Dave Mark Learn Java on the Macintosh m

SfI=—————————————— Java Dutput

Executing: jowai sun.applet. Appletliswer

fB lueHorze ALearnBZ20Jaual20Pro jec t=820KR 06 . 0 1EZ20-B200pera tor /Operator himl
mylnt —=3 G

mylnt —3 7

mylnt ——3x 2

mylht ——=> 20

mylnt —=3 5

mylnt ——3 2

CompletedcOl

<] [

Bl

]

FIGURE 6. 4 The output generated by the Operator applet.

Stepping Through the Source Code

Before we step through the source code in Oper at or . j ava, you might want to bring the source code up on your
screen (double-click the name Oper at or . j ava in the project window, or select Open from the File menu). A

new window will appear, listing the source code in the fileCper at or . j ava.

ThefileOper at or . j ava starts off by defining anew class, just as you learned about in the previous chap-

ter. This program defines an Applet class called Operator.

We' ve placed awhole bunch of Java statementsinside of astatic initializer. These statements set a value for

avariable, change the value, and then display the new results.

The static initializer starts out by declaring ani nt variable named ny| nt .

i nt myl nt;

Barry Boone and Dave Mark Learn Java on the Macintosh 112

At this point in the program, my | nt isequal to 0. We haven't set it to any particular value, but Java always

makes sure your variables contain something safe.

The next line of code usesthe* operator to calculate avalue of 6, and the = operator to assign this new value
tomyl nt . Following that, we use Syst em out . pri nt I n() todisplay the value of myl nt in the Java Output

window:

mylnt = 3 * 2;
Systemout.println("nylnt --->" + nylint);

The next line of Oper at or . j ava incrementsny| nt from 6 to 7 and prints the new value in the Java Out-

put window.
nmylnt += 1,
Systemout.println("nylnt --->" + nylnt);

The next line decrementsmy | nt by 5 and printsits new value, 2, in the Java Output window:

nmylnt -=5;
Systemout.println("nmylnt --->" + nylnt);

Next, nyl nt ismultiplied by 10, and its new value, 20, is printed in the Java Output window:

Barry Boone and Dave Mark Learn Java on the Macintosh 113

nylnt *= 10;
Systemout.println("nylnt --->" + nylnt);

Next, myl nt isdivided by 4, resulting in a new value, 5:

nylnt /= 4;
Systemout.println("nylnt --->" + nylnt);

Finally, myl nt isdivided by 2. Since 5 divided by 2 is 2.5 (not awhole number), atruncation is performed,

and nmy | nt isleft with avalue of 2:

nylnt /= 2;
Systemout.println("nmylnt --->" + nylnt);

Opening Postfix.u

Our next program demonstrates the difference between postfix and prefix notation (the++ and - - operators defined
earlier in the chapter). In the Finder, go into the Learn Java Projectsfolder, then into the06. 02 - postfi x sub-
folder, and double-click the project file Post f i x. p. CodeéWarrior will close the project fileOper at or . p and

open Post fi x. [.

Take alook at the source codein thefilePost f i x. j ava and try to predict the result of the two Sys-
temout. println() statements before you run the program. (Thisfileis displayed in Figure 6.5.) Remember,
you can open a source code listing for Post f i x. j ava by double-clicking the name Post f i x. j ava inthe

project window. (Careful, this example istricky!)

Barry Boone and Dave Mark Learn Java on the Macintosh 114

[E=—————— Postfix.jara EE|
public class Postfix java.applet.Applet { E?
static {
int mylmt;
mylnt = 5;
System.oul. printint"myglnt ———3* " + mylnt++;
System.out. printint"mylnt ——3* " + ++mylntl;
¥ |
; o
MEIE] [Line: 2 1 5 [=y

FIGURE 6. 5 ThefilePost fi x. j ava.

Once your guesses are locked in, select Make from the Project menu to compile the applet, then drop
the HTML fileinthe06. 02 - post fi x folder onto the Metrowerks Java application. How’' d you do? Compare

your two guesses with the output in Figure 6.6. Let’slook at the source code.

=sllI=—————————— Java Dutput g@gl
Executing: jovai sun.applet.Appletliswer 4
JBlueHorze LearnB20dawaiZ0ProjectsB20KR 06 . 02820-820postfix/Postfix . himl [
mylht ———=* 5
mylnt ———:=* 7
Comp letedo0l

=
@l EE

FIGURE 6. 6 The output generated by the program Postfix.

Barry Boone and Dave Mark Learn Java on the Macintosh 115

Stepping Through the Source Code

Thefirst half of Post fi Xx. j ava iswhat you've seen before. The variable my | nt is declared to be of typei nt

inside of astatic initializer. Then, ny| nt isassigned avalue of 5.

int nylnt;
mylnt = 5;

The tricky part comes next. Thefirst call toSyst em out . pri ntl n() hasastatement embedded in it.
Thisis another feature of the Javalanguage. Where there's room for avariable, there’ s often room for an entire state-

ment. This allows you to perform two actions in the same line of code, so that:

Systemout.println("nylnt --->" + nylnt++);

performs two different tasks. First, amessage is printed to the Java Output window:

nmylnt --->5

(That is, at the time the message is printed, my| nt hasavalue of 5.) Second, ny| nt isincremented by 1.

By the time this line of code is finished executing, my|l nt has avalue of 6. Two things for the price of one!

The use of postfix notation in the above line of code ensures the increment by 1 occurs after the value for

my| nt is printed. What about the next line of code:

Barry Boone and Dave Mark Learn Java on the Macintosh 116

Systemout.println("nylnt --->" + ++nylnt);

Thisline of code uses prefix notation. This ensures that mylnt isincremented first. That makesny| nt take

on the value of 7. Then, the message is printed to the Java Output window.

By the Way

Can you break each of theseSyst em out . pri nt| n() statementsinto two separate ones? Giveit atry, then read

on...

Thefirst Syst em out . pri ntl n() lookslikethis:

Systemout.println("nylnt --->" + nylnt++);

Here' s the two-statement version:

Systemout.printIn("nylnt -->" + nylnt);
myl nt ++;

Notice that the statement incrementing rmy | nt was placed after the Syst em out . pri nt 1 n() . Do you

see why? The postfix notation makes this necessary. Run through both versions and verify this for yourself.

Thesecond Syst em out . pri ntl n() lookslikethis:

Barry Boone and Dave Mark Learn Java on the Macintosh 117

Systemout.println("nylnt --->" + ++nylnt);

Here' s the two-statement version:

++nyl nt ;
Systemout.println("nmylnt --->" + nylnt);

Thistime, the statement incrementing my | nt came beforeSyst em out . pri nt | n() . Thistime, it'sthe

prefix notation that makes this necessary. Again, go through both versions and verify this for yourself.

The purpose of demonstrating the complexity of the postfix and prefix operationsis twofold. On the one hand, it's
extremely important that you understand exactly how these operators work from all angles. Thiswill allow you to
write code that works and will aid you in making sense of other programmers’ code. On the other hand, embedding
prefix and postfix operators within statements that also perform other tasks may save you aline of code but, as you

can see, may prove abit confusing.

Programming With Style

Y ou’ ve now learned enough about Java that it’ stime to say afew words about style. As your programs become more
complicated, one danger you must always guard against iswriting code that is difficult to understand and maintain.
With that mind, let’ slook at some approaches for making sure your codeis clear, easy to read, and iswrittenin astyle

that most programmers use in their own code.

Barry Boone and Dave Mark Learn Java on the Macintosh 118

Comments

One great technique for explaining your program to other programmers is to use comments. Comments are written
directly in English and are mixed right into your source code. When you add a comment, you first tell the Java com-
piler you' re beginning a comment. Thisway, the compiler knows what it should skip over your comment before it

begins to compile again.

There are two basic types of comments you can add to your code. Thefirst type is created by using two for-

ward dashes, like this:

[/ This is a coment.

Here' s an example of this type of comment:

public class PieChart extends java.applet. Applet {

static {
i nt nunPi eces; // Nunber of pieces of pie left

nunPi eces = 8; // W started with 8 pieces

nunPi eces- - ; /'l Marge had a piece
nunPi eces- - ; /'l Lisa had a piece
nunPi eces -= 2; // Bart had two pieces!!

nunPi eces -= 4; // Honer had the rest!!!

Systemout.println("Slices left = + nunPieces); // no nore

Barry Boone and Dave Mark Learn Java on the Macintosh 119

Everything starting from the/ / that’s on the same lineisignored by the compiler. Comments that use the
double-forward slashes should appear after all the other code on aline. They can also appear on lines all by them-

selves.

The other type of comment is better suited to larger and more involved comments. Y ou can indicate the start
of acomment by using/ * (forward-slash star) and the end of a comment by using */ (star forward-slash). Every-

thing betweenthe / * and */ isignored by the compiler. For example, hereisthis type of comment in action:

public class PieChart extends java.applet. Applet {

static {
i nt nunPi eces; // Nunber of pieces of pie left

nunPieces = 8; // W started with 8 pieces
nunPi eces- - ; /1 Marge had a piece

/* This programcharts the progress of a bunch of pie eaters.
Even if we put valid Java code within the conment, this code

IS 1gnored.
nunPi eces- - ; /'l Lisa had a piece
nunPi eces -= 2; // Bart had two pieces!!

nunPi eces -= 4; // Honer had the rest!!!
This is the end of the comment. */

Systemout.println("Slices left = + nunPi eces); [/ 7 left

Barry Boone and Dave Mark Learn Java on the Macintosh 120

Formatting

Asyour programs grow more and more complicated, it becomes increasingly important to use good programming
style to help keep your code readable. Nothing's more frustrating than trying to figure out someone else’ s code that is
difficult to read and is not well-documented. Well, actually, maybe there is one thing more frustrating—having this
experience with your own code! You'll find that when you return to look over your own code the next day, the next
week, or longer, you'll be glad you took a few moments to make your code easy to read and understand. Here are a

few simple rules of thumb you can use to help you find a programming style you' re comfortable with.

White Space

You'll notice that the sample code in this book intersperses|ots of white spacein the form of blank lines and indenta-
tions. The Java compiler does not care how much white space you insert into your code. The compiler will simply

ignore this white space. For example, check out the following program, which you’ ve seen before:

public class PieChart extends java.applet.Applet { static { int

nunmPi eces; nunPi eces = 8; nunPi eces--; nunPi eces--;
nunPi eces -= 2; nunPi eces -=

4; Systemout.printin("Slices left =" + nunPieces); }
}

Even this simple example shows that your program can start to look pretty hairy when it’s not nicely format-

ted. Asyou can tell, the original looks alot better!

Barry Boone and Dave Mark Learn Java on the Macintosh 121

Lining Up the Curly Braces

Notice how in the original PieChart applet, the closing right curly brace always aligns with the line that begins with
the corresponding left curly brace? This makes it easy to see where related chunks of code begin and end. All the
statements within ablock of code delineated by curly bracesisfirst indented by three or four spaces or by atab stop
(it doesn’t matter, just be consistent), and then aligned within that block. And as we already pointed out, each closing

right curly braceis placed on itsown line.

You'll find lots of other examples of indenting and white space usage in the appendices at the back of this
book and in the sample programs on the CD-ROM . Of course, these are all rules of thumb and are not regquirements of
the language. Y ou might want to find your own formatting style, but keep in mind the style showed here is what most

Java programmers use when they develop software.

Review

This chapter introduced the concepts of variables and operators. Y ou learned how to declare avariable and assign a
valueto it. You also learned how to perform arithmetic operations, such as addition, subtraction, multiplication, and

division, and you learned about the operators+=, - =,*=,and / =.

The only types of variables you' ve worked with so far have been i nt s. i nt shold whole numbers, or inte-
gers. Soon, you'll be introduced to other data types that are more appropriate to use for floating-point or fractional
values. You'll also learn about operators that answer questions such as: |s one variable greater than another? Are two

variables equa ?

Y ou’'ve also considered programming style. Y ou can use white space, blank lines, and comments to help

make certain you can decipher your own code when you return to it at alater date!

Barry Boone and Dave Mark Learn Java on the Macintosh 122

What's Next?

Now that you' ve seen how to use variables, it'stime to discuss how you can implement behavior. This means creating
methods. Chapter 7 shows the basics of creating methods; in Chapter 8, you' Il learn how to write methods that do
some very sophisticated things, such as make decisions and “loop” through a sequence of statements. In Chapter 9,

you’ll see how to associate the same methods and variables you’ re learning about now with your own custom objects.

Barry Boone and Dave Mark Learn Java on the Macintosh 123

CHAPTER 7 I ntrOdUCU On tO MdhOdS

Now we turn out attention to actually making our applets do something! In order to reach that point, we' ve got to
journey across one more bridge. When you do, you'll reach the land of methods. The first part of this chapter
describes how to create and work with methods. In the second part, we' Il use this knowledge to start programming

our applets.

Creating a Method

Methods are one of the building blocks of objects and classes. All of the behavior associated with your Applet class

and the classes used by your Applet classis defined by methods.

A method is a chunk of source code that accomplishes a specific task. Methods identify themselves by
names. For example, you might have a method that contains the set of instructions describing what should appear in
an applet’ swindow. Y ou might call thismethod pai nt () . Or you might write a method for the circle objects we dis-
cussed earlier that would calculate the circle’ s area. This method might be calledcal cul at eArea() . A NASA
Space Shuttle program, a Tic-Tac-Toe program, and a business program might have methods called f i r eThr ust -
ers(), determ neNext Move(),andcal cul at ePayrol | (), respectively. Each of these methods would

contain the instructions necessary to perform its specific task.

Detail

Throughout this book, we'll refer to methods by placing a pair of parentheses after their names. Thiswill help to dis-
tinguish between method names and variable names. For example, r adi us() would refer to a method, while

r adi us would refer to avariable.

Barry Boone and Dave Mark Learn Java on the Macintosh 124

Each method defines a chunk of code that performs a specific task. Methods work together, so that a method
handling a certain task can ask another method to perform its task. When the other method is done executing, it

retur nscontrol back to the first method.

Let'slook at asimple example before studying the details. Hereis a set of instructions that displays the col-

ors of the rainbow in the Java Output window, oneline at atime:

Systemout.println(“red”);

System out. println(“orange”);
Systemout.println(“yellow);
Systemout.println(“green”);
System out. println(“blue”);

Systemout. println(“indigo”);
Systemout.println(“violet”);

This code will work fine, especialy if we'll only ever run through this code in one spot in our program. But
what if our program needs to write out the colors of the rainbow in two different places? In that case, we'd end up
duplicating this code. That would be wasteful in terms of space and programming effort. It would be much better to

group these seven statements together into one bundle and execute this chunk of code whenever we needed to.

We can do that exact sort of thing by turning these seven lines of code into their own method. Here'san

example of amethod that writes out the seven colors of the rainbow:

void witeColors() {
Systemout.println(“red”);
Systemout. println(“orange”);
Systemout.println(“yellow);
Systemout.println(“green”);
Systemout. println(“blue”);
Systemout. println(“indigo”);

Barry Boone and Dave Mark Learn Java on the Macintosh 125

Systemout.println(“violet”);

We'll refer to thismethod aswr i t eCol or s() . The method definition starts with akeyword voi d, which
will cover in just amoment. Y ou can see the method name, wr i t eCol or s, isfollowed by aleft and right parenthe-
sis, which we'll go over in just asec also. Then, aleft curly brace indicates the start of the method. All of the state-
ments that make up the method follow thisleft curly brace. After all the method’ s statements, the method indicates

where it ends by using aright curly brace.

Now, whenever you want to write all the colors of the rainbow to the Java Output window, you can invoke
this method from someplace in your code. Invoking a method means executing itsinstructions. Y ou can do thisin Java

by writing:

writeCol ors();

Thissingleline makes all seven statementsinthewr i t eCol or s() method execute, which makesthe Java

Output window fill up with rainbow color names.

Invoking a Method

Invokingwr i t eCol or s() isdepictedin Figure7.1.

Barry Boone and Dave Mark Learn Java on the Macintosh 126

turn control over towr i t eCol or s()

— i\

your method | writeColor §()

your code r%tb’: r:n(gﬂggl 00| \write the seven colors of the rainbow
y to the Java Output window

FIGURE 7. 1 Invokingwr i t eCol or s() isstraightforward.

Figure 7.1 shows your method turning control over to the method namedwr i t eCol or s() . When
wr i t eCol or s() isdone executing its statements, it returns control back to the spot in your method where you

invokedwr i t eCol or s() . For example, look at these three lines of code:

Systemout.println(“Here are the colors of the rai nbow ”);

writeCol ors();
Systemout.println(“Wen was the last tine you saw a rai nbow?”);

These three statements would write the following to the Java Output window:

Here are the colors of the rainbow

red

or ange

yel | ow

green

bl ue

i ndi go

vi ol et

When was the last tinme you saw a rai nbow?

Barry Boone and Dave Mark Learn Java on the Macintosh 127

Using Variables

Just as you used variablesin a static initializer in the previous chapter, you can also use variables in your methods.

Here's an example of amethod that finds the area of atriangle.

void triangl eArea() {
I nt area,;
I nt base;
i nt hei ght;

base = 10;
hei ght = 20;

area = (base * height) / 2;

Thismethod, namedt ri angl eAr ea() , usesthevariablesbase and hei ght to hold the triangl€’ s data

and ar ea to hold the result of the calculation.

Variable Scope

In Java, every variablesis said to have a scope, or range. A variable' s scope defines where in the program you have
accessto avariable. In other words, if avariableis declared inside one method, can another method refer to the same

variable? The answer is no!

Java defines variable scope as follows: A variable declared inside amethod islocal to that method and may
be referenced only inside that method. (If you ever hear programmers referring to alocal variable, thisiswhat they

mean most often: A variable declared inside a method and only accessible inside that method.)

Barry Boone and Dave Mark Learn Java on the Macintosh 128

That is, outside the method that defines the variable, the variable doesn’t appear to exist! This meansyou
cannot declare a variable inside one method, then refer to that same variable inside another method. Here' s an exam-

ple that will never compile:

public class Triangle extends java. appl et. Appl et {

voi d di splayArea() {
int area;
i nt base;
i nt hei ght;

base = 5;
hei ght = 6;
findArea();

Systemout.println(“The area is “ + area);

}

voi d findArea() {
area = (base * height) / 2;
}

Thiswould compilefine if the variables declared inside of the method displayArea were accessible to the
method f i ndAr ea() . However, they arenot. f i ndAr ea() knows nothing about variables declared in another

method. So, the compiler will complain about undeclared variablesif you do attempt to compile this.

If you do declare variables named ar ea, base, and hei ght insidef i ndAr ea() , these would be consid-
ered different variables altogether. A variable named base indi spl ayAr ea() , for example, would know nothing
about avariablenamed base infi ndAr ea() . Thatis, changingbase inf i ndAr ea() would not affect base in
di spl ayAr ea() , and each method could use their own version of thelocal variable named base independently of

the other.

Barry Boone and Dave Mark Learn Java on the Macintosh 129

Communicating Between Methods

The question arises, then, how methods can communicate with each other. How can one method tell another method
to use a particular value in a caluclation? How can a method return the result of a calculation to the method that
invoked it? Java, of course, provides away to do this. Instead of sharing local variables, you pass data between meth-

ods.

Some methods require you to supply them with data when you invoke them. Whether you have to supply
data or not depends on how the method is defined. When a method requires data, it is because it needs help to do its
thing. Vaues you might provide include numbers to be used in cal culations or messages that should appear on the
screen. Inthe case above, f i ndAr ea() could be defined as taking the values for the area and height. That would

enable di spl ayArea() topassfi ndArea() thevauesto useinthe calculation.

Some methods return aresult to the code that invoked it. Again, whether a method returns a result or not
depends on how it is defined. Results returned by a method might include the value of a calculation or whether the
method was successful or not in carrying out its task. In our triangle example, f i ndAr ea() could return the areait
calculated back to di spl ayAr ea() . That would enabledi spl ayAr ea() tousefi ndAr ea() to performthe

calculation and display the result provided by f i ndAr ea() .

Inthecaseof wri t eCol or s(), thismethod does not return avalue, nor does it need any values from the
code invoking it to write out the seven rainbow colors. This was a simple method, and we left unanswered the mean-
ing of the keyword voi d aswell as the empty parentheses after the method name. Now that we' ve gotten our feet

wet, let’s start looking at the details of invoking and writing methods.

Whether you supply any data to the method you invoke or whether the method returns a result depends on
how the method you invoke has been defined. If you do supply some data to the method, and if the method does return

aresult, invoking a method would look like Figure 7.2

Barry Boone and Dave Mark Learn Java on the Macintosh 130

supply some data

— i\

your method < another method

your code return aresult use the data supplied by your code
calculate aresult

FIGURE 7. 2 Your method can invoke another method. This other method might use some data you supply to

calculate and return aresult.

For another example, you might have a method that finds the average of two numbers called f i ndAver -
age() . Thistype of method would be quite different fromwr i t eCol or s() . First of all, it would be useful to be
ableto supply f i ndAver age() with the two numbers for which we want to find the average. Second of al, it

would be great if f i ndAver age() returned the result of this calculation back to the method that invoked it.

From the previous chapter, you already know how to perform the calculation that finds the average of two

numbers. Y ou would use variables and operators, very similar to the triangle example, like this:

i nt average;
average = (nunl + nun®) / 2;

This code does not yet show the variablesnunil and nun® being defined and assigned values, but we'll get
to that in amoment. For now, just know they arei nt valuesthat have been initialized to the values for which we
want to find the average. To turn this code into its own method, you can wrap this code in amethod definition. Here's

an outline of what the method definition might look like (we'll turn thisinto Java code in a moment):

Barry Boone and Dave Mark Learn Java on the Macintosh 131

define a nethod that returns an int and accepts two ints {
cal cul ate the average of the two ints
return the average

At any time, you can find the average of two numbers by invoking this method. Thiswould occur as depicted

in Figure 7.3:

supply two numbers

A
. your method fi ndAver age()
'nV_OkeIhl ndAver age(use the numbers supplied by your code
assign the average g calculate the average of these two
to avariable return the average numbers ag

FIGURE 7. 3 Invoking a method to find the average of two numbers.

Takealook at how you would invoke this method in Java. In this example, we' re finding the average for two

numbers, 10 and 20.

i nt average = findAverage(10, 20);

Asyou can see, we're supplying two numberstof i ndAver age() . We supply thevaluestof i ndAver -
age() insidethe parentheses, separating the values by using acomma (,). Remember, when we invoked wr i t e-

Col or s() previously, wejust used an empty set of parentheses, like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 132

writeCol ors();

becausewr i t eCol or s() did not take any values. That is,wr i t eCol or s() was self-sufficient; it had
al the information it needed to write out the colors of the rainbow. f i ndAver age() , however, needs to know

which values it should usein its calcul ation.

Somehow, f i ndAver age() iscalculating the average of these two numbers (though notice our own code
does not need to concern itself with how thisis accomplished). Once the average is determined, f i ndAver age()
returns this value. We assign the value it returns, in this case 15, to our own variable, which we' ve named aver age.
We do this assignment using the assignment operator, =, just as if we were assigning a number instead of invoking a

method. That is:

i nt average = 15;

and

i nt average = findAverage(10, 20);

are both perfectly valid statementsin Java, aslong asf i ndAver age() returnsani nt value.

Barry Boone and Dave Mark Learn Java on the Macintosh 133

Defining a Method

Now to write the method that finds the average. We already know what the body of the method will be—that is, what

the chunk of code will look like that performs the calculation. We' ve already written this code, but here it isagain:

i nt aver age;
average = (nunil + nunR) / 2;

The way that we return avalue from a method is to use the keywordr et ur n, followed by the value we' d

like to return. So, to return the value contained in the variable named aver age, we would write;

return aver age;

To return anumber directly, we can just write out the number. For example, this example shows the value 0

being returned.

return O;

If fi ndAver age() did not receive any datawhen it was invoked, it would be defined like this:

int findAverage() {

Barry Boone and Dave Mark Learn Java on the Macintosh 134

i nt aver age;

average = (numl + nunR) / 2;
return average;

Aswithwri t eCol or s(), al of the method’ s statements are contained between aleft curly brace and a
right curly brace. The method definition indicates that it returnsani nt value, asyou can tell by the keywordi nt
preceding the method name. Withwr i t eCol or s() , we used the keyword voi d to indicatewr i t eCol or s()

did not return avalue at al.

Thiswould be acomplete method definition, except for one thing: We have not yet declared or initialized the
variablesnuml and nun®. If f i ndAver age() did not provide away to set numl and nunm2—for example, by

aways using the same values, say 10 and 30—then we could write our f i ndAver age() method asfollows:

int findAverage() {

i nt nunl 10;
i nt nun® 30;
i nt aver age;

average = (nuni + nun®) / 2;
return average;

Thiswould compile and run just fine. However, thiswould not makef i ndAver age() particularly flexible
or useful. Rather, we would prefer to invokef i ndAver age() aswedid in the previous section, supplying the val-
uesfor nunil and nun® ourselves, not leaving them “hard-coded” to 10 and 30 inthef i ndAver age() method

itself. To accomplish this, we place the variable definitions between the parentheses after the method name, like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 135

int findAverage(int numl, int nunR) ({
I nt aver age;

average = (numl + nunR) / 2;
return average,;

Now, this method definition indicates that it acceptstwo i nt valueswhen it isinvoked, and that it also

returns avalue of typei nt . Y ou can see how this definition matches up to an invocation of this method, such as:

int result = findAverage(10, 20);

Thevalue 10 is assigned to the variable nunil, and the value 20 is assigned to the variablenun®. Inside of
fi ndAver age() , the calculation for the average of these two numbers takes place and the result is assigned to the
variable named aver age. Then, the value of aver age (in this case, 15) isreturned by f i ndAver age() . The

calling code assigns this returned value to the variable it namedr esul t .

Detail

Notice that we' ve defined the variabler esul t and used it in a statement all on oneline. Thisis perfectly valid in
Java. Also, we have not yet learned what to do with valuesthat are fractional . For example, if we found the average of

1 and 2, the calculation would yield 1.5. We'll learn how to deal with these types of values in Chapter 12.

Y ou must always be certain to match up the way you invoke a method with the method’ s definition. If the

method takes three values (or par ameter sin programmer parlance), you should supply these three parameters when-

Barry Boone and Dave Mark Learn Java on the Macintosh 136

ever you invoke the method. Anything else would cause the compiler to complain and not compile your program. For

example, given amethod like this:

int findAverage(int numl, int nunR, int nunB) {
int average = (numl + nun2 + nunB) / 3;
return average,;

Y ou would need to supply three values when you invoked it, like this:

int result = findAverage(10, 20, 30);

Thatis, if fi ndAver age() took three parameters, invoking it by:

int result = findAverage(10, 20);

wouldn't cut it.

Ways to Use return

There are several waysto user et ur n. If your method does not require you to return avalue, you can exit a method

immediately by using this statement:

Barry Boone and Dave Mark Learn Java on the Macintosh 137

return,;

This returns control back to the code that invoked this method right away, without executing the rest of the
method’ s code after ther et ur n statement. Y ou should only use thistype of r et ur n statement, without avalue, if
your method is declared as not returning avalue (that is, if it is declared asvoi d). You'll receive an error from the
compiler if you try to usethisplainr et ur n statement in a method that indicates it returns avalue, asin a method

declared as:

i nt addTheseNunber (i nt nunil, int nunR) {
int sum = nunl + nung;
}

This definition for addTheseNunber s() indicatesit will return avalue of typei nt —but then the
method forgets to return a value using the return statement! The compiler will complain about this. Here are two ver-

sionsof validr et ur n statementsfor addTheseNunber s() . Thefirstis:

return (numl + nun®);

This statement first adds numl to nun® and returns the result, without the need for declaring avariable

named sum Y ou can also write the same thing like this:

return nunml + nun®;

Barry Boone and Dave Mark Learn Java on the Macintosh 138

Notice that the second version did not include any parentheses; either of these formsisfine.

Designing with Methods

What' s the advantage of creating methods? With methods, you can create chunks of code that perform specific tasks.
Thisisagreat help to software development, because it enables you to think about parts of your programsin high-

level sections rather than always thinking in terms of the details.

Y ou might be beginning to see how you can use methods in your own programs. If you wanted to ask the
user for two numbers, find the average for these two numbers, and then display the result, you can segment your own

program into four methods, each performing a particular task:

askUser For Nunber 1();
askUser For Nunber 2() ;
fi ndAver age();

di spl ayAver age();

Thisisdiagrammed in Figure 7.4.

Barry Boone and Dave Mark Learn Java on the Macintosh 139

askUserForNumber1()

Y

askUserForNumber2()

Y

findAverage()

Y

displayAverage()

FIGURE 7. 4 One method invoking four other methods.

Y ou could also segment this further. For example, the two methods askUser For Nunber 1() and

askUser For Nunber 2() areprobably very similar. Rather than duplicating code between them, you can collect

the similar code into a single method, perhaps called get | nput () . Now,askUser For Nunber 1() and

askUser For Nunber 2() caneachinvokeget | nput () to handle the common details. Figure 7.5 expands on

Figure 7.4 to take this into account.

askUserForNumber1()

Y

askUserForNumber2() e

Y

findAverage()

Y

displayAverage()

getlnput()

4
/)
r

\
\\

FIGURE 7. 5 Creating amethod called get | nput () shared by two other methods.

Barry Boone and Dave Mark Learn Java on the Macintosh

140

Taking Part in Your Applet’s Life-Cycle

So you' ve slogged through the beginning part of this chapter, learning the basics of methods. Y ou’' ve learned how to
write methods and how to invoke them, how to pass parameters to them and how to return values. Now it'stime for
the payoff. In this section, you'll learn how to tap into the dialog that takes place between your applet and the Web
browser. (We'll talk about the browser in this chapter, but really we mean the environment in which your applet is

running, which will be an Applet Viewer if you are developing in CodeWarrior.)

What does the browser say to the applet? What can you (and should you) do when the browser talks to your
applet? The short answer is that the browser controls what happens in the life of your applet, and you should do the
things appropriate to a particular event in your applet’slife. The way that a browser informs an applet of a particular
stage of itslifeis by invoking a method. Aha! Thisiswhy we needed to understand methods before we got to this

point!

Appletshave alife. It'strue. It'sjust that their lives are lived out in the computer. Applets are born; applets
live; they awaken; they sleep; and they pass on. Before we step through the applet’s life, however, there is one detail

about applets that we haven't covered yet and that it’s time for you to know about.

Applet Classes and Instances

When we created our applets so far, we made them like this:

public class M/Appl et extends java. appl et. Appl et {
}

Working with this class definition makes it appear that when we run an applet, we are working with the

applet class. Thisistrue, but only up to apoint. What's actually happening is this. First, the classis loaded into the

Barry Boone and Dave Mark Learn Java on the Macintosh 141

browser. Then, any static initializer code is executed, as we' ve seen. Next, and most importantly, the browser creates
an object based on your applet class. That is, the browser instantiates (creates an instance of) your applet class. At
this point, your applet is born. Once this is accomplished, the browser begins trying to invoke instance methods for

your applet object. Thisisillustrated in Figure 7.6.

HTML
browser encounters the applet

(browser) tag in an HTML document p| <applet>

browser downloads the classfile for the applet

S A

| appletclass |

L - — — —

\

browser executes any static initializers

browser creates an instance of the applet

browser begins a dialog with the new
applet instance to move the applet g applet object
through itslife-cycle

FIGURE 7. 6 The browser (or Applet Viewer) creates an instance of your applet class and begins to interact with

this object.

There is adifferent instance method corresponding to each stage of an applet’slife. If you don’'t supply a
method for a particular applet phasein life, that’s fine. The browser doesn’t care; it goes on its merry way. However,
supplying a method is your big chance to insert your own behavior into your applet and make your applet unique.

Here is the sequence of events that make up the life of an applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 142

The Applet Life-Cycle

First, an applet is born. This occurs when the applet isloaded into the browser and instantiated. As soon as the appl et

has been instantiated, the browser invokes the applet’si ni t () method.

After the applet has been initialized, the browser startsit going. The browser invokesthe applet'sst art ()

method.

If the user changes to a Web page other than the one that contains the applet, the applet goesto sleep. The

browser invokesthe applet’sst op() method when this occurs. If the user turns back to the original Web page that

did contain the applet, the applet wakes up, when the browser invokesitsst art () method again.

Finally, at some point when the applet isno longer needed, it goes away. Thiswould occur if the user quit the

browser, for example. At this point, the browser invokes the applet’sdest r oy() method.

Figure 7.6 shows the life-cycle of an applet.

browser begins a dialog with the new
applet instance to move the applet
through itslife-cycle

initialize the applet
init()

e

begin executing the applet ———p» stop executing the applet
start() - stop()

quit the browser
destroy()

FIGURE 7. 7 Thelife-cycle of an applet.

Barry Boone and Dave Mark Learn Java on the Macintosh

143

Hooking In

Y ou don't have to be a mere spectator to these events. Remember, you define your own applet class. All you haveto
do to respond to these method invocations is to supply the appropriate method, defined as Java expectsit to be

defined. Here are the method definitions for each of the four life-cycle methods discussed above.

public void init() {

public void start() {

public void stop() {

public void destroy() {

Asyou can see by these method definitions, the methods do not take any values as parameters and do not
return avaue. They must be declared aspubl i c. Since the applet class as well as these methods are declared as
publ i c, these methods are able to be invoked from anywhere. (Asyou’'ll seein Chapter 10, only methods defined
like this can be invoked from anywhere; other methods have restrictions.) For these four life-cycle methods, this abil-
ity to be invoked from anywhere enables the browser to invoke these methods when it needsto tell the applet to enter

anew phasein life.

Y ou can decide to implement any of these, none of these, or &l of these, according to the needs of your
applet. Mix and match asyou please. As earlier examples have shown, you don’t need to supply any of these methods

for your applet if you don’t want to.

Barry Boone and Dave Mark Learn Java on the Macintosh 144

What should you dowithi nit () ?Orstart () ?Orany of them? Why would you implement one of
these? Which can you safely ignore? Here are the things that you might think about doing with each of these four

methods.

e init() This method isinvoked only once in the applet’s life—the very first time the user runs the
applet. You might want to initialize your applet’s user interface by creating windows, buttons, and other graphical
elements. For example, the SimpleDraw applet providesani ni t () method to create the shape and color selec-

tionlists.i ni t () isprobably the method you' Il use the most.

e start() This method isinvoked every time the browser starts up your applet. For example, if the
user turnsto the Web page containing thisapplet, st ar t () will beinvoked. If the user then turns to another page
and then turns back, st art () will beinvoked again. Thisis different fromi ni t () , which isonly invoked the
very first time. If you are performing any animation or playing any sounds, you might want to start these going

insidethest art () method.

* stop() This method isinvoked every time the browser stops your applet. There will be one
st op() invocation for every st ar t () . You can take this time to halt any animation or sound that you might

havebeguninstart ().

e destroy() This method isinvoked only once—at the very end of an applet’slife. There will be one
destroy() invocationfor everyi ni t () . When the browser unloads the applet—for example, if the user quits
the browser—this method will be invoked. Y ou might take this time to free any resources you' ve alocated in the

system. It'svery likely that you' Il hardly ever writeadest r oy () method.

There are anumber of other methods that you can write for your applet that will be invoked in other situa-
tions. These include methods that let you know things like when the user clicked the mouse, when the user resized
your applet, or when the user typed in text from the keyboard. Y ou'll see a number of these other applet methods as

yOu progress.

Barry Boone and Dave Mark Learn Java on the Macintosh 145

Sample Programs

The following three sample programs illustrate the basics of methods that we' ve covered in this chapter.

LifeCycle.u

Let'stake alook at the applet’ s life-cycle as it unfolds when we run an applet. When you run an applet in a browser,
the applet might bounce back and forth between the methodsst art () andst op() . If the user turnsaway from the
Web page containing the applet, the browser will invoke the applet’sst op() method. However, the browser will not
yet destroy the applet. If the user turns back to the Web page containing the applet, the browser will invoke the
applet’sst art () method again. Only when the user quits the browser (or the browser unloads the applet for some

reason of its own) will the applet ever receivedest r oy() .

Since we' re running the applet in the Applet Viewer, we can't really simulate this behavior of stopping the
applet and restarting it. But we can come close. At least we can seethe progressionfromi ni t () tostart () when

we run the applet, and then onto st op() and dest r oy() when we shut it down.

To seethis, gotothefolder07. 01 - 1ife cycl einthelLearn Java Projectsfolder. Make this project
in the usual way (double-click the project fileso that Li f eCycl e. p becomesthe current project, then select Make
from theProject menu). Drop thefileLi f eCycl e. ht ml onto the Metrowerks Javaicon. The applet will start up
inside the Applet Viewer, and you'll see messages in the Java Output window indicating that the browser did indeed

invokei nit () andstart (). ThisisshowninFigure7.8.

Barry Boone and Dave Mark Learn Java on the Macintosh 146

Jdava dutput

Executing: javai sun.applet Appletlisner

JBlueHor=se /LearnB20Javaf20Proj ectsB20KR OF 01820-8201 i fef20cycle/LifeCycle. himl
init
startol
Comp|letedcdl

= Applet Viewer: LifeCycle.class ==

applet started

E

FIGURE 7. 8 TheLifeCycle applet after it has started running. (Notice that the Applet Viewer is till running, so the

applet has not yet received st op() anddest roy() .

Now, closethe Applet Viewer. Thiswill end the LifeCycle application. The Applet Viewer will invoke the

applet’sst op() anddest r oy() methods. Y ou can see these messages appear in the Java Output window, as

shown in Figure 7.9.

a""SDS)f————————————————— \Jlava utput ="
Executing: javai sun.applet. Appletlisner

JBlueHorse Learn 20 avaf20Proj ectsB20KR OF 01520-8201 i fef20cycle/LifeCycle. himl
initd

startil

Comp letedi0l

stopl
destroyc s

FIGURE 7. 9 After closing the Applet Viewer, the applet goes away. The applet completes the rest of itslife-cycle

methods by invokingst op() anddestroy().

Barry Boone and Dave Mark Learn Java on the Macintosh 147

Check out the source code by opening Li f eCycl e. j ava. The LifeCycle applet provides a method for
each of the four stagesin the applet’slife. Itimplements i nit (),start(),stop(),anddestroy().All that
the LifeCycle applet does with these methodsiswrite aline to the Java Output window to let you know that they were
invoked. Of course, you can do much more complicated things in these methods, from creating sophisticated user
interfaces to starting animation and other multimedia effects. All we do here, however, isindicate that the Applet

Viewer isin fact communicating with the applet to let it know what stage in life it has reached.

InitMethod.pu

By using the life-cycle methods as hooksinto your applet, you can customize your applet by invoking other methods.
Gotothefolder 07. 02 - i nit intheLearn Java Projectsfolder and double-click the project filel ni t -

Met hod. i to see an applet that illustrates this.

The applet defined here providesani ni t () method to invoke its own, custom methods. The progression

fromthei ni t () method to the custom methodsisillustrated in Figure 7.10.

browser tells your
applet to

initialize itself ——p

thisgivesyou a
chance to invoke
methods you've
written to perform
other tasks

setUpGUI()

makeWindowl()

makeWindow2()

FIGURE 7. 10 Executing your own methods from one of the life-cycle methods.

Barry Boone and Dave Mark Learn Java on the Macintosh 148

Make the project, then drop the HTML file in this folder onto the Metrowerks Java application, and you'll
see the Java Output window reflect the progression of methods shown in Figure 7.10. Let’ s take aquick look at the

source code to see how these methods are implemented.

Stepping Through the Source Code

Theintent of this applet isto illustrate how you might combine your own methods with methods invoked for you by
Java. For example, when you prepare a user interface by creating windows, text fields, buttons, and so on, you only
want to create these user interface objects once and then just hang onto them for the life of the applet. The i ni t ()

method is agood place to create auser interface, sincei ni t () isonly executed once during the life of an applet.

Openupthefilel ni t Met hod. j ava to browser the source code. Looking at this applet, you can seethat it
definesani ni t () method. Thei ni t () methodinvokesset UpGUI () after writing a message to the Java Output

window.

public void init() {
Systemout.printin(“init()”);
set UpGQUI () ;

set UpGUI () relies on two other methods, called makeW ndowl () and nakeW ndow?2() . These cus-
tom methods all write messagesto the Java Output window, though they don’t do anything else yet. Y ou can see, how-
ever, how you can invoke your own methods at different timesin the applet’ slife—in this case, when the applet isfirst

loaded into the system. Y ou'll use this technique al the time when writing your own applets.

Barry Boone and Dave Mark Learn Java on the Macintosh 149

Average.u

Y ou learned about parameters and return valuesin this chapter, so let’ stake alook at an applet that uses methods that
take parameters and return values. Go to the folder named 07. 03 - aver age in the Learn Java Projectsfolder.
Make the project after double-clicking Aver age. J, then drop thefile Aver age. ht m onto the Metrowerks Java
icon. You'll seethe three lines appear in the Java Output window asillustrated in Figure 7.11. This applet usesa
method that finds the average of three numbers. We' ve invoked this method three times and use Sy s-

temout. println() eachtimeto show the returned value in the Java Output window. Let’s take alook.

=[I=————— Java Dutput

Executing: jaovai sun.applet. Appletliswer

JB lueHorse Learnf20Jawaf20Pro jec t=820KR /07 . 038 20-8200verage /Average . him|
20

-1

10047

Comp letadcl?

Bl

=[]

&l [

FIGURE 7. 11 Displaying the average of three sets of numbersin the Java Output window.

Stepping Through the Source Code

Open Aver age. j ava to view the Java source code. Take alook at the top four lines of thest art () method.

public void start() {
i nt aver age;

average = findAverage(10, 20, 30);
System out. println(average);

Barry Boone and Dave Mark Learn Java on the Macintosh 150

After declaring ani nt variable, st art () invokesfi ndAver age().fi ndAverage() takesthree
parameters, and these values are supplied as 10, 20, and 30. Sincef i ndAver age() returnsani nt value, theresult
of this method invocation is assigned to the variableaver age. The next line displays this result in the Java Output

window.

After this, st art () invokesfi ndAver age() two more times, each time passing it a different set of
parameters. f i ndAver age() responds each time by performing the calculation for the average based on the
parameters supplied to it and returns the result. Each time, the new result is assigned to aver age and displayed in

the Java Output window.

average = findAverage(-400, 182, 213);
System out. println(average);

average = findAverage(9901, 20201, 41);
System out. println(average);

Themethod fi ndAver age() isdefined asfollows:

int findAverage(int nunl, int nunR, int nunB) {
return (nunml + nun2 + nunB)/3;
}

fi ndAver age() 'sthreei nt parameters are declared asnunil, nun®, and nun8. From the method dec-

laration, you can seethat f i ndAver age() returnsani nt value. Thismeansit must providear et ur n statement

Barry Boone and Dave Mark Learn Java on the Macintosh 151

that returnsani nt . f i ndAver age() usessome of the arithmetic operators you saw in Chapter 6 to calculate the

average for the three parameters. It then returns the result of this calculation.

Thefirsttimest art () invokesfi ndAver age(), nuni isequa to 10, nun® isequal to 20, and nunB
isequal to 30. Thesecond timest art () invokesfi ndAver age(), numdl isequal to -400, nun? isegqual to 182,
and nunB isequal to 213. And the third time? Y ou can probably guess by now by looking back at thest ar t ()

method and seeing how it wasinvoked; nuni isequal to 9901, nun® isegual to 20201, and nun8 isequal to 41.

Review

This chapter explained how to define and invoke methods. Y ou learned that methods often invoke other methods, and

you now know how methods can communicate with each other by passing parameters and returning val ues.

Y ou a so know what happens when the browser (or Applet Viewer) loads your applet class and beginsto run
your applet. The browser creates an instance (that is, an object) based on your Applet class. The browser then begins
totry toinvokeitslive-cyclemethods (i nit () ,start (), stop(),anddestroy()) so that the applet can do
things like arrange its user interface or shut down when it is no longer on the screen. By supplying these methods for

your applet, you can make your applet do the things you want it to do, when you want it to do them.

Barry Boone and Dave Mark Learn Java on the Macintosh 152

What's Next?

Now that you know how to write chunks of code called methods, let’s turn our attention to making these methods
control what your program does. This means writing methods that make decisions, choose to execute one block of
code over another block, and repeat certain statements to perform more complex operations. Chapter 8 covers these
topics by looking at “flow control.” Armed with this knowledge, you' Il be able to add sophisticated behavior to your

objectsin Chapter 9.

Barry Boone and Dave Mark Learn Java on the Macintosh 153

CHAPTER 8 Controlling Your
ProgramisFlow

The previous chapter showed you how to write and invoke methods. That was great, but so far all of our methods have
been a straight-ahead, sequential progression: The computer executed the first statement, then the second, then the

third, and so on, and when it reached the end of the method it returned.

But there’s much more to writing methods than that! One of the powerful features of all programming lan-
guagesisthe ability to control the flow through your program. For example, you can write code that will execute only
if acertain condition is met. Y ou can write code that loops back to an earlier statement and begins again. Y ou can

write al sorts of fancy programs by using flow control; that’s what this chapter is all about.

Boolean Values

Before we start this chapter, there’ s one more data type that we need to cover, because we'll start to make referenceto
it here. Thisdatatype is called boolean. A boolean value can take only one of two values: true or false. Here' s an

example:

bool ean j aval sFun;

j aval sFun = true;

Barry Boone and Dave Mark Learn Java on the Macintosh 154

Y ou might also say:

javal sFun = fal se;

With boolean values, there are no other possihilities, such as“sometimes’ or “occasionaly.” It's either true

or false. That'sit. (In Java, thevaluest r ue and f al se are part of the language.)

If you don't set the boolean to anything, its valueisfalse, asin:

bool ean di nosaur sArePur pl e;

At thispoint, di nosaur sAr ePur pl e hasthe value of false. (Whichisthe case, isn't it?)

Y ou'll soon see that boolean values have many usesin Java. This simple data type allows for the creation of

some very sophisticated programs!

By the Way

What kind of word is“boolean,” anyway? This term was derived from the name of a 19th century mathematician
named George Boole. Boole determined the rules involving operands that could only take the values of true or false.
It was more than a century later before his rules were applied to the field of computer science where they were found

to be crucia to computer and software design.

We vewritten anumber of simple methods over the last two chapters. Now it’ stimeto go further. Here, we'll

learn afew advanced ways to implement your methods that draw upon the computer’ s abilitiesto test for certain con-

Barry Boone and Dave Mark Learn Java on the Macintosh 155

ditions. After the computer has performed atest, say by testing if one number isless than another number, the com-

puter can execute different steps depending on the outcome of atest.

This chapter borrows heavily from Chapter 6 of Learn C on the Macintosh, by Dave Mark. The two chapters
arenot identical, however, since there are anumber of differences between C and Java. But legions of C programmers

have successfully learned al about flow control with Learn C on the Macintosh; who are we to tinker with success?

Flow Control

The programs you’ ve written so far have all consisted of a straightforward series of statements, one right after the

other. Every statement is executed in the order it occurred.

Flow control isthe ability to define the order in which your program’ s statements are executed. Javaprovides

several keywords you can use in your program to control your program’s flow. One of these isthe keyword i f .

The if Statement

Thekeywordi f alows you to choose among several optionsin your program. In English, you might say something

likethis:

If it’s raining outside I'Il bring nmy unbrella; otherw se, |
won’ t.

In the previous sentence, you're using “if” to choose between two options. Depending on the weather, you'll
do one of two things. Y ou’ll bring your umbrellaor you won’t bring your umbrella. Java'si f statement givesyou this

same flexibility. Here' s an example:

Barry Boone and Dave Mark Learn Java on the Macintosh 156

public class Tester extends java. applet. Applet {
public void init() {
int nmylnt = 5;

if (nylnt == 0)
Systemout.println(“nylnt is equal to zero.”);
el se
Systemout.println(“nmylnt is not equal to zero.”);

Thisapplet, named Tester, definesan i ni t () method. Thismethod declaresny| nt to be of typei nt and
setsthe value of nyl nt to 5. Next, we usethei f statement to test whether myl nt isequal to 0. If myl nt isequal
to 0 (which we know isnot true), we'll print one string. Otherwise, we' Il print adifferent string. As expected, this pro-

gram printsthe string“nyl nt is not equal to zero.”

Ani f statement can comein two ways. The first, known asplain oldi f , fits this pattern:

if (bool ean expression)
st at enent

Ani f statement will always consist of theword i f , aleft parenthesis, a boolean expression, aright paren-
thesis, and a statement. (We'll define both “expression” and “statement” in aminute.) Thisfirst form of i f executes

the statement if the boolean expression in parentheses istrue. An English example of the plaini f might be:

Barry Boone and Dave Mark Learn Java on the Macintosh 157

If it’s raining outside, |I'Il bring nmy unbrella.

Notice that this statement tells us what will happen only if it's raining outside. No particular action will be

taken if it isnot raining.

Thesecond form of i f, known asi f - el se, fitsthis pattern:

if (bool ean expression)
st at enment

el se
st at enent

Ani f - el se statement will always consist of theword i f , aleft parenthesis, a boolean expression, aright
parenthesis, a statement, the word el se, and a second statement. Thisform of i f executes the first statement if the
boolean expression is true and executes the second statement if the boolean expression is false. An English example

of ani f - el se statement might be:

If it’s raining outside, I’'ll bring ny unbrella; otherw se,
won’ t.

Notice that this example tells us what will happenif it israining outside (I'll bring my umbrella) and if it
isn't raining outside (I won't bring my umbrella). The example programs presented later in the chapter demonstrate

the proper use of bothi f andi f - el se.

Our next step is define our terms.

Barry Boone and Dave Mark Learn Java on the Macintosh 158

Expressions

In Java, an expression is anything that has avalue. There are two kinds of expressions: numeric expressions, which

have numeric values, and boolean expressions, which can only have the values of true or false.

Numeric Expressions

Variables that represent numbers, such as variables of typei nt , are atype of numeric expression, since avariable
will always have avalue. (Remember, Javainitializes your numeric variable to O for you if you don’t assign it a

value.) Here are some examples of numeric expressions:

nmylnt + 3
(mylnt + anotherint) * 4

myl nt ++

An assignment statement is also an expression. Can you guess the value of an assignment statement? The

value of an assignment statement is the value of its left side. Check out the following code fragment:

mylnt = 5;
mylnt += 3;

Both of these statements qualify as expressions. The value of the first expression is 5. The value of the sec-

ond expression is 8 (because we added 3to ny| nt ’s previous value).

Barry Boone and Dave Mark Learn Java on the Macintosh 159

Boolean Expressions

Earlier, we defined thei f statement as follows:

i f (bool ean expression)
st at enent

We then said that the statement gets executed if the expression istrue. Let’slook at Java's concept of truth.

Everyone has an intuitive understanding of the difference between true and false. | think we'd all agree that

the following statement is false:

5 equals 3

We'd also agree that the following statement is true:

5 and 3 are both greater than 0O

Thisintuitive grasp of true and false carries over into the Javalanguage. So, a boolean expression isan
expression that can be evaluated in terms of truth or falsehood. Notice that boolean expressions are different than

numeric expressions. Y ou cannot write Java code like this:

int nylnt = 27,

Barry Boone and Dave Mark Learn Java on the Macintosh 160

if (nylnt) // this won’t work!
Systemout.println(“nylnt is not equal to 07);

Thisisnot allowed in Java, and the compiler will tell you in no uncertain terms. The compiler will complain

that the line of code:

if (nylnt)

isanumeric expression. The Javacompiler requiresthe expressioninthei f statement to evaluate to true or
false. Before we see how to turn thisline of code into a boolean statement that Java will accept, let’ stake alook com-

parative operators.

Comparative Operators

Javaexpressions have aspecial set of operators, called compar ative oper ator s. Comparative operators compare their
left sides with their right sides and produce a value of either true or false, depending on the relationship of the two

sides.

For example, the operator == determines whether the expression on the left is equal in value to the expres-
sion on theright. In the following expression, ny| nt evaluatesto trueif myl nt isequal to 5 and to falseif nyl nt

isnot equal to 5:

Barry Boone and Dave Mark Learn Java on the Macintosh 161

mylnt == 5

Here's an example of the== operator at work:

if (my Int == 5)
Systemout.println(“nmylnt is equal to 5");

If nyl nt isequal to 5, the boolean expression myl nt == 5 evaluatesto true and Sys-
tem out. println() getsexecuted. If myl nt isn't equal to 5, the boolean expression evaluates to false and
System out. printl n() isskipped. Just remember, the key to triggering ani f statement is a boolean expres-

sion that evaluates to true.

Table 8.1 shows some other comparative operators. You'll see some of these operators in the example pro-

grams later in this chapter.

TABLE 8.1 Some compar ative oper ators.

Operator Resolvesto trueif...
== left sideis equal to right

<= left sideislessthan or equal to right
>= left side is greater than or equal to right
< left sideislessthan right

> left side is greater than right

1= left sideis not equal to right

Back in the last section, we saw some code that would not compile in Java, because the expressionin thei f

statement was not a boolean expression:

Barry Boone and Dave Mark Learn Java on the Macintosh 162

int nmylnt = 27;

if (nylnt) // this won’t work!
Systemout.println(“nylnt is not equal to 07);

Knowing what we now know about the comparative operators, how can we fix this code? One way to make

thiswork isinstead of writing:

if (nylnt)

you can write:

if (nylnt '=20)

Theexpressionmyl nt ! = 0 isnow aboolean expression that has atrue or false value: Eithermyl nt is

equal to 0 or it isnot. The operator | = means “is not equal to.”

Logical Operators

Our next set of operators, collectively known as logical operators, are modeled on the mathematical concept of truth
tables. If you don’t know much about truth tables (or are just frightened by mathematics in general), don’t panic.

Everything you need to know is outlined in the next few paragraphs.

Barry Boone and Dave Mark Learn Java on the Macintosh 163

Thefirst of the set of logical operatorsisthe! operator. The! operator turnstrueinto false and falseinto

true. Table 8.2 shows the truth table for the ! operator.

TABLE 8.2 Thetruth tablefor the! operator

(boolean expression) ('boolean expression)
true fase
false true

If the boolean expression istrue, applying the! operator to the same expression yields the value false. If the
expression isfalse, applying the! operator to the same expression yieldsthe value true. The! operator is commonly

referred to asthe NOT operator; !A is pronounced “Not A”.

Here's a piece of code that demonstratesthe! operator:

bool ean nyFirstBool ean, nySecondBool ean;

nyFi r st Bool ean = fal se;
nySecondBool ean = ! nyFir st Bool ean;

First, we declare two booleans. We assign the value f al se to thefirst boolean, then usethe! operator to
turnthef al se intoat r ue and assign it to the second boolean. Thisis very important. Take another look at Table

8.2. The! operator convertstrue into false and falseinto true.

The previous chunk of code trandated ny Secondl nt fromf al se tot r ue. Now, if we encounter the

code:

i f (mySecondBool ean)

Barry Boone and Dave Mark Learn Java on the Macintosh 164

System out. println(“mSecondBool ean nust be true”);

System out. printl n() will get executed and the message stating “ny SecondBool ean nust be

t r ue” will appear on the screen. Now take alook at this piece of code:

i f (!nySecondBool ean)
System out. printl n(*nmySecondBool ean nust be fal se”);

Thistime, Syst em out . pri nt | n() will get executed if mySecondBool ean isfalse. Do you see

why? If mySecondBool ean isfase, then! mySecondBool ean must be true.

The! operator isaunary operator. Unary operators operate on a single expression (the expression to the
right of the operator). The other two logical operators, & and| | , arebinary operators. Binary operators, such asthe
== operator and all the other comparative operators presented earlier, operate on two expressions, one on the left side

and one on the right side of the operator.

The && operator is commonly referred to as the AND operator. The result of an && operation istrueif, and

only if, both the left side and the right side are true. Here's an example:

bool ean hasCar, hasTi neToG veR de;

hasCar = true;
hasTi mreToG veR de = true;

I f (hasCar && hasTi meToG veRi de)

Systemout.println(“Hop in - 1’1l give you a ride!”);
el se

Systemout.println(“l’ve either got no car, no tine, or

Barry Boone and Dave Mark Learn Java on the Macintosh 165

nei ther”);

This example uses two variables. One indicates whether the program has a car, the other whether the pro-
gram hastimeto give usarideto the mall. All philosophical issues aside (Can a program have a car?), the question of
themoment is, Which Syst em out . print| n() statement will fire? Since both sides of the && weresettot r ue,
thefirst Syst em out . pri nt 1 n() will beinvoked. If either one (or both) of the variablesweresettof al se, the
second Syst em out . pri ntl n() would beinvoked. Another way to think of thisisthat we'll get arideto the
mall only if our friendly program has a car and hastime to give us aride. If either of these is not true, we're not get-

ting aride. By the way, notice the use here of the second form of i f : thei f - el se statement.

The| | operator iscommonly referred to asthe OR operator. Theresult of an| | operationistrueif either
the left side or theright side, or both sides, of the| | aretrue. Put another way, theresult of an| | isfaseif, and only

if, both the left side and theright side of the | | arefase. Here's an example:

bool ean not hi ngEl seOn, newEpi sode;

not hi ngEl seOn = true;
newkdpi sode = true;

I f (newkpi sode || nothi ngEl seOn)

Systemout.println(“Let’s watch Start Trek!”);
el se

Systemout. println(“Sonmehing else is on or |’ve seen this
one.”);

This example uses two variables to decide whether we should watch * Star Trek” (your choice: Classic Trek,
TNG, DS9, or Captain Kate). One variable indicates whether anything else is on right now, and the other tells you

whether this episodeis arerun. If thisis brand new episode or if nothing elseis on, we'll watch “Star Trek.”

Barry Boone and Dave Mark Learn Java on the Macintosh 166

Here's a glight twist on the previous example:

bool ean not hi ngEl seOn, itsARerun;

not hi ngEl seOn = true;
i tsARerun = fal se;

if (('itsARerun) || nothingEl seOn)
Systemout.println(“Let’s watch Start Trek!”);

el se
Systemout. println(“Sonmehing else is on or |’ve seen this

one.”);

TABLE 8.3 Truth tablefor the & & and || operators.

expression A && expression A | |
expression A expression B expression B expression B
true true true true
true fase fase true
fase true false true
fase fase fase false

Thistime, we've replaced the variablenewEpi sode with its exact opposite, i t SARer un. Look at the
logic that drivesthei f statement (you don’'t need to be Spock or Tuvok to figureit out!). We' re combiningi t sSARe-
run withthe! operator. Before, we cared whether the episode was a new episode. This time, we are concenred that

the episode is not arerun. See the difference?

Both the&& andthe| | operatorsare summarized in Table 8.3. If you look in thefolder Learn Java Projects,
you'll find asubfolder named 10. 01 - truth tester.Thefiletrut hTester.java containsthethree
examples we just went through. Take some time to play with the code. Take turns changing the variablesfromt r ue

tof al se and back again. Use this code to get agood feel for the! , &&, and | | operators.

Barry Boone and Dave Mark Learn Java on the Macintosh 167

Compound Expressions

All of the examples presented so far have consisted of relatively simple expressions. Here' s an exampl e that combines

several operators:

I nt nyl nt;

mylnt = 7,

if ((nmylnt >= 1) && (nylnt <= 10))
Systemout.println(“nmylnt is between 1 and 10”);

el se
Systemout.println(“nmylnt is not between 1 and 10”);

This exampl e tests whether a variable is in the range between 1 and 10. The key hereis the expression:

(nmylnt >= 1) && (nylnt <= 10)

This expression lies between thei f statement’s parentheses and uses the && operator to combine two
smaller expressions. Notice that the two smaller expressions are each surrounded by parentheses to avoid any ambi-

guity. If we left out the parentheses, the expression might not be interpreted as we intended:

nmylnt >= 1 && nylnt <= 10

Barry Boone and Dave Mark Learn Java on the Macintosh 168

Once again, use parentheses for safe computing.

Statements

At the beginning of the chapter, we defined thei f statement as:

I f (expression)
st at enment

WEe' ve covered expressions pretty thoroughly. Now, we'll turn our attention to the statement.

At this point in the book, you probably have a pretty good intuitive model of the statement. Y ou'd probably

agree that thisis a statement:

nmylnt = 7,

But is this one statement or two?

if (isCold)
Systemout.println(“Put on your sweater!”);

Barry Boone and Dave Mark Learn Java on the Macintosh 169

The previous code fragment is a statement within another statement. The Syst em out . pri ntl n()

resides within alarger statement, thei f statement.

The ability to break your code out into individual statementsisnot acritical skill. Getting your code to com-
pile, however, iscritical. Asweintroduce new types of statements, pay attention to the statement syntax. And pay spe-
cial attention to the examples. Where do the semicolons go? What distinguishes this type of statement from all other

types?

Asyou build up your repertoire of statement types, you'll find yourself using one type of statement within
another. That's perfectly acceptable in Java. In fact, every timeyou cresteani f statement, you'll use at least two

statements, one within the other. Take alook at this example:

i f (nyVar >= 1)
if (myVar <= 10)
Systemout.println(“myVar is between 1 and 10”);

Thisexampleusesani f statement as the statement for another i f statement. This example invokes Sy s-
temout. println() if bothi f expressionsaretrue—that is, if myVar isgreater than or equal to 1 and lessthan

or equal to 10. Y ou could have accomplished the same result with this piece of code:

if ((myvVar >=1) && (nyVar <=10))
Systemout.println(“myVar is between 1 and 10”);

The second piece of codeis alittle easier to read. There are times, however, when the approach demon-

strated in thefirst piece of codeis preferred. Take alook at this example:

Barry Boone and Dave Mark Learn Java on the Macintosh 170

if (nyvar !'= 0)
if ((1/nyVar) < 1)
Systemout.println(“myVar is in range”);

Onething you don't wanttodo in Javaisdivideani nt valueby 0. Any i nt divided by Owill cause Javato
halt your program. In the example above, the first expression in this example tests to make sure that ny Var is not
equal to 0. If myVar isequa to 0, the second expression won't even be evaluated! The sole purpose of thefirsti f is

to make sure that the second i f never triesto divide by 0. Make sure that you understand this point.

Javais pretty smart about what to evaluate. Imagine what would happen if we wrote the code this way:

if ((nyvar '=0) & (1 / nyvar) < 1))
Systemout.println(“nmyVar is in range”);

Asitturnsout, theleft half of the && operator evaluatesto false, theright half of the expression will never be
evaluated, and the entire expression will evaluate to false. Why? Because if the left operand isfalse, it doesn’t matter
what the right operand is; true or false, the expression will evaluate to false. Be aware of this as you construct your

expressions.

Detail

Whilei nt vaueswill cause Javato stop your program if you divide them by O, thisis not true with floating-point
values! In Java, floating-point values understand the concept of infinity, and it is perfectly legal to divide Java s float-

ing-point values by 0. You'll learn more about floating-point val ues soon.

Barry Boone and Dave Mark Learn Java on the Macintosh 171

Curly Braces Revisited

Earlier, you learned about the curly braces ({ }) that delimit the beginning and ending of classes and methods. These
braces also play an important role in statement construction. Just as parentheses can be used to group terms of an

expression together, curly braces can be used to group multiple statements together. Here’ s an example:

bool ean onYour Back;
onYour Back = true;

i f (onYourBack) {
Systemout.printIn(“flip over”);
onYour Back = fal se;

In the example, if onYour Back istrue, both of the statementsin curly braces will be executed. A pair of
curly braces can be used to combine any number of statementsinto a single superstatement, also known as ablock.

Y ou can use this technique anywhere a statement is called for.

Curly braces can be used to organize your code, much as you’ d use parentheses to ensure that an expression
isevaluated properly. This concept is especially appropriate when dealing with nested statements. Consider this code,

for example:

i f (nylnt >= 0)
if (nmylnt <= 10)
Systemout.println(“nylnt is between 0 and 10.7);
el se
Systemout.println(“nmylnt is negative”);

Barry Boone and Dave Mark Learn Java on the Macintosh 172

Do you see the problem with this code? It stricky, but think about this: Whichi f doestheel se belong to?
Aswritten (and as formatted, which makes it tricky), theel se looks asthough it belongsto thefirsti f . That is, if
nmy| nt isgreater than or equal to O, the second i f is executed; otherwise, the second Syst em out . print | n()

isinvoked. Isthisright?

Nope. Asit turnsout, anel se belongsto thei f closest toit (the second i f, in this case). Here'sadlight

rewrite:

if (nylnt >= 0)
if (nmylnt <= 10)
Systemout.println(“nmylnt is between 0 and 10”);
el se
Systemout.println(“nmylnt is not between 0 and 10”);

Onething hereisthat formatting is nice, but it won’t fool the compiler. More importantly, this example

shows how easy it is to make a mistake. Check out this version of the code:

i1f (mylnt >= 0) {
if (nylnt <= 10)
Systemout.println(“nmylnt is between 0 and 10”);
} else
Systemout.println(“nmylnt is negative”);

Do you see how the curly braces help? In asense, they act to hide the secondi f insidethefirsti f state-

ment. Thereis no chance for the el se to connect to the hiddeni f .

Barry Boone and Dave Mark Learn Java on the Macintosh 173

Curly braces (aswell as parentheses) are great for clarifying your code, and you should feel free to use them
wherever it helps make your code more readable. No one we know ever got fired for using too many parentheses or

too many curly braces.

Where to Place the Semicolon

So far, the statements we' ve seen fall into two categories. Thefirst category is simple statements, and the second is

compound statements.

Simple Statements

Method invocations, such as

addTheseNunber s(10, 20);

and assignment statements, such as:

nyBool ean = true;

are examples of simple statements. Always place a semicolon at the end of a simple statement, eveniif itis

broken over severd lines, like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 174

Systemout. println(“Connect the dots using only four I|ines:

* * *
* * *
* * N

)

Compound Statements

Statements made up of several parts—including, possibly, other statements—are called compound statements.

Compound statements obey some pretty strict rules of syntax. Thei f statement, for example, always looks like this:

i f (expression)
st at enent

Notice there are no semicolonsin this definition. The statement part of thei f can be asimple statement or a
compound statement. If the statement is simple, follow the semicolon rules for simple statements by placing a semi-

colon at the end of the statement.

if (x == 3)
y = 4

If the statement is compound, follow the semicolon rules for that particular type of statement.

if (x == 3)
it (y == 2
z = 1;

Barry Boone and Dave Mark Learn Java on the Macintosh 175

The Loneliest Statement

A single semicolon qualifies as a statement, albeit a somewhat |onely one. For example:

i f (bored)

This code fragment is alegitimate (and thoroughly useless) i f statement. If bor ed istrue, the semicolon
statement gets executed. The semicolon by itself doesn’t do anything but fill the bill where a statement was needed.

There are times where the semicolon by itself is exactly what you need.

The while Statement

Thei f statement usesthe value of an expression to decide whether to execute or to skip over a statement. If the state-
ment is executed, it is executed just once. Another type of statement, thewhi | e statement, repeatedly executes a

statement as long as a specified expression is true. The while statement follows this pattern:

whi | e (expression)
st at enment

Thewhi | e statement isalso known asthewhi | e loop, because after the statement is executed, thewhi | e

loops back to reevaluate the expression.

Barry Boone and Dave Mark Learn Java on the Macintosh 176

FIGURE 8. 1 A diagram of thewhi | e loop. Thewhi | e statement evaluates an expression. If the result of the

while (expression)

false—'— true

Y

v

continue on...

statement

v

loop back

expression istrue, the statement is executed, and then the expression is evaluated again. If the expressionisfalse,

the statement is skipped and the program continues on.

Here's an example of thewhi | e loop in action:

int i;
i =0;

while (++ < 3)

System out . printl n(“Loopi ng:

S

Systemout.println(“W are past the while | oop”);

This example starts by declaring avariable, i , to be of typei nt ;i istheninitialized to 0. Next comes the

whi | e loop. Thefirst thing thewhi | e loop doesis evaluate its expression. Thewhi | e loop’s expressioniis:

++j < 3

Barry Boone and Dave Mark

Learn Java on the Macintosh

177

Before this expression is evaluated, i has avalue of 0. The prefix notation used in the expression (++i)
incrementsthe value of i to 1 before the remainder of the expression is evaluated. The evaluation of the expression
resultsin true, since 1 islessthan 3. Since the expression istrue, thewhi | e loop’s statement, asingle Sys-

tem out . pri ntl n() statement, is executed. Here' s the output after the first pass through the loop:

Loopi ng: 1

Next, thewhi | e loops back and reevaluates its expression. Once again, the prefix notation incrementsi ,
thistimeto avaueof 2. Since 2 islessthan 3, the expression evaluatesto true, and the Syst em out . pri nt |l n()

is executed again. Here' s the output after the second pass through the loop:

Looping: 1
Loopi ng: 2

Oncethe second Syst em out . pri ntl n() completes, it's back to the top of the loop to reevaluate the
expression. Will this never end? Once again, i isincremented, thistimeto avalue of 3. Ahal Thistime, the expres-
sion evaluatesto false, since 3isnot lessthan 3. Once the expression evaluatesto false, thewhi | e loop ends. Control

passes to the next statement, the second Syst em out . pri nt 1 n() inour example:

Systemout.println(“W are past the for |oop”);

Barry Boone and Dave Mark Learn Java on the Macintosh 178

Thewhi | e loopwasdriven by three factors: I nitialization, modification, andter mination. Initiaizationis
any code that affects the loop but occurs before the loop is entered. In our example, the critical initialization occurred

when the variablei was set to 0.

By the Way

Inaloop, you'll frequently use a variable that changes value each time through the loop. In our example, the variable
i wasincremented by 1 each time through the loop. The first time through the loop, i had avalue of 1. The second
time, i had avalue of 2. Variables that maintain a value based on the number of times through aloop are known as

counters.

Traditionally, programmers have given counter variables simple names, such asi , j , and k (as mentioned
earlier, thisis an old FORTRAN convention). In the interest of clarity, some programmers use such names as
count er orl oopCount er. The nice thing about nameslikei , j , and k isthat they don't get in the way; they
don't take up alot of space on the line. On the other hand, your goal should be to make your code as readabl e as pos-

sible, so it would seem that a name like counter would be better than the uninformativei , j , or k.

Once again, pick a style you are comfortable with and stick with it!

Within theloop, modification is any code that changes the value of theloop’sexpression. In our example, the

modification occurred within the expression itself when the counter, i , was incremented.

Termination is any condition that causes the loop to end. In our example, termination occurs when the
expression has avalue of false. This occurs when the counter, i , hasavalue that is not lessthan 3. Take alook at this

example:

Barry Boone and Dave Mark Learn Java on the Macintosh 179

while (i < 3) {
Systemout.println(“Looping: 7 + 1i);
i ++;

}

Systemout.println(“W are past the while | oop”);

This example produces the same results as the previous example. Thistime, however, the initialization and
maodification conditions have changed slightly. Inthisexample, i starts with avalue of 1 instead of 0. In the previous
example, the ++ operator was used to increment i at the very top of the loop. This example modifiesi at the bottom

of the loop.

Both of these examples show different waysto accomplish the same end. The phrase“ There' s more than one
way to eat an Oreo” sums up the situation perfectly. There will always be more than one solution to any programming

problem. Don't be afraid to do things your own way. Just make sure that your code works properly and is easy to read.

The for Statement

Another way to control loops in your program is by using thef or statement. Thef or statement issimilar to the
whi | e statement, following the basic model of initialization, modification, and termination. Here' s the pattern for

thef or statement:

for (expressionl; expression2; expression 3)
st at enent

Barry Boone and Dave Mark Learn Java on the Macintosh 180

Thefirst expression represents the for statement’ sinitialization. Typically, this expression consists of an
assignment statement, setting the initial value of a counter variable. Thisfirst expression is evaluated once, at the

beginning of the [oop.

The second expression isidentical in function to the expression in awhi | e statement, providing the termi-
nation condition for the loop. This expression is evaluated each time through the loop, before the statement is exe-

cuted.

Finally, the third expression provides the modification portion of thef or statement. Thisexpressioniseval-

uated at the bottom of the loop, immediately following execution of the statement.

Detail

All three of these expressions are optional and may be left out entirely. For example, here' saf or loop that leaves out

all three expression:

for (5)

doSonet hi ngFor ever () ;

Since this loop has no terminating expression, it isknown as aninfinite loop. Infinite loops are generally

considered bad form and should be avoided like the plague!

Thef or loop can aso be described in terms of awhi | e loop:

expressi onl;

whil e (expression2) {
st at enmrent
expr essi on3;

Barry Boone and Dave Mark Learn Java on the Macintosh 181

By the Way

Since you can aways rewrite af or loop asawhi | e loop, why introduce the f or loop at al? Sometimes, a pro-
gramming ideafits more naturally into the pattern of af or statement. If thef or loop makesthe code more readable,
why not useit? Asyou write more and more code, you'll devel op a sense for when to usethewhi | e and when to use

thef or.

Here's an example of af or loop:

int i;

for (i =1; 1 < 3; i++4)
Systemout. println(“Looping: " + i);

Systemout.println(“W are past the for |oop.”);

Thisexampleisidentical in functionality to thewhi | e loops presented earlier. Note the three expressions
onthefirst line of thef or loop. Before the loop is entered, the first expression is evaluated (remember, assignment

statements make great expressions):

Once the expression is evaluated, i hasavalue of 1. We are now ready to enter the loop. At the top of each

pass through the loop, the second expression is evaluated:

Barry Boone and Dave Mark Learn Java on the Macintosh 182

If the expression evaluatesto true, the loop continues. Sincei islessthan 3, we can proceed. Next, the state-

ment is executed.

Systemout. println(“Looping: 7 + i);

Here sthefirst line of output:

Looping: 1

Having reached the bottom of the loop, thef or evaluatesits third expression:

This changes the value of i to 2. Back to the top of the loop we go. Evaluate the termination expression:

Barry Boone and Dave Mark Learn Java on the Macintosh 183

Sincei isstill lessthan 3, the loop continues. Once again, the Syst em out . pri ntl n() doesitsthing.

The Java Output window looks like this:

Loopi ng: 1
Loopi ng: 2

Next, the for evaluates expression3:

Thevaueof i isincremented to 3. Back to the top of the loop again. Evaluate the termination expression:

Lo and behold! Sincei isno longer lessthan 3, the loop ends, and the second Syst em out . pri nt | n()

in our exampleis executed.

Systemout.println(“W are past the for loop.”);

Aswas the case with while, for can take full advantage of a pair of curly braces:

Barry Boone and Dave Mark Learn Java on the Macintosh 184

for (i 0; i < 10; i++) {
doThi s();
doThat () ;
danceALittl edig();

In addition, both whi | e and f or can take advantage of the loneliest statement, the lone semicolon:

for (i = 0; 1 < 1000; i +++4)

This example does nothing 1000 times. But the exampl e does take some time to execute. The initialization
expression is evaluated once, and the modification and termination expressions are each evaluated 1000 times. Here's

awhi | e version of the loneliest loop:

i = 0;

while (i++ < 1000)

LoopTester.u

Interestingly, there is an important difference between thef or and whi | e loopsyou just saw. Take aminute to look
back and try to predict the value of i thefirst time through each loop and after each loop terminates. Werethe results
the same for thewhi | e and f or loops? Hmmm.... Y ou might want to take another look. Here' s a sample program

that should clarify the difference between these two loops. Look inthefolder 07. 02 - | oop tester inthe

Barry Boone and Dave Mark Learn Java on the Macintosh 185

Learn Java Projects folder. Compile the project by using the Make command, then run the applet by dropping the
fileLoopTest er. ht nl onto the Metrowerks Javaicon. The Java Output window will display output from a vari-

ety of loops, as shown in Figure 8.2.

=[I=———— Java Dutput
while: i=1
while: i=2
while: =3
while: i=4

After while loop, i=5

first for: i=0
first for: i=1
first for: i=2
first for: i=3
After first for loop, i=4

second for: i=1
sacond for: (=2
second for: =3
second for: i=4
After second for loop, i=5 o
=l B

FIGURE 8. 2 The output from LoopTest er . y, showing the output from three different loops.

OpenthefileLoopTest er . j ava to view the source for this applet

TheloopTester applet startsoff ini ni t () by defining a counter variable,i . It then setsi to O and entersa

whi | e loop:

while (i++ < 4)
Systemout.println(“while: i=" +1i);

The loop executes four times, resulting in this output:

Barry Boone and Dave Mark Learn Java on the Macintosh 186

while: i=1

while: =2
while: i=3
while: i=4

Do you seewhy?If not, go through the loop yourself, calculating the value for i each time through the loop.
Remember, since we are using postfix notation (i ++), i getsincremented after the test is made to see whether it is

less than 4. The test and the increment happen at the top of the loop, before the loop is entered.

Once the loop completes, we print thevalue if i again:

Systemout.println(“After while loop, i=" +1i);

Here' s the result:

After while loop, 1=5

Here'show we got that value. The last time through the loop (withi equal to 4), we go back to the top of the
whi | e loop, test to scewhether i islessthan 4 (it no longer is), and then do theincrement of i , bumping it from 4 to

5.

Okay, one loop down, two to go. This next loop looks asiif it should accomplish the same thing. The differ-

enceis, wedon't do theincrement of i until the bottom of the loop, until we' ve been through the loop once already.

Barry Boone and Dave Mark Learn Java on the Macintosh 187

for (i =0; i < 4; i++)
Systemout.println(“first for: i=" +1i);

Asyou can see by the output, i ranges from 0 to 3 instead of from 1 to 4:

first for: i=0
first for: i=1
first for: i=2
first for: i=3

After we drop out of thef or loop, we once again print the value of i :

Systemout.println(“After first for loop, Ii=" +1i);

Here' s the result:

After first for |oop, i=4.

Asyou can see, thewhi | e loop rangedi from1to4,leavingi with avalue of 5 at the end of theloop. The
for loop rangedi fromO0to 3, leavingi with avalue of 4 at the end of the loop. So how do we fix thef or loop so

that it works the same way asthewhi | e loop? Take alook at our third loop example:

Barry Boone and Dave Mark Learn Java on the Macintosh 188

for (i =1; i <= 4; |i++)
Systemout.println(“second for: i=" +1i);

Thisf or loop startedi at 1 instead of 0 and it tests to wee whether i islessthan or equal to 4 instead of
just less than 4. We could also have used the terminating expressioni < 5 instead. Either one will work. As proof,

here' s the output from this loop:

second for: 1=1
second for: i1=2
second for: i=3
second for: i1=4

Once again, we print the value of i at the end of the loop:

Systemout.println(“After second for loop, i=" +i);

Here' sthe last piece of output:

After second for loop, i =5

Thissecondf or loopisthefunctional equivalent of thewhi | e loop. Take sometimeto play with this code.

Y ou might try to modify thewhi | e loop to match thefirst f or loop.

Barry Boone and Dave Mark Learn Java on the Macintosh 189

Thewhi | e and f or statements are by far the most common types of Javaloops. For completeness, how-

ever, we'll cover the remaining loop, alittle used gem called the do statement.

The do Statement

Thedo statement isawhi | e statement that evaluates its expression at the bottom of itsloop instead of at the top.

Here' sthe pattern ado statement must match:

do
st at enent
whi |l e (expression);

Here'sasample:

i =1;

do {
Systemout.println(i);
i ++;

} while (i < 3);

Systemout.println(“W are past the do |oop.”);

Thefirst time through theloop, i hasavaueof 1. Syst em out . pri ntl n() printsalinthe Java Out-
put window, then thevalue of i isbumped to 2. It's not until this point that the expression | < 3) isevauated.

Since 2 isless than 3, a second pass through the loop occurs.

Barry Boone and Dave Mark Learn Java on the Macintosh 190

During this second pass, Syst em out . pri nt | n() prints2in the Java Output window; then the value of
i isbumpedto 3. Onceagain, theexpression (i < 3)isevaluated. Since 3isnot lessthan 3, we drop out of theloop

to the second Syst em out . println().

The important thing to remember about do loopsis this: Since the expression is not evaluated until the bot-
tom of the loop, the body of the loop (the statement) is always executed at least once. Sincef or and whi | e loops
both check their expressions at the top of theloop, it’s possible for either to drop out of the loop before the body of the

loop is executed.

Let's move on to acompletely different type of statement, known astheswi t ch.

The switch Statement

Theswi t ch statement uses the value of an expression to determine which of a series of statements to execute.

Here' s an example that should make this concept alittle clearer:

switch (theYear) {

case 1066:
Systemout.println(“Battle of Hastings”);
br eak;

case 1492:
System out. println(*Col unbus sailed the ocean blue”);
br eak;

case 1776:
Systemout. println(*“Declaration of |ndependence”);
Systemout.println(“A very inportant docunent!”);
br eak;

defaul t:
Systemout. println(“Don’t know what happened this year”);

Barry Boone and Dave Mark Learn Java on the Macintosh 191

The switch is constructed of a series of case statements, each based on a specific value of t heYear . If
t heYear hasavalue of 1066, execution continues with the statement following that case’s colon, in this example,

theline:

Systemout.println(“Battle of Hastings”);

Execution continues, line after line, until either the bottom of the swi t ch (the right curly brace) or a

br eak statement isreached. In this sample code, the next lineisabr eak statement.

Thebr eak statement comesin handy when you are working with swi t ch statements and loops. The

br eak tells the computer to jJump immediately to the next statement after the end of the loop or swi t ch.

Continuing with the example, if t heYear hasavalue of 1492, theswi t ch jumpsto the lines:

System out. println(“Col unbus sailed the ocean bl ue”);
br eak;

A vaue of 1776 jumpsto thelines:

Systemout. println(“Declaration of |Independence”);
Systemout.println(“A very inportant docunent!”);
br eak;

Barry Boone and Dave Mark Learn Java on the Macintosh 192

Notice that this case has two statements before the br eak. Thereis no limit to the number of statements a

case can have: Oneis okay; 653 isokay. You can even have acase with no statements at all.

Thisexample adso containsadef aul t case. If theswi t ch can’t find acase that matches the value of its
expression, theswi t ch looksfor acaselabeled def aul t . If thedef aul t is present, its statements are executed.

If no default is present, the switch completes without executing any of its statements.

Here' sthe pattern for theswi t ch statement:

switch (expression) {
case constant:
statenents
case constant:
statements
defaul t:
statenments

Detail

Why would you want a case with no statements? Here' s an example:

switch (nyvar) {
case 1:
case 2:
doSormet hi ng() ;
br eak;
case 3:
doSonet hi ngEl se();

Barry Boone and Dave Mark Learn Java on the Macintosh 193

In thisexample, if nyVar hasavaue of 1 or 2, the method doSormret hi ng() isinvoked. If nyVar hasa
value of 3, the method doSonet hi ngEl se() isinvoked. If nyVar has any other value, nothing happens. Use a

case with no statements when you want two different cases to execute the same statements.

Think about what happens with this example:

switch (nyvar) {

case 1:

doSoneti nmes();
case 2:

doFrequent |l y();
defaul t:

doAl ways();

If myVar is1, al three functionswill get called. If myVar is2, doFr equent | y() and doAl ways()
will get called. If nyVar has any other value, doAl ways () will get caled all by itself. Thisisagood example of a

swi t ch without br eaks.

At the heart of each swi t ch isits expression. Most swi t ches are based on single variables, but, aswe

mentioned earlier, assignment statements make perfectly acceptable expressions.

Each case isbased on aconstant. Numbers (such as 47 or -12,932) are valid constants. Variables, such as
nyVar , are not. Asyou'll seelater, single characters (such as‘a or ‘$') are also valid constants. However, runs of

characters (such as “Gummy-bear”), called strings, are not.

If your swi t ch usesadef aul t case, make sure that you use it as shown in the pattern described. Don’t

include the word case beforetheword def aul t .

Barry Boone and Dave Mark Learn Java on the Macintosh 194

break Statements in Other Loops

The br eak statement has other uses besidesthe swi t ch statement. Here's an example of abreak used inawhi | e

loop:

i = 1;
while (i <=9) {

pl ayAnl nning(i);

if (itlsRaining())
br eak;

i ++;

This sampletriesto play nine innings of baseball. Aslong asthe methodi t | sRai ni ng() returnswith a
value of f al se, the game continues uninterrupted. If i t | sRai ni ng() returnsavalueoft r ue, thebr eak state-

ment is executed, and the program drops out of the loop, interrupting the game.

Thebr eak statement allows you to construct loops that depend on multiple factors. The termination of the
loop depends on the value of the expression found at the top of the loop, as well as on any outside factors that might

trigger an unexpected br eak.

Detail

By far the most common way to use the br eak statement isin halting loops, and thisishow you'll useit most often.

Y ou’'ve adready seen an example like the one below:

int i = 0;

Barry Boone and Dave Mark Learn Java on the Macintosh 195

while (i < 10) {
i f (haltLoop())
br eak;
Systemout.printIn(“i =“ +1i);
i ++;

}

Systemout.println(“we’ re out of the |oop”);

If hal t Loop() everreturnst r ue, the br eak statement will execute, and the message “we're out of the

loop” will be the next message to appear in the Java Output window.

But what happensif you have anested loop (which isaloop inside of another loop)? What doesthe br eak

statement do then? Here' s an example of a nested loop:

int i = 0;
while (i < 10) {

int j = 0;
while (j < 10) {
i f (haltLoop())
br eak;

Atfirst,i equalsO, andj goesfrom O through 9, falling out of the inner whi | e loop whenj reaches 10.
But we're still inside thewhi | e loop controlled by i , so we go back to the top of thiswhile loop. Thistime, i

equals 1, and we enter the inner loop controlled by j once more. Again,j rangesfrom 0to 9, falling out of the loop

Barry Boone and Dave Mark Learn Java on the Macintosh 196

when | equals 10. Sincewe're still insidethei loop, we go back to the top of thei loop; now, i equals 2; and so on.

We'll continue on until i equals 10 and we fall out of the outer while loop controlled by i .

In the example above, if hal t Loop() ever returnst r ue, we only break out of the inner loop, controlled
by j . Wefall back into thei loop, and continue on with thei loop, incrementing i , and entering thej loop again.

How can we break out of both thej loop and thei loop?

Theway thisisdoneisby giving aname, or label, to the statement that definesthei loop. Then, you can use
the br eak statement to request abr eak to the loop indicated by that 1abel. Here's away to break out of both the

inner loop and the outer loop:

int i = 0O;

I Loop: while (i < 10) {
int j = 0;
while (j < 10) {

i f (haltLoop())
break i Loop;

Notice this time we gave the outer loop the label i Loop, and the br eak statement referenced this name.
While the default behavior for the br eak statement isto break out of theimmediate loop in which it isembedded, in
the example above, thebr eak statement would break out of the loop that was named, which happened to be the
outer loop. If hal t Loop() ever returns true in the example above, we would fall out of both thej loop and thei

loop right away and would move on with the rest of the code. For more information and examples, check out Java

Barry Boone and Dave Mark Learn Java on the Macintosh 197

Essentials for C and C++ Programmers, Barry Boone's book published by Addison-Wedley, which describes a vari-

ety of sample programs that use br eak statementsto control the flow through a program.

Detail

There’ sanother operator supplied by Javathat affectsflow control. This operator isnot used very often, but you might

“

seeit around. This operator iswritten as?: (yes, you'rereading that right: it’s “ question mark, colon”), and it allows

your program to do one of two things, depending on a boolean expression. Here' s the format:

bool ean expression ? action if true : action if false

Thisis somewhat the same as:

i f (bool ean expression)
action if true

el se
action if fal se

except that the?: operator can be alittle more compact at times. One thing this operator is particular useful
for is assigning a value to a variable based on a boolean expression. For example, you can assign a string object to a

new string instance, depending on the result of a boolean expression, like this:

int i =5;
String s

i <3 ?new String(“i < 3") : new String(“i >= 37);

Barry Boone and Dave Mark Learn Java on the Macintosh 198

Inthis case, the string s would hold thetext “i >= 3" at the end of these two statements. Check out examples
on the Web at JavaSoft’ s site and, again, turn to the Java L anguage Specifications for moreinformation. Y ou can also
look in Dave Mark’sLearn C on the Macintosh, published by Addison-Wedey, for some good examples and advice

concerning this operator.

Sample Programs

isOdd.u

This program combinesf or andi f statementsto tell you whether the numbers 1 through 20 are odd or even and
whether they are an even multiple of 3. The program al so introduces a brand new operator: the %operator. Go into the

Learn Java Projectsfolder, then into the07. 03 - i s odd subfolder, and open the project | sGdd. p.

Compileand run | sOdd. u by selecting Make from the Projects menu and dropping the HTML file
| sQdd. ht 1 onto the Metrowerks Javaicon. Y ou should see something like the Java Output window shown in Fig-

ure 8.2.

Barry Boone and Dave Mark Learn Java on the Macintosh 199

Java Qutput

The
The
The
The
The
The
The
The
The
The
The
The
The

number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number

w0l ~d o B0 R —

) — 2

13
14
13
16
17
12
19
20

i=
is
is
is
i=
is
i=
is
is
is
i=
is
i=
is
is
is
i=
is
i=
is

odd

L

odd and is a multiple of 3
LR

odd

evaln and i= a multiple of 3
odd

L

odd and is a multiple of 3
LR

odd

evaln and i= a multiple of 3
odd

L

odd and is a multiple of 3
LR

odd

evaln and i= a multiple of 3
odd

LN

=l

FIGURE 8. 3 Running | sCdd. p.

Y ou should see aline for each number from 1 through 20. Each of the numbers will be described as either

odd or even. Each of the multiples of 3 will have additional text describing them as such. Here' s how the program

works.

Stepping through the Source Code

This program starts off with the usual class definition for an applet. This class, 1sOdd, definesani ni t () method to

try out some of the flow control keywords we learned in this chapter. i ni t () begins by declaring a counter variable

namedi .

public class I1sOdd extends java. appl et. Appl et {
public void init() {

int i:

Barry Boone and Dave Mark

Learn Java on the Macintosh

200

Our goal hereisto step through each of the numbers from 1 to 20. For each number, we want to check to see
whether the number is odd or even. We also want to check whether the number is evenly divisible by 3. Once we've
analyzed anumber, we'll use Syst em out . pri nt | n() todisplay adescription of the number in the Java Output

window.

Asyou might expect, the next stepisto set up af or loop, usingi asacounter initialized to 1. The loop will
keep running aslong asthe value of i islessthan or equal to 20. Thisisthe same as saying that the loop will exit as
soon asthe value of i isfound to be greater than 20. Every time the loop reaches the bottom, the third expression,

i ++, will be evaluated, incrementing the value of i by 1. Thisisaclassicf or loop.

for (i = 1; i <= 20; i++) {

Now we'reinside thef or loop. Our goal isto display asingle line for each number—that is, one line each

time through the f or loop. If you check back to Figure 8.1, you'll notice that each line starts with the phrase:

The nunmber x is

In that phrase, x is the number being described. That’ s the purpose of using Syst em out . pri nt ()
rather than Syst em out . pri ntl n().WiththeSyst em out . pri nt () version, rather than Sys-
tem out. printl n(),theoutput doesnot skip to the next line after its displayed in the Java Output window. This

means we can keep on displaying text to the Java Output window, and it will be placed on the same line as before.

Barry Boone and Dave Mark Learn Java on the Macintosh 201

Systemout. print(“The nunber “ + i + “ is “);

Noticethat thisSyst em out . pri nt () statement wasnot part of ani f statement. We want this Sys-
tem out. print () todisplay its message every time through the loop. The next sequence of Sy s-

tem out. print () statementsare adifferent story altogether.

The next chunk of code determines whether i is even or odd, then usesSyst em out . pri nt () todis
play the appropriate word in the Java Output window. Because the last message was written using Sy s-
temout. print() ratherthanSyst em out . pri ntl n(),theword“even” or “odd” will appear inthe console

window on the same line as, and immediately following:

The nunmber x is

The next chunk of code introduces a brand new operator—%—a binary operator that returns the remainder
when the left operand is divided by the right operand. For example,i % 2 divides2intoi and returnsthe remainder.

If i iseven, thisremainder will be 0. Ifi isodd, this remainder will be 1.

if ((i %2) == 0)
Systemout. print(“even”);

el se
System out. print(“odd”);

Inthe expressioni % 3, theremainder will be O if i isevenly divisible by 3; otherwise,i will either be 1

or 2.

Barry Boone and Dave Mark Learn Java on the Macintosh 202

if ((i %3) == 0)
Systemout.print(“ and is a multiple of 3");

If i isevenly divisible by 3, we'll add the following phrase to the end of the current line:

“and is a nultiple of 3"

Finally, we display ablank go to prepare for the next number in the loop by making the display start at to the

next line:

Systemout.printIn("");

The loop ends with aright curly brace.

NextPrime.u

Our next program focuses on the mathematical concept of prime numbers. A prime number is any number whose
only factors are 1 and itself. For example, 6 is not a prime number, because its factors are 1, 2, 3, and 6. The number
5isprime because its factors are limited to 1 and 5. The number 12 isn’t prime, because itsfactorsare 1, 2, 3, 4, 6,

and 12.

Barry Boone and Dave Mark Learn Java on the Macintosh 203

Our next program will find the next prime number greater than a specified number. For example, if we set

our starting point to 14, the program would find the next prime, 17. We have the program set up to check for the next

prime after 19. Know what that is?

Go into the Learn Java Projects, into the subfolder 07. 04 - next pri nme, and open the project Nex-
t Pri me. p. Compile NextPrime,java by selecting Make from the Project menu, then run the applet by dropping

NextPrime.html onto the Metrowerks Javaicon. Y ou should see something like the Java Output window shown in

Figure 8.4.
SN Jaraluiput =——— 1=
Executing: jawai sun.applet. Applatliswer 4H

fBlueHorze /LearnB20Jauai20Pra j ectaB20KR /02 . 043 20-820ne: tEZ20pr ime /MextPrime . hitml [
The hnext prime after 19 is 23
Comp|letedcdl

B3]

| =

FIGURE 8. 4 Running Next Pri me. p. Buried at the end of the verbose messages in the Java Output window is

the line “ The next prime after 19 is 23.”

Asyou can see, the next prime number after 19 is (drum roll, please...) 23. Here' s how the program works.

Stepping through the Source Code

As with the other recent applets, this applet definesani ni t () method to perform our test of the language.

public class NextPrine extends java. appl et. Applet {

Barry Boone and Dave Mark Learn Java on the Macintosh 204

public void init() {

We're going to need a boatload of variables. They first four are defined asi nt . Thefifth,i sPri ne,isa

boolean to keep track of whether we've found a prime or not.

i nt startingPoi nt, candidate, last, i;
bool ean i sPrine;

We'll startat 19. You canset st ar t Poi nt to whatever you'd like to and recompile and rerun this program
to find other primes. The variablecandi dat e will hold the current candidate we are considering. Iscandi dat e

the lowest prime number greater than st ar t i ngPoi nt ? By the time we are done, it will be!

startingPoint = 19;

Since 2 isthe lowest prime number, if st ar t i ngPoi nt islessthan 2, we know that the next primeis 2.

By setting candi dat e to 2, our work is done.

if (startingPoint < 2) {
candi date = 2;
}

If startingPoi nt is2, thenext primeis 3, and we'll set candi dat e accordingly.

Barry Boone and Dave Mark Learn Java on the Macintosh 205

else if (startingPoint == 2) {
candi date = 3;
}

If we got thisfar, we know that st ar t i ngPoi nt isgreater than 2. Since 2 is the only even prime number
and since we' ve already checked for st art i ngPoi nt being equal to 2, we can now limit our search to odd num-
bersonly. We'll start candi dat e at st arti ngPoi nt , then make surethat candi dat e isodd. If itisn’t, we'll
decrement candi dat e. Why decrement instead of increment? If you peek ahead afew lines, you'll seethat we're
about to enter ado loop and that we bump candi dat e to the next odd number at the top of the loop. By decrement-
ing candi dat e now, we're preparing for the bump at the top of the loop, which will take candi dat e to the next

odd number greater than st ar t i ngPoi nt .

el se {

candi date = startingPoint;
if (candidate %2 == 0) /* Test only odd nunbers */
candi dat e- - ;

Thisloop will continue stepping through consecutive odd numbers until we find a prime number. We'll start
i sPri me off ast r ue, then check the current candi dat e to see whether we can find afactor. If we do find afac-

tor, we'll seti sPri me tof al se, forcing us to repeat the loop.

do {

isPrime = true; // Assume glorious success
candidate += 2; // Bunp to the next nunber to test

Barry Boone and Dave Mark Learn Java on the Macintosh 206

Now we'll check to see whether candi dat e is prime. This means verifying that candi dat e has no fac-
tors other than 1 and candi dat e. To do this, we'll check the numbers from 3 to the square root of candi dat e to

see whether any of them divides evenly intocandi dat e. If not, we know we' ve got ourselves a primel

The way we find the sguare root of a number in Javaisto use a class method defined by the Math class (the
Math classis supplied by Java, which you' Il learn more about in Chapter 10). This method actually returns a floating
point number (naturally enough, since the square root of any given number may not be an integer). However, we only
want an integer, since we are finding the last number to check for afactor. What we want is to truncate the floating

point number, dropping any fractional portion, and simply use the integer portion.

The way we achieve thisin Javais by casting. We want to cast the floating point value to an integer. We can
do thisby writing (i nt) infront of the expression for the floating point number. Y ou’ll learn much more about float-

ing point numbers and casting in Chapter 12.

last = (int)Math.sqrt(candidate);

By the Way

So why don’t we check from 2 uptocandi dat e - 1?Why start with 3? Sincecandi dat e will never be even,

we know that 2 will never be afactor. For the same reason, we know that no even number will ever be afactor.

Why stop at the squareroot of candi dat e? Good question! To help understand this approach, consider the
factorsof 12, other than 1 and 12. They are 2, 3, 4 and 6. The square root of 12 is approximately 3.46. Notice how this
fitsnicely in the middle of thelist of factors. Each of the factors less than the square root will have a matching factor

greater than the sguare root. In this case, 2 matcheswith 6 (2 * 6 = 12) and 3 matcheswith 4 (3* 4 = 12). Thiswill

Barry Boone and Dave Mark Learn Java on the Macintosh 207

always be true. If we don't find a factor by the time we hit the square root, there won't be a factor, and the candidate

isprime.

Take alook at the top of thef or loop. Westarti at 3. Each time we hit the top of the loop (including the
first time through the loop), we'll check to make sure that we haven't passed the square root of candi dat e and that
i sPrimeisstlltrue.IfisPrineisfal se,wecan stop searching for afactor, since we' ve just found one!

Finally, each time we complete the loop, we bumpi to the next odd number.

/* Loop through odd nunbers only */
for (i =3, (i <=last) & isPrine; i += 2) {

Each time through the loop, we' Il check to see whether i divides evenly intocandi dat e. If so, we know

that it isafactor, and wecan seti sPri nme tof al se.

if ((candidate %i) == 0)
isPrime = fal se;

}
} while (! isPrime);

Once we drop out of thedo loop, weuseaSyst em out . printl n() statement to display both the start-

ing point and the first prime number greater than the starting point.

Systemout.println("The next prime after " + startingPoint
+ “ is " + candidate);

Barry Boone and Dave Mark Learn Java on the Macintosh 208

If you are interested in prime numbers, play around with this program. Seeif you can modify the codeto dis-

play al the prime numbers from 1 to 100. How about the first 100 prime numbers?

Review

This chapter covered many of the details of implementing your methods. Y ou learned how to branch based on certain
conditions, how to execute one set of statements instead of others, and how to loop through your code. Mastering the

information in this chapter involves learning many new Java keywords and new ways of thinking about problems.

The comparative operators covered here that you'll use most often include<, >, ==, and! =. (Asyou
learned, these are the less than, greater than, equal to, and not equal to operators, respectively.) Y ou now know you
can use these operators in conjunction with keywords to control the flow through your program. The keywords you
learned in this chapter includei f , el se,f or,whi | e,do,swi t ch, case, andbr eak. Takethetimeto make sure
you understand how each of these works. If you would like some more examples, check out the appendices for more

references and example code.

What's Next?

Y ou’ ve covered many of the important aspects of creating amethod (storing datain variables, branching, looping, and
working with operators). In Chapter 9, we' Il take al this to the next level by creating objects from our classes. You'll
see al your effort to learn about variables and methods pay off with objects. You'll create objects to implement the
different parts of your application. You' Il define variables for your objects and give your objects specific values that

make each object unique, and you'll give your objects behavior using methods.

Barry Boone and Dave Mark Learn Java on the Macintosh 209

Barry Boone and Dave Mark Learn Java on the Macintosh 210

CHAPTER 9 ObJ &:ts

So far, the applets in this book did not need to create their own objects. We' re about to change all that. Starting with

this chapter, we'll create objects based on our classes and use these objects in our applets.

Even though you haven't created any objects yourself, you have been working with objects al along. In par-
ticular, as you have learned, the browser makes an instance of your applet class when it runs your applet. We'll also
explore methods and variables in much more depth here by learning how to make methods and variables part of your

objects.

The Purpose of Objects

Let’s review what the purpose of an object is before diving into the details of an object. Objects define the different
parts of your application. Y ou create new objects based on classes. By defining classes and creating objects, you can

write programs that reflect the “real world” and model the problem at hand.

For example, remember our payroll program discussion from Chapter 4? One of the elements of this applet
islikely to be an employee. Y ou might create objects to represent the employeesin your program. Each employee
object might keep track of three pieces of information: An employee number, the employee’s hourly wage, and the
number of hours the employee has worked so far this month. Y ou would create an Employee class that defined what

each employee object looked like. Thisis depicted in Figure 9.1.

Barry Boone and Dave Mark Learn Java on the Macintosh 211

Employee class)

I |
| employee number |
| hourly wage |

hours worked
L - — — _I

FIGURE 9. 1 A schematic of aclass called Employee

In your program, you could create a specific instance, or object, based on this Employee class to hold the
particular values for a given employee. For example, if your company had two employees, employee number 1 might
have an hourly wage of $20 and might have worked 40 hours so far this month. Employee number 2 might have an

hourly wage of $18 and perhaps worked 100 hours so far this month. Thisis depicted in Figure 9.2.

create objects
to maintain
_____ the datafor ;
" “Employeeclass | individual employee object
| |) | employees p-| EMployee number = 1
| Egti)rl(;/yv?/eag:m er | hourly wage = $20
h ked =40

|L hours worked J' oS wor

employee object

employee number = 2
hourly wage = $18
hours worked = 100

FIGURE 9. 2 Objects created from the Employee class store the specific information for a particular employee.

This makes each employee unique.

Figure 9.2 shows that the Employee class specifies the data that each employee object will have, but it does
not provide any values. Instead, the individual employee objects maintain the values that makes each employee

unique. Asyour company grows, you can create new employee objects from the Employee class, using the Employee

Barry Boone and Dave Mark Learn Java on the Macintosh 212

classlike atemplate or a cookie cutter, as we covered in Chapter 4. Once you create a new employee object, you can
fill in the values that make that employee unique. For example, anew employee just joining the company would need
an object dedicated to the new employee. Thiswould be the third object we created so far. This new object would

maintain its own unique values, such as. employee number 3, an hourly wage of $10, and 0 hours worked so far this

month.

One of the great things about classesis that, in addition to specifying the data that objects will hold, they
also specify the behavior that objects will have. Often, an abject’ s behavior involves manipulating an object’ sdatain
some way, perhaps by performing a calculation. For example, we could create a method that allowed employee
objects to calculate the employee’ sincome for the month. In the Java program, this new method would be defined in
the class definition. Remember from Chapter 4, objects ook to their classes to see what behavior they are capable of.
Our new method might be called ear nedl ncorne() . This method might multiply the number of hours worked by

the employee’ s hourly wage to arrive at the earned income for a given employee for that month.

Now, if we invoked employee number 1'sear nedl ncone() method, ear nedl ncore() would access
the data for employee number 1. It would find that its hourly wage was equal to 20 and that its hours worked so far
this month was equal to 40. ear nedl ncome() , then, would perform the multiplication and return avalue of 800. If
weinvoked employee number 2'sear nedl ncomre() method, ear nedl ncone() would accessthe instance vari-
ables for employee number 2. It would find that its hourly wage was equal to 18 and that its hours worked so far this
month was equal to 100.ear nedl ncone() , then, would perform the multiplication using its own, unique data and

return avalue of 1800. Thisis depicted in Figure 9.3.

Barry Boone and Dave Mark Learn Java on the Macintosh 213

employee object

employee number = 1 ~@————— e€arnedincome()
hourly wage=$20 |——® $800
hours worked = 40

employee object
-——— earnedincome()

employee number = 2 $1800

hourly wage = $18
hours worked = 100

FIGURE 9. 3 Each employee object responds to a method invocation according to itw own unique data.

The purpose of objects, then, isto allow you to design and implement your programs in away that models
the “real world” as much as possible. Here, for example, employees maintain their own data and can determine how
much they should be paid each month. Y our applets will become a collection of objectsthat store data and know how
to behave. What' s more, your objects will sometimes create other objects and interact with them to get the job done.
For example, an applet that acted as a payroll program would create employee objects and interact with them to keep
track of the employees in the company. As another example, the SimpleDraw program you saw earlier is an applet

that creates circle and square objects.

Sinceyou'll often need to create new objects when writing your own applets, it's high time you learned how

to create new objects based on your classes. Let’ sturn to this topic next.

How to Create Objects

To create anew object from a class, you use acommand called new. Here’ san example. Let’ s say you have an empty

class, called Circle, defined like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 214

class Circle {

}

To create an instance of this class, you could write aline of code like this:

new Circle();

This statement returns a new object. This might remind you alittle bit of amethod invocation, except for the
keyword new preceding Gi r cl e() . Typically, you would assign this new object to avariable. To declare avariable
that can hold an object of a particular type, you use the class name as the data type of the variable. For example, to

declareavariable called ny Gi r cl e that will hold an object that's an instance of classCi r cl e, you would write:

Circle nyGrcle;

Then, when you create the new object, you would assign it to the variableny Ci r cl e, likethis:

nmyCircle = new Circle();

Y ou could also declare the variable, create the object, and assign the new object to the new variable all in one

ling, like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 215

Circle nyCrcle = new Circle();

Definition
What you are doing with the codenew Ci r cl e() isinvoking aclass' s constructor. A constructor isa special
method that initializes an object. Java provides a default constructor for your classes, so you don’t have to define one

yourself to create objects based on your classes. However, you can if you want to, and Chapter 13 explains how you

would go about doing this. Creating your own constructor allows you to initialize an object when it isfirst created.

Just as some methods take parameters, some constructors take parameters, too. Sometimes, you'll pass
parametersto aconstructor to initialize the object when you createit. For example, Java supplies atype of classcalled
a String. A string object maintains some text, such as“ Goodbye Y ellow Brick Road” or “Red 5, do you read? Thisis

Green leader, over.” . You can create a new string instance like this:

String s = new String();

This statement declares a variable named s that will hold a string object. It then creates a new string object

using the new command and invokes the String class' s default constructor. The resulting object isassignedto s.

This creates a perfectly good string, except for one thing: This string wouldn’t contain any text. Yet, that’s
the whole point of strings! Instead of creating a string without any text, you almost always will want to supply this
text to the string’ s constructor. Y ou supply this data as a parameter to the constructor, just asyou supply parametersto

methods. Y ou would supply the text for the string when you create the string like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 216

String s = new String(“Wat | Did on nmy Sunmer Vacation”);

Asyou can see, just place the constructor’ s parameter between the parentheses following the constructor

invocation. As with method, if there's more than one parameter, separate the parameters using commas.

Instance Variables

Asyou learned in the previous two chapters, variables allow you to keep track of the data used in your methods. For

example, to define amethod that finds the perimeter of atriangle, you could write:

int findPerinmeter() {
int sidel = 5;
int side2 = 12;
int side3 13;

return (sidel + side2 + side3);

This method definesthree variables. Thevariablessi del, si de2, andsi de3 hold the length of each side
of aspecific triangle. This method returns the length of the triangl€’ s perimeter. This example shows how variables

can be used inside of amethod to store data, as you' ve seen already.

To store datainside of an object, you can do the same kind of thing—that is, like methods, objects can define

variables to keep track of their own data.

Barry Boone and Dave Mark Learn Java on the Macintosh 217

Defining Instance Variables

Here's an example of atriangle class that defines three variables for its instances.

class Triangle {
i nt sidel,
int sidez;
int side3;

When you create an instance of this class, you set aside enough memory to storethethreei nt vaues named
si del, si de2,and si de3 that arelisted in the class definition. Figure 9.4 shows creating a triangle object based

on the Triangle class.

r— — — — — 9 createanew instance - -
class Triangle - P instance of class Triangle
L — 4 new Triangle(); .
sidel=0
side2=0
side3=0

FIGURE 9. 4 Making an instance of class Triangle creates an object with enough storage for its three sides.

At first, the three instance variables will have the value 0. (Thisisthe default valuefor i nt variables.) How-
ever, you can access these variables, assign valuesto them, and retrieve their values whenever you want to. This lets
you create atriangle object, for example, and then immediately assign valuesto it, suchassi del = 3,si de2 =
4,and si de3 = 5. The next section shows you how. We'll cover how to access instance variables by also discuss-

ing instance methods.

Barry Boone and Dave Mark Learn Java on the Macintosh 218

Instance Methods

We wrote methods in the last two chapters for an applet. These methods started out as the applet life-cycle methods,
init(),start(),stop(),anddestroy().Butwealsoshowedhowi nit () could, for example, invoke a

method we wrote ourselves called set UpGUI () . We also showed how to define our own method that took parame-
tersand returned avalue, calledf i ndAver age() . Just as we defined new methods for the appl et, we can define

new methods for any other class, aswell.

Let’sbuild on the triangle example we started in the last section. Y ou’ ve already seen that for a method to
access variables that it defines, all it hasto do isrefer to the variables by name. For example, we saw amethod afew

pages back called f i ndPer i net er () that looked like this:

int findPerineter() {
int sidel = 5;
int side2 12;
int side3 13;

return (sidel + side2 + side3);

This method simply referred to si del, si de2, and si de3 to get at the values they defined. Isthere abig
difference between methods accessing their own variables and objects accessing their own variables? Not at all! For a
triangle object to access its own instance variables, all it hasto do is, like the method, refer to the variable by name.

For example, if triangles defined a method namedf i ndPeri meter (),fi ndPeri net er () couldlook like this:

class Triangle {
i nt sidel;

Barry Boone and Dave Mark Learn Java on the Macintosh 219

i nt side2;
i nt side3;

int findPerinmeter() {
return (sidel + side2 + side3);

Asyou can see, the methodf i ndPer i et er () isableto accessthe instance variables in the same object
inwhichitisdefined. Thisisimportant! They key point hereisthat f i ndPer i met er () accesses the instance vari-
ablesfor its particular object. If you created two triangle objects and assigned each object its own data, invoking that

object’sf i ndPer i et er () method would yield the results appropriate for that object.

For example, if you created atriangle object and gave its sides the values 6, 8, and 10, then invoking f i nd-
Peri nmet er () for that triangle would return 24. If you created another triangle object and gave its sides the values

4, 4, and 4, then invokingf i ndPer i met er () for that triangle would return the value 12.

Using Instance Variables and Methods in Other Objects

Y ou now know how to access instance variables and invoke behavior—as long as you only ever have one object! For
example, what we' ve shown so far works great for a program consisting solely of an applet class. We can define
instance variables for our applet and define new methods. These new methods can access the instance variables to set

or retrieve their values, just as our methods did when the variables were defined in the methods themselves.

The true power of instance variables and instance methods is when we can work with awhole bunch of
objects at once. For example, a Trigonometry applet might build up alibrary of triangles. It would be great to have
our applet refer to these different triangles and access different triangles’ dataand invoke different triangles’ methods.
We can't just refer to atriangle object’ s variables or methods by name alone from our own applet, because, first of all,
the computer wouldn’t know we wanted the triangle’ s variables and methods rather than our applet’s, and second of

all, the computer wouldn’'t know which triangle object we werereferring to! If we are going to create awhole bunch

Barry Boone and Dave Mark Learn Java on the Macintosh 220

of separate objects, we need away of distinguishing triangle 1’ svariables from triangle 2’ svariables, and triangle 1's
methods from triangle 2's methods. In other words, if we want to ask triangle 1 for its perimeter, we want to make

surethat f i ndPer i met er () usesthevaluesfor triangle 1 and not some other triangle.

Javaprovides away to do this. Javausesadot (.) to associate a variable or amethod with agiven object. The

best way to illustrate thisis with an example.

Let'swrite an applet called Trig that, initsi ni t () method, creates two triangles, assigns values to them,

and then finds the perimeter for each triangle. Here' s the definition for the Triangle class:

class Triangle {
int sidel;
int sidez;
i nt side3;

int findPerinmeter() {
return sidel + side2 + side3;
}

Now, let's create objects out of this class and use them in our applet’si ni t () method. Here's the top part

of this method which creates two triangle objects.

public class Trig extends java. appl et. Appl et {
init() {
Triangle t1,
Triangle t2;

tl
t2

new Triangl e();
new Triangl e();

Barry Boone and Dave Mark Learn Java on the Macintosh 221

Now we'd like to set the valuesfor t 1’ sinstance variables. We associate an instance variable to a particular

object by using adot, like this:

tl.sidel = 3;
t1l.side2
t1l.side3

I
A

Now, t 1’'sinstance variables are set to 3, 4, and 5. Similarly, to assign valuestot 2’ sinstance variables, we

can write:

t2.sidel = 5;
t2.side2 10;
t2.side3 10;

At this point, the triangle referenced by t 2 holds the values 5, 10, and 10 for its sides. Each instance’ s vari-
able names are the same (si del, si de2, and si de3), but we refer to a different object when we use the dot nota-
tion. Now, t 2 containsdifferent valuesinitsinstance variablesthant 1. If wewanted to accesst 1’ sinstancevariable
named si del, we could refer to it by writingt 1. si del. If we wanted to refer tot 2’ sinstance variable named

si de3, we could refer to it by writingt 2. si de3.

For thelast part of our Trig applet, we need to find the perimeter for each triangle by invoking each triangle’'s
fi ndPeri nmet er () method. From the discussion above on accessing instance variables in other objects, you can
probably already guess how to invoke methodsin other objects: Just connect the object with the method invocation by

adot. Here' s the remainder of the code:

int resultl = tl.findPerineter();
int result2 t2.findPerineter();

Barry Boone and Dave Mark Learn Java on the Macintosh 222

Inthisexample, t 1. f i ndPer i net er () would return the value 12 (becauset 1's sides are equal to 3, 4,
and5),andt 2. f i ndPeri net er () would return the value 25 (sincet 2’ssides are equal to 5, 10, and 10). The

variabler esul t 1, then, would be assigned 12, and r esul t 2 would be assigned 25.

Referring to Yourself

Asyou saw, you don’'t have to connect an instance variable or an instance method with an object when you' re access-
ing it from the same object in which these variables and methods are defined. For example, you saw how the Triangle

class defined an instance method called f i ndPer i met er () that just referenced itsinstance variables directly.

This usually works just fine, but here's a scenario that would cause the compiler to not understand what we
wanted. |magine that we define amethod that initializes the triangle' s sides. Perhaps we have a method definition that

begins:

void initTriangle(int sidel, int side2, int side3) {

Are these parameter names referring to the same instance variables defined by the triangle? No. Parameter
names are separate from the triangl€’ sinstance variable names. Does that mean we can write codefor ouri ni t Tri -

angl e() method likethis:

void initTriangle(int sidel, int side2, int side3) {
si del si del,;
si de2 si dez;

Barry Boone and Dave Mark Learn Java on the Macintosh 223

si de3 = si de3;

and expect the instance variables to be assigned with the values in the parameters? No again. The compiler
will think we' re assigning the parameter back to its origina value. If we write amethod like this, the instance vari-
ableswill never be assigned the valueswe passtoi ni t Tri angl e() . If we could specify the object, aswe did
when referring to variables and methods in other objects, we could indicate that we wanted to assign the parameter
si del totheinstance variablesi del, the parameter si de?2 to the instance variable si de2, and the parameter

si de3 to theinstance variablesi de3. In other words, you want to write code that expresses this idea:

(this object).sidel = sidel;
(this object).side2 = sidez;
(this object).side3 = side3;

So how do we refer to our own object? Java provides away to do this through the use of a specia variable
called t hi s. Java definesthe variable namedt hi s for every instance method. Y ou can use this variable whenever

you want to. Here' s how we' d solve the problem presented above:

void initTriangle(int sidel, int side2, int side3) {
this.sidel = sidel
this.side2 si dez;
this.side3 si de3;

Thevariable namedt hi s isdefined for you by Java. Thet hi s variableletsyou clarify which object avari-
able or method belongsto. t hi s is sometimes described as representing the current object. The current object is

the one responding to a method invocation.

Barry Boone and Dave Mark Learn Java on the Macintosh 224

For example, in the example code given alittle while ago, we created two triangle objects. The first was
assigned to the variablet 1; the second was assigned to the variablet 2. If weinvoket 1'sf i ndPeri met er ()
method, then when f i ndPer i net er () isexecuting, t hi s isequal to the object representedby t 1.t 1 issaid to
be the current object, the one responding to the method invocation. Similarly, if weinvoket 2’sf i ndPer i nme-

t er () method, thenwhenfi ndPeri nmet er () isexecuting, t hi s isequal to the object represented by t 2, and

t 2 issaid to be the current obect.

Sample Programs

We'll look at asimple program in this section and slowly extend it to illustrate instance variables and instance meth-

ods. The code here will all relate to the empl oyee example we touched on earlier.

Employeel.u

For our first example of instance methods and instance variables, open up thefolder 09. 01 - enpl oyee 1linthe
Learn Java Projectsfolder. Make the project by double-clicking the fileEnpl oyeel. p and selecting Make from
the Project menu. Run the program by dropping the file Enpl oyeel. ht nl onto the Metrowerks Javaicon.

When you do, an empty applet will appear and the Java Output window will look like what'sin Figure 9.5.

Barry Boone and Dave Mark Learn Java on the Macintosh 225

ElI=——————— Java Dutput

Executing: jawai sun.applet. Applatliswer

fBlueHorze LearnBZ20Jaual20Pra jects820KR /09 0 1EZ20-B20emp | oyeef201 /Emp l oges 1. Ritml
hourly wage = 10

hours worked = 20

egrhied income = 200

CompletedcOl

Bl

=[]

& [

FIGURE 9. 5 The output from Enpl oyeel.

This applet displays some information in the Java Output window for a particular employee. Asyou can see,

after al the initialization gobbledy-gook, this program displays three lines:

hourly wage = 10
hours worked = 20
earned i ncone = 200

Let's see what' s happening with this code.

Stepping Through the Source Code

Open up Enpl oyeel. j ava either by double-clicking this file name in the project window or by double-clicking
thefile icon. Once you get it open, you' |l see thisfile defines an applet called Employeel. Y ou might notice that the
source code for this applet defines two life-cycle methods—i ni t () and st ar t () —and one other method, called
ear nedl ncone() . This applet aso defines two instance variables, called hour | yWage and hour sWor ked.

Here' s how it al works.

Barry Boone and Dave Mark Learn Java on the Macintosh 226

At the start of the applet, the applet defines two instance variables.

public class Enpl oyeel extends java. appl et. Applet {

I nt hourl yWage;
i nt hour sWr ked;

The applet will use these variables to store and retrieve data. The applet then definesits first instance
method, a custom method called ear nedl ncone() . This method does not take any parameters, but it uses the the

two instance variables to perform a calculation.

i nt earnedl ncome() {
return hourl yWage * hour sWrked;
}

Notice how thisinstance method can just refer to theinstance variables by name. The variables belong to the
object (that is, the applet object), so it’s no problem accessing them from this instance method also defined for the

applet object.

Next, the applet providesani ni t () method. When the applet isfirst initialized by the Applet Viewer, it's
i ni t() methodisinvoked, and it setsthe values of itsinstance variables. It setshour | yWage to 10 and hour -

sWor ked to 20.

public void init() {
hour | yWage = 10;
hour sWwor ked = 20;

Barry Boone and Dave Mark Learn Java on the Macintosh 227

Remember, if we don’t set the instance variables, they will have the default value of 0. Again, ini nit (),

we can just refer to these instance variables directly, sincei ni t () isan instance method.

Thethird method, st art () , isinvoked by the Applet Viewer afteri ni t (). Thest art () method
defines alocal variable named ear nedl ncone. This method begins by displaying the values of the instance vari-

ableshour | yWage and hour s\Wér ked.

public void start() {
I nt ear nedl ncone;

Systemout.println("hourly wage = " + hourl yWage);
Systemout.println("hours worked = " + hour s\Wr ked) ;

Asyou can tell from the Java Output window, hour | yWage and hour sWor ked contain the values we set
inthei ni t () method. These values will stay with the object until we change them. Since we assigned these values
to aninstance variable, they are accessible from any instance method defined for the same object. Asyou can seg, this

is one way to use the same variables in different methods.

The last thing this method doesis to invoke the current object’s (that is, this applet’s) ear nedl ncone()

method. Since we want to invoke the method for this object, we can do so just by writing:

ear nedl ncone = ear nedl ncone();

This statement assigns the return value of ear nedl ncone() , the method, to ear nedl ncone, theloca

variable. The compiler is able to distinguish between the method name and the variable name.

Barry Boone and Dave Mark Learn Java on the Macintosh 228

If we wanted to invoke a method for a different object, we would have had to prefix the method name with a
variable containing the object, followed by adot. However, ear nedl ncomre() isdefined for the same object whose
codeis currently executing (that is, the applet), and invoking a method in the same object can be done without the

need for specifying the object.

Invokingear nedl ncone() executesthe method the applet defined at the top of thislisting. ear nedl n-
come() accessesthe applet’ sinstance variableshour | yWage (which is 10) and hour sWor ked (which is 20),

performs the multiplication (to get 200) and returnsthe result. The result isthen displayed in the Java Output window.

Systemout.println("earned income = " + earnedl ncone);

Throughout thislisting, we only used one object, so it was straightforward to use instance variables and
instance methods. The next example shows how different objects can communicate with each other by accessing each

other’ sinstance variables and instance methods.

Employee2.u

For our second example, open up thefolder 09. 02 - enpl oyee 2 inthe Learn Java Projectsfolder. Open
Enmpl oyee2. p. Run the program, after making the project, by dropping the fileEnpl oyee2. ht ml onto the
Metrowerks Javaicon. Again, an empty applet will appear, but this time the Java Output window will display infor-

mation for three different employees:

Enpl oyee 1.

hourly wage = 10
hours worked = 20
earned i ncone = 200

Enpl oyee 2:

Barry Boone and Dave Mark Learn Java on the Macintosh 229

hourly wage = 18
hours worked = 38
earned i ncone = 684

Enpl oyee 3:

hourly wage = 12
hours worked = 52
earned i ncone = 624

The display indicates that each employee containsits own data. Now we' re beginning to use objects to their

full advantage! Let’s step through the source code and see how we did this.

Stepping Through the Source Code

Open up Enpl oyee?2. j ava either by double-clicking this file name in the project window or by double-clicking
thefileicon. There are two class definitionsin thisfile. Thefirst is for the applet, named Employee2. The second is

for aclass simply called Employee that maintains payroll information for a particular employee.

Thetop part of this code contains the applet. The applet defines three instance variables, which it will useto

track of three different employees.

public class Enpl oyee2 extends java. appl et. Appl et {

Enpl oyee el
Enpl oyee e2;
Enpl oyee e3;

Unlike in the previous exampl e, this applet does not maintain the specifics of an employee’ s payroll informa-
tion. Instead, the applet uses the Employee object to maintain thisinformation. Inthei ni t () method, the applet

creates three different employees and assigns each of the employee objects returned by the constructor to the three

Barry Boone and Dave Mark Learn Java on the Macintosh 230

instance variablesel, e2, and e3. The applet then assigns values to instance variables defined for the employee
objects. First, the applet sets the instance variables for the employee object assigned to €1 then, the applet sets the
instance variables for the employee object assigned to e2; finally, the applet sets the instance variables for the

employee object assigned to e 3.

public void init() {
el = new Enpl oyee();
el. hour| yWage = 10;
el. hour swrked = 20;

e2 = new Enpl oyee();
e2. hour | yWage = 18;
e2. hour swrked = 38;

e3 = new Enpl oyee();
e3. hour| yWage = 12;
e3. hour sWwrked = 52;

By using the variablesel, e2, and e3, the applet can reference the instance variables for specific employee

objects. Notice that the applet is setting the instance variables in an object different than itself!

Inthest art () method, the applet displays messagesindicating it is about to show the employees’ payroll
information. The applet then invokes the instance methoddi spl ayl nf o() , which is defined for the employee

objects. The applet first invokes this instance method for e 1, then for €2, and then for e3.

public void start() {
Systemout.println("");
System out. println("Enpl oyee 1:");
el. di splaylnfo();

Barry Boone and Dave Mark Learn Java on the Macintosh 231

Systemout.printIn("");
System out . println("Enpl oyee 2:");
e2.di splayl nfo();

Systemout.println("");
System out. println("Enpl oyee 3:");
e3. di splayl nfo();

Again, by prefixing el, e2, and e3 to the instance method, the applet can invoke an instance method for a

employee object.

The Employee class defines two instance variables and two instance methods. The instance variables are for
hour | yWage and hour sWor ked. Asyou saw earlier in the listing, the applet object sets these values for each of

the three employee objects it creates.

cl ass Enpl oyee {
i nt hourl yWage;
I nt hour sWor ked,;

Thefirst instance method for the Employee class provides the calculation for earned income. Thisinstance
method can simply access the instance variables directly, since the instance variables are defined in the same class as

this method.

i nt earnedl nconme() {
return hourl yWage * hour sWrked;
}

Barry Boone and Dave Mark Learn Java on the Macintosh 232

Thedi spl ayl nf o() method displays the instance variableshour | yWage and hour sWr ked, and

invokes the instance method ear nedl ncome() .

voi d displaylnfo() {
i nt earnedl ncone;

Systemout.println("hourly wage = " + hourl yWage);
Systemout. println("hours worked = " + hour sWr ked) ;

ear nedl ncone = ear nedl ncone();
Systemout.println("earned income = " + earnedl ncone);

Since each object maintainsits own data, invoking di spl ayl nf o() for el yields output according to the
values stored inel. Looking back, you can see that the applet stored 10inel’shour | yWage instance variable and
20inel’shour sWor ked instancevariable. When the appletinvokese1’sdi spl ayl nf o() instance method, el
starts by displaying its instance variables (10 and 20). When e 1 invokes its own instance methodear nedl n-
come(),earnedl ncone() accessed the sameinstance variables, 10 and 20, and returns 200. di spl ayl nf o()

then displays this result.

The same things occur for e2 and e 3. Each object responds to an instance method by using the valuesin its
own particular instance variables. So, when the applet invokese2’sdi spl ayl nf o() method, e2'sdataisdis-

played. When the applet invokese3’sdi spl ayl nf o() method, e3’sdatais displayed.

Barry Boone and Dave Mark Learn Java on the Macintosh 233

Employee3.u

For our third example, open up thefolder 09. 03 - enpl oyee 3 inthe Learn Java Projectsfolder. Open
Employee3.u and after making the project, run the program by dropping the file Enpl oyee3. ht ml onto the
Metrowerks Javaicon. Once more, an empty applet will appear. The Java Output window will look like what you saw

in the previous sample. That is, it will contain employee information that looks like this:

Enpl oyee 1:

hourly wage = 10
hours worked = 20
earned i ncone = 200

Enpl oyee 2:

hourly wage = 18
hours worked = 38
earned i ncone = 684

Enpl oyee 3:

hourly wage = 12
hours worked = 52
earned i ncone = 624

Let’sturn to the source code and see what’ s up.

Stepping Through the Source Code

Open up Enpl oyee3. j ava either by double-clicking this file name in the project window or by double-clicking

thefileicon.

The purpose of this code isto show how this can be used to refer to an object’ s own instance variables. The
code here is almost identical to the previous sample, except in the way the applet initializes the employees and in the

method provided by the Employee class to perform this initialization.

Barry Boone and Dave Mark Learn Java on the Macintosh 234

First, the applet now definesitsi ni t () method like this:

public void init() {
el = new Enpl oyee();
el.initialize(10, 20);

e2 = new Enpl oyee();
e2.initialize(18, 38);

e3 = new Enpl oyee();
ed.initialize(12, 52);

The Employee class definesthei ni ti al i ze() instance method to help the applet set the instance vari-

ablesin an employee object. Here' s how the employee'si ni ti al i ze() method begins:

void initialize(int hourlyWge, int hoursWrked) ({

Since the instance variables are also named hour | yWage and hour sWor ked, we need away to differen-

tiate between the instance variables and the parameters. The way we do thisis by using the variable namedt hi s.

t hi s. hourl ywage = hourl yWage;
thi s. hour swrked = hour sWr ked;

Barry Boone and Dave Mark Learn Java on the Macintosh 235

Now, the compiler will know which value to assign to which variable. By using t hi s, we can indicate that
the values in the parametershour | yWage and hour s\Wor ked should be assigned to the current object’ sinstance

variableshour | yWage and hour sWor ked, respectively.

Class Variables and Methods

Asdescribed so far, the purpose of classesisto create objects, just as the purpose of cookie cuttersis to create cook-
ies. However, like cookie cutters, classes also exist on their own. For example, you saw that classes stamp out objects,

asin Figure 9.6.

r— - — — = Bl
Employee class i
! ! create objects employee object
! instance variables its own unique values
| instance methods |
L - - — — |

employee object

its own unigque values

FIGURE 9. 6 Classes stamp out objects—but the classes have an existence, too!

While the emphasis of Figure 9.6 isthat the Employee class is used to create objects, the figure also shows
that the Employee class exists in its own right. We can ask an employee object for its data or invoke an employee

object’s method; what happens if we try to do thiskind of thing for the class?

Associating data and behavior with the class might make alot of sense in certain situations. For example,
what if we wanted to keep track of the number of employees in the company? That piece of data doesn’'t seem to

belong to any specific employee. The number of employees seemsto belong to all of the employees in genera—that

Barry Boone and Dave Mark Learn Java on the Macintosh 236

is, this data seems to belong with the class. For the SimpleDraw applet, the user could draw all the circles he or she
desired, and each circle had its own unique position and color. But all circleswere al the same size. Theradiusfor the
circle was a property of circlesin general, not of any particular circle. This value—the circle’s radius—might be bet-

ter kept in the Circle classitself in this case.

Asyou might expect, associating data and behavior with the classitself is possible to do in Java. A more
complete picture of aclass might be to say that while a class defines instance variables and instance methods, it also
can define class variables and class methods. Figure 9.7 extends Figure 9.6 to take into account possible class vari-

ables and class methods defined in the Employee class.

r— - — — = Bl
Employee class j
| | create objects employee object
|'instance variables its own unique values
| instance methods |
| class variables |
L cl_ass _meihogs _ 1 employee object
its own unique values

FIGURE 9. 7 Notice that the Employee class can a so define class variables and class methods in addition to

instance variables and instance methods.

Class Variables

Creating class variables and class methods is done almost identically to creating instance variables and instance meth-
ods. You write class variables and class methods the same way that you’ ve been doing, except that you start these def-
initions with the keyword st at i ¢c. Remember back in Chapter 6, before you learned about methods, how you used
the keyword st at i ¢ to define code that executed when a class was first loaded? Just as the keywordst at i ¢ was
used to associate a chunk of code with aclass, st at i ¢ can also be used to associate a variable or method with a

class.

Barry Boone and Dave Mark Learn Java on the Macintosh 237

For example, here' s how the Triangle class could define a class variable:

static int total Angles = 180;

Thisdefinesani nt variable calledt ot al Angl es. Sincewe' ve declared it asst at i ¢, it belongsto the
classitself. That is, t ot al Angl es does not belong to any particular object, though each object can till refer to it

just by using to its name.

By the Way

Noticethat we' ve alsoinitialized the variableto avalue. Y ou can do thiskind of thing with any type of variable, from
method variables to instance variables to class variables. Y ou can aways change the value later. As mentioned previ-
oudly, if you don’t initialize an instance variable or class variable, Java assigns a default valueto it. For i nt values,

this default valueis 0.

If wewereto definet ot al Angl es without the keyword st at i ¢, each triangle object would maintain a
separate valuefor t ot al Angl es (that is, without the keyword st at i ¢, you would have defined an instance vari-
able). Thefirst triangle you create could change itsinstance variable named t ot al Angl es to 190; the second trian-
gle could changeitsinstance variable namedt ot al Angl es to 170; neither triangl€e' sinstance variable would affect

the other.

By contrast, class variables are shared variables. That is, with aclass variable, thereis only one version of
it, and that version is maintained with the class. All objects belonging to a particular class can access that class's
st at i ¢ variables. These objects can aso change the value in the variable. In other words, ast at i ¢ variableis

shared among all the objects made from that class.

Barry Boone and Dave Mark Learn Java on the Macintosh 238

For example, you might imagine keeping track of the number of triangles you create in a Trig applet. Each
time you create a new triangle object, you might increment a class variable defined in the Triangle class. Aswith
instance variables, all you need to do to refer to the class variable is to use its name. For aclass variable callednum

Tri angl es, each triangle object could increment it like this:

numrri angl es++;

Thisisfinefor accessing the class variable in an object based on the class that defined it, but how would you
access the class variable from some other object—say from the applet? The applet could not refer tonunilr i an-
gl es, because nunilr i angl es isundefined for the applet. We solved this same kind of problem for instance vari-
ables by prefixing the variable name that held the object to the instance variable name, placing a dot between them.
But since we don't keep track of classes by using variables, how do we refer to the class variable for a particular

class?

The solution isto use the class name, rather than the name of avariable that refersto an object. For example,

to refer to the Triangl€e' s class variable nunilr i angl es, you can write:

Triangl e. numlri angl es;

Y ou can also use this notation if you need to distinguish between a class variable and alocal variable that

both share the same name. (Y ou’ll see an example of thisin the upcoming sample programs.)

Barry Boone and Dave Mark Learn Java on the Macintosh 239

Class Methods

Just as you can have class variables, you can also have class methods. Class methods are good for associating behav-

ior with a particular class.

For example, you might have defined an instance method calledaddAngl es() that adds up al the angles

in atriangle, perhaps to verify that they do indeed total 180 degrees. Y our method might look like this:

i nt addAngl es(int anglel, int angle2, int angle3) {
return anglel + angle2 + angl eS3;
}

Nothing in this method, as written, relies on a particular object. Noticing this, you might decide to associate
this method with the Triangle class. To do this, just prefix theword st at i ¢ infront of the method definition, and

voila, you have a class method.

static int addAngl es(int anglel, int angle2, int angle3) {
return anglel + angle2 + angl eS3;
}

Aswith instance methods, an object made from the class defining the class method can invoke the method in

the usual way:

int total = addAngl es(40, 60, 80);

Barry Boone and Dave Mark Learn Java on the Macintosh 240

Y ou can also prefix the class method with the class' s name to invoke it from other classes, from other

objects, or to disambiguate it from other methods with the same name.

int total = Triangl e.addAngl es(40, 60, 80);

In addition to your own class instance variables and class methods, Java provides alot of class methods and
classvariables for you to use. For example, Java defines the mathematical value of pi asaclassvariablein aclass
called Math. (Y ou would accessthisby writing Mat h. Pl .) Javadefinesawhole slew of colorsasclassvariablesina
class called Color. (You can access these by writing Col or . r ed, Col or . bl ue, and soon.) You'll learn about

these and others class variables and methods in upcoming chapters.

Class Methods Versus Instance Methods

Though class methods and instance methods might seem similar at first glance, there’sacrucial difference between
them: Class methods are not associated with aparticular object. Therefore, class methods are not good to use in situ-

ations where you want to access an object’s data.

Similarly, the Java-supplied variable named t hi s is not defined for class methods. That’ s because when a
class method is executing, there’ sno current object. Thet hi s variable only existswhen there’ s an object responding
to amethod invocation, which is not the situation with a class method—it’ s the class that’ s responding to the method,

not a particular object.

For example, the class method addAngl es() defined above would not be able to access a particular trian-
gle' sinstance variable just by naming it, such asreferringtosi del or eventot hi s. si del. However, al isnot
logt; if the class method can get accessto avariable that holds an object (say inavariable calledt 1), then this method

can till refertot 1. si del.

Barry Boone and Dave Mark Learn Java on the Macintosh 241

Sample Programs

We'll illustrate how to access class variables and class methods in two sample programs.

ClassVar.p

For our example of using a class variable to store data with a class, open up thefolder 09. 04 - vari abl e inthe
Learn Java Projectsfolder. Before running the applet, take alook at this definition for aclass variable and an

i ni t() method:

static int test = 20;

public void init() {
Systemout.println(“test “ + test);

int test = 30;

Systemout.println(“test = + test);
Systemout.println(“Classvar.test = “ + ClassVar.test);

Thisisthe classvariableandi ni t () method for the applet you' re about to run. What do you think each of
thesethree Syst em out . pri ntl n() statementswill display in the Java Output window? Y ou can see that the
class variable starts out as 20, but what happens after we define anew local variable with the same name but set to a
different value? Once you fedl you' ve made your best guess, double-click O assVar . |, make the project, then run
the program by dropping the file Ol assVar . ht ml onto the Metrowerks Javaicon. An empty applet will appear,

and the Java Output will contain three lines that looks like this:

test = 20

Barry Boone and Dave Mark Learn Java on the Macintosh 242

test = 30
ClassVar.test = 20

How’d you do? Did you guess correctly? Let’s see what caused these lines to be displayed.

Stepping Through the Source Code

Openup Cl assVar . j ava either by double-clicking this file namein the project window or by double-clicking the

fileicon. Thereis only one simple class definitionsin thisfile. Thisisfor an applet named ClassVar.

public class C assVar extends java. appl et. Appl et {

Thefirst thing this applet does is define a class variable.

static int test = 20;

Y ou can seethat it's a class variable because of the keyword st at i ¢. The applet initializes this class vari-

able to 20.

The applet then providesani ni t () method. This method first displays the value of its instance variable,

named t est . Thisiswhat caused the first line that read “test = 20” to appear in the Java Output window.

public void init() {
Systemout.println(“test = “ + test);

Barry Boone and Dave Mark Learn Java on the Macintosh 243

After thisis displayed, the method defines alocal variable called t est —the same name as the class vari-
able! It then writes the variable test to the Java Output window. What gets displayed isthe local variable, so “test =

30" appears in the Java Output window.

int test = 30;

Systemout.println(“test =" + test);

Thisbrings up an interesting point. If parameters or local variableswith the same name as instance variables
or class variables are used in amethod, it’ s the parameters and local variablesthat get preference. We can still access
the class variable, however, by prefixing the class namein front of the class variable name and separating the two with

adot. In our case, we can do this by writing Cl assVar . t est .

Systemout.println(“Classvar.test = “ + ClassVar.test);

Thistime, the class variable appears in the Java Output window.

ClassMethod.p

For an example of a class method, open up thefolder 09. 05 - et hod in the Learn Java Projectsfolder. Open
Cl assMet hod. p and make the project. Run the program by dropping the fileCl assMet hod. ht i onto the

Metrowerks Javaicon. An empty applet will appear, and the Java Output window will contain the line:

Barry Boone and Dave Mark Learn Java on the Macintosh 244

3 circles were created.

Let’'s see what made this happen.

Stepping Through the Source Code

Openupd assMet hod. j ava either by double-clicking thisfile namein the project window or by double-clicking
thefileicon. The applet starts by defining three local variablesin thei ni t () method to hold circle objects. (The

Circle classis defined in thisfile after the applet class.)

public class C assMethod extends java. appl et. Appl et {

public void init() {
Circle cl1, c2, c3;

The applet then creates three circle objects. Each time, it increments a class variable defined by the Circle

class.

cl = new Crcle();
Crcle.nunCircl es++;

c2 = new Circle();
Crcle.nunCircl es++;

c3 = new Crcle();
Crcle.nunCircl es++;

Barry Boone and Dave Mark Learn Java on the Macintosh 245

After the three circles are created, this code invokes a class method defined by the Circle class.

Circle.displayNunCircles();

Notice that for the class variable nunCi r cl es and class method di spl ayNunCi r cl es() , the applet
had to prefix the class name onto the variable and method name, since this variable and method were not defined for

the applet but for a different class (that is, for class Circle).

The Circle class starts by defining nunCi r cl es asaclassvariable.

class Circle {

static int nunCircles;

The class then defines the class method called di spl ayNunTi r ¢l es() . This method can access the
class variable named nunCi r cl es directly, without the need for prefixingnunCi r cl es with Gi r cl e and adot

(though that would have worked, too).

static void displayNunCircles() {
Systemout.println(nunCircles + " circles were created.");
}

Barry Boone and Dave Mark Learn Java on the Macintosh 246

This class method can access the class variable by name because the class variable and the class method are
both defined in the same class. Since the applet incremented the class variable nuntCi r ¢l es threetimes, thisline

prints out “3 circles were created.”

Review

So now that you'’ ve explored objects, you should have a sense for what objects are used for and how to store data and
define behavior for your own objects. Variables were first discussed in Chapter 6, and now you’ ve seen how to use
them in your objects. Methods were first discussed in Chapter 7, and now you’ ve seen how to use methodsin your
objects, aswell. You learned about instance variables and instance methods, how to define them and use them, and

about a special variable supplied by Java calledt hi s.

Y ou’ ve also seen that classes themsel ves can define data and behavior. Thisis a good technique to use when
you have data or behavior that belongsto all of the objects of a certain classin general and does not really seem to
belong to any particular object. Class methods are different from instance methods, however, in that they are not asso-

ciated with a particular object and so do not have easy access to a particular object’ s instance variables.

What's Next?

With abasic understanding of objects, it’stime to look at what classes Java provides for you. Y ou can create objects
out of Java s classes and use these objects in your own programs. Java organizesits classes into packages. Chapter 10

takes you on a brief tour of these packges and shows you how you can create packages of your own.

Chapter 10 also discusses a concept central to object-oriented languages such as Java: Inheritance. By using

inheritance, you'll see how you can mix in your own custom data and behavior to extend the default behavior of the

Barry Boone and Dave Mark Learn Java on the Macintosh 247

classes what Java provides for you. You'll also learn how you can use inheritance to organize your own classes into

hierarchies.

Barry Boone and Dave Mark Learn Java on the Macintosh 248

CHAPTER 10 Java's Classssand
|nheritance

This chapter delves into one of the most powerful features of object-oriented programming. This feature isinherit-
ance, and it allows you to start with aclassthat’s already fully functioning and create your own class by extending it,

adding to its capabilities.

Since inheritance involves working with a predefined set of classes, we'll also take a better look at what
classes Java supplies for you already and how you can use these classes in your own applets. In particular, we'll ook

at these classes with an eye towards what it means to inherit from the classes that Java provides.

What Is Inheritance?

We started programming in Chapter 5 by defining the simplest possible applet class:

public class M/Appl et extends java.l ang. Appl et {
}

We found that we could compile and run this applet just fine, even though it didn’t appear to do much. Or did
it? Actualy, this applet had some behavior of its own. Y ou could resize the applet, for example. And the applet cer-
tainly started just fine. Something was responding thei ni t () and st art () methodsthat the Applet Viewer

invoked on this applet, even if we didn’t write any code ourselves to respond to these methods.

Barry Boone and Dave Mark Learn Java on the Macintosh 249

Where did this behavior come from? We certainly didn’t supply any behavior: Our class definition was
empty. What actually happened was that our applet’s default behavior came from Java s Applet class. Whenever we
create our own applet, what we are really doing is starting with Java's Applet class as a base and adding to it. This

ideais depicted in Figure 10.1.

additional code
added to the Applet class

Applet class

FIGURE 10. 1 Building on the Applet class supplied by Java.

What is this combination of the Applet class and additional code? Taken together, thisisanew class, an
extension to the Applet class, which we' ve called MyApplet in the code snippet above. The class MyApplet can do
everything that the Applet class can do, plus any additional code we write. For example, if we provideani ni t ()
method for MyApplet that displays “Frech Roast” in the Java Output window, then MyApplet behaves just like the

Applet class, but it also does more: It displays “French Roast” when the applet initializes itself.

Why Is Inheritance Good?

Asit turns out, Java allows you to extend any class, not just the Applet class. This means you can build your applica-
tion by extending what Java provides. The advantage of thisisthat you can start with something that already works.

In fact, Java's classes already work great, and you can build on Java' s classes to write your own.

For example, perhaps you want to keep track of a collection of datain a particular way. Well, Java already
supplies aclass that keeps track of a collection of data (this classis called a Vector, and you' Il work with Vectorsin
Chapter 12). If you find that one of Java's classes is almost good enough for what you want, but you want it to do

something more than it does by default, you can build on this class, extend it, and add your own behavior to it.

Barry Boone and Dave Mark Learn Java on the Macintosh 250

As another example, maybe you want to provide behavior that performs arithmetic with imaginary numbers,
which, taken together with non-imaginary numbers, are also called complex numbers. If you're not familiar with the
idea of complex or imaginary numbers, all you need to know to understand this example is that they are extensionsto
theinteger and fractional numbers you’ re already familiar with. Java provides classes that provides behavior for num-
bers (one of these classesis called Integer). If you want to extend the behavior for this class, you can add your extra

code to the Integer class that allows you to work with complex numbers.

For athird example, perhaps you want to work with dates based on the Jewish or Chinese calendars. Java
aready provides a Date class. Rather than writing al your own date functionality, you can extend what Java already

provides by writing your own code to work with other calendar systems.

These classes, and many more, can save you al sorts of time and effort, because if you write your own
classes you can start with a base level of behavior and then add to it. In other words, you don’t have to start from

scratch. Thisisillustrated in Figure 10.2, which makes the concept in Figure 10.1 more generic.

additional code
added to a base class

abase class

FIGURE 10. 2 Y ou can extend a base class with your own additional code.

How Inheritance Works

Asyou know, classes define variables and methods for their instances. For example, let’s say you have aclass called

Dwelling, defined like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 251

class Dwelling {
i nt squar eFeet;
voi d knock() {
System out . printl n(“Knock, knock”);
}

This class defines an instance variable called squar eFeet . If you invoke adwelling object’ sknock()

method, it will display “Knock, knock” in the Java Output window. We' ve seen examples of thiskind of thing already.

Now, what happens when we want to define a class called House? Maybe our house hasabool ean
instance variable to indicate whether it has afireplace or not. Do we have to start from scratch and repeat ourselves,

like this:

cl ass House {
i nt squar eFeet;
bool ean hasFirePl ace;
voi d knock() {
System out . printl n(“Knock, knock”);
}

This seems like awaste of code to repeat this definition, and in Javait would be. Since the House classis
just an extesion to the Dwelling class, you can just extend the Dwelling class and add the additional features that

make it a House class. Instead of what we wrote above, we could write our House class like this:

cl ass House extends Dwelling {
bool ean hasFirePl ace;
}

Barry Boone and Dave Mark Learn Java on the Macintosh 252

Very easy! Now house objects can do everything that dwelling objects can do, plus houses also know if

they have afireplace or not. For example, if we have the above class definitions, we can write some code like this:

House h = new House();
h. knock() ;

and the words “Knock, knock” will appear in the Java Output window. How does this happen? When we

invoke the knock() method on the house object, Javafirst looks in the house object for this code. However, it

doesn’'t find it there. So it looks in its super class—the class that was extended to make the House class—which is

the Dwelling class. And there it isl The Dwelling class defines the instance method named knock() . Java

executes this method, and “Knock, knock” appears in the Java Output window. Figure 10.3 illustrates this sequence

of events.

code for the
Dwelling class

knock() {
}

3) knock() isfoundin
Dwelling and its code is
executed

2) knock() not found in House,
look for it in Dwelling

code for the
House class

+¢—— 1) invokeknock()

Barry Boone and Dave Mark Learn Java on the Macintosh 253

FIGURE 10. 3 Method invocations get passed up the class hierar chy (which is the structure of subclasses and

superclasses) until one of the classes provides the appropriate method.

This also implies that we can access the variable squar eFeet by using an instance of class House. We

could write:

House h = new House();
h. squar eFeet = 2200;

The House class doesn’t definesquar eFeet , of course; thisinstance variable is defined by Dwelling. But
House inherits everything that Dwelling has. We can therefore set the house' ssquar eFeet variable through code

like that shown above.

Some Terminology

The picture that most devel opers envision for this relationship between classes like Dwelling and House is that

Dwelling is at the top level, and House descends from Dwelling. Thisimage is shown in Figure 10.4.

Dwelling

House

FIGURE 10. 4 A simple diagram programmers often use to convey a subclass and superclass relationship.

Barry Boone and Dave Mark Learn Java on the Macintosh 254

Houseis said to be a subclass of Dwelling, and Dwelling is a super class of House. House is also a descen-
dent of Dwelling, and Dwelling is an ancestor of House. This whole process of extending classesis called inherit-
ance. House inherits from Dwelling. (Asyou can tell, some of this terminology comes from the idea of genetic
inheritance, where children take on the characterstics of their parents.) That is, House inherits al the traits of Dwell-
ing—all the methods and variables. House then can add some new methods and variables of its own that are com-
pletely unknown to the Dwelling class. (Notice that if we went back and added a new variable or method to the
Dwelling class and House still extended Dwelling, then House would also acquire the new variable or method in

Dwelling. Again, the House class does everything that Dwelling does, plus its own custom code.)

When to Use Inheritance

There are two great uses for inheritance that are closely related. First, you can use inheritance to extend a base set of
working code to make it do alittle bit more. Second, you can organize your classes into hierarchies so that similar

classes can share as much code as possible.

Extending Classes

One of the most obvious examples of extending a classin Javais extending Java' s Applet class. By extending this
class, you can write applets that do things other than just display ablank window! Every applet around starts with the
base behavior of the Applet classand builds on it to create anew, custom class. The complexity of the applet you want

to create determines how much new code you need to add to Java' s Applet class.

Javaalso defines a class called Object. This class provides some very basic behavior, such as the ability to
create new objects and the ability to see if the object is equal to another object. By extending this base Object class,
you gain acore level of behavior that you'll want all of your own objects to have, aswell. (We'll discuss the Object

classand itsrolein more detail in a few more pages.)

Barry Boone and Dave Mark Learn Java on the Macintosh 255

Finding Hierarchies

Sometimes, your classes might grow out of classes you' ve aready defined. For example, perhaps you have defined a

class called Square, like this:

cl ass Square {
static int dianeter = 20;

Col or col or;
i nt X

i nt Y;
void draw) {

Systemout.println(“draw the square”);

}

The Square class defines a class variable called di anet er . It definesinstance variables to maintain a color
for the square, as well as a screen location for where the square should be drawn. The Square class defines a method
for drawing the square. For now, this method just writes amessage to the Java Output window. (In Chapter 11, you'll

see how to actually draw a sguare on the screen.)

Perhaps at some time later in your application’s development, you a so find you need a Circle class, which

you want to define like this:

class Circle {
static int dianeter = 20;

Col or col or;
i nt X;
I nt Y;

Barry Boone and Dave Mark Learn Java on the Macintosh 256

void draw) {
Systemout.println(“draw the circle”);
}

It seems like there' s alot of overlap here. Both shapes define instance variables that keeps track of their cur-
rent color and screen location. They also both define methods named dr aw() , though each shape type implements
draw() differently. Isthere some way we could combine these two classes into a common class, and then extend
that common class to implement a square, and also extend the common class to implement a circle? There certainly

is; thisiswhat inheritance is all about! Let's create a class called Shape that groups together the common variables.

cl ass Shape {
static int dianeter = 20;

Col or col or;
int Xx;
int y;

Armed with the Shape class, we can now create the Circle and Square classes alittle more compactly. Here's

how we would create each:

cl ass Square extends Shape {
void draw) {
Systemout.println(“draw the square”);
}

}

class Circle extends Shape {

Barry Boone and Dave Mark Learn Java on the Macintosh 257

void draw) {
Systemout.println(“draw the circle”);
}

Gone are the instance variables duplicated in both the Square and the Circle class definitions. Now all we
have to do is extend the Shape class and implement dr aw() . The Square has all the methods and variables of class
Shape, plus any variables and methods it defines on its own. The same goes for the Circle class. In the example here,
the Square and the Circleinherit the variablescol or, x, andy. The Square and Circle each make themselves unique

by drawing in different ways.

Creating class hierarchies is a powerful approach for developing your own software. If at some later time
you need to create rectangles, ellipses, pentagons, and other shapes, you can simply extend the Shape class, and
much of your work is done for you. Just as extending Java' s classes can speed up your application devel opment,

extending your own classes can also speed up your application development.

Advanced Inheritance Topics

So far in this chapter we' ve covered the basics of inheritance. But the power of inheritance doesn’t end here. This sec-
tion describes a few more features of inheritance that help you control how classes and subclasses interact with each
other. For example, can you stop a subclass from inheriting a variable or method? Can you restrict access so only sub-

classes can access a variable or method? The answer to both questionsis yes, and this section shows you how.

Barry Boone and Dave Mark Learn Java on the Macintosh 258

Private Variables and Methods

If you define an instance variable in a class definition, and you want to ensure that only methods defined by that class
can access that variable, you can define the variable using the keyword pr i vat e. For example, you might define an

Employee classlike this:

cl ass Enpl oyee {
private String ssn;
i nt enpl oyeeNunber ;

Thiswould store the employee’ s socia security number inapr i vat e variable, but it would make available
adifferent employee number in afield that does not have this restriction. Now, the only methods that can access the
instance variable ssn are those defined by the Employee class. For example, if we make an instance of class

employeg, likethis:

Enpl oyee e = new Enpl oyee();

we cannot get to the variable ssn by writing e. ssn. Only the employeeitself can do this. For example, we
might write an access method for the social security number and put it into the Employee class. This new access

method might rely on abool ean value that indicates whether the ssn should be made available or not.

cl ass Enpl oyee {
private String ssn;
private bool ean makeAvai l abl e;
i nt enpl oyeeNunber ;

Barry Boone and Dave Mark Learn Java on the Macintosh 259

String getSsn() {
I f (makeAvai l abl e)
return ssn;
el se
return null;

Now other objects can get to the ssn viathe getSsn() method, as long as the employee object does not have
itsmakeAvai | abl e variable set tof al se (of course, we'd still need some way to set the value of nakeAvai | -

abl e, which we've declared aspr i vat e here).

Suppose we created a subclass of Employee, like this:

cl ass RetiredEnpl oyee extends Enpl oyee {
Dat e retirenentDat e;
}

Even instances of RetiredEmployee could not accessthe variable ssn. Using the keyword pr i vat e really

does make it private to the class defining it and stops this variable from being inherited by subclasses.

It salso possible to make amethod pr i vat e. Methods that arepr i vat e can only be invoked by methods

defined by that same class.

Barry Boone and Dave Mark Learn Java on the Macintosh 260

Protected Variables and Methods

In the example just given, suppose we thought it was okay if subclasses have accessto ssn, but not other objectsin

general. Java provides away to do this through the keyword pr ot ect ed. If avariable or method ispr ot ect ed,

then any descendant can access it, but other objectsin other parts of the class hierarchy cannot. So, our subclass of

Employee called RetiredEmployee could accessssn in the Employee class and could invokepr ot ect ed methods

defined in the Employee class. So now inheritance is still occuring, but accessis restricted to a class's descendants.

Abstract Variables and Methods

Back in the example with the classes Shape, Circle, and Rectangle, we defined adr aw() method for the Circle and

Rectangle, but we left it out of the Shape class. Unfortunately, taking this route leads usinto a problem. Consider this

slightly simpler version of the classes Shape, Circle, and Square:

cl ass Shape {

int Xx;
int vy;
}
cl ass Square extends Shape {
void draw) {
Systemout.println(“draw the square”);
}
}
class Circle extends Shape {
void draw) {
Systemout.println(“draw the circle”);
}
}

Barry Boone and Dave Mark Learn Java on the Macintosh

261

One of the great advantages of creating ahierarchy likethisisthat we don’t need to define different variables

to hold different shape types. That is, instead of defining the variables:

Square s;
Circle c;

To hold asquare and a circle, depending on what we need, we can just define a variable that holds a shape:

Shape s;

and use this variable with a circle object or a square object, as appropriate. However, with our variable s
defined to be a Shape instance, we run into a problem if we want to invoke thedr aw() method in the circle or
square. That's because the Shape class does not definedr aw() . For example, we can write the following statement

without any problem:

Shape s = new Circle();

However, if wetried to then invoke the circle’'sdr aw() method, like this:

s.draw);

Barry Boone and Dave Mark Learn Java on the Macintosh 262

the compiler would complain thatdr aw() isnot defined by the shape! We don’t want to actually provide a
dr aw() method for the shape. We just want the Shape’ s subclasses, Circle and Square, to implement dr aw() . What

can we do?

What we can do isindicate in the Shape class that the subclasses will, in fact, implement thisdr aw()
method, even though it’s not implemented in class Shape. The way we do that is by declaring the method, without
actually providing any code for the method, and by using the keyword abst r act . Our new Shape class would look

like this:

abstract class Shape {
int X;
int vy,

abstract void draw);

Noticethat we don’t provide any behavior for dr aw() . What'smore, we' ve added theabst r act keyword
totheclassitself! Therulein Javaisthat if the class definesan abst r act method, it can never be instantiated. That

means the class itself must be abst r act . Only subclasses implementing the dr aw() method can be instantiated.

Definition

Classes that can be instantiated are sometimes said to be concr ete, which differentiates them from abstr act classes,

which cannot be instantiated.

Now we' ve solved the problem of using the variable s to hold acircle and using s to invoke the circle's
dr aw() method. The method isindeed defined for the Shape; it just doesn’'t have any behavior associated with it.

Instead, the behavior is supplied by the subclasses.

Barry Boone and Dave Mark Learn Java on the Macintosh 263

Overriding Methods

Let’'s go back to our example of a Dwelling and a House class. Y ou might recall these classes looked like this:

class Dwel ling {
I nt squar eFeet ;
voi d knock() {
System out . printl n(“Knock, knock”);
}

}

cl ass House extends Dwel ling {
bool ean hasFirePl ace;
}

If we created an instance of class House and invoked itsknock() method, like this:

House h = new House();
h. knock() ;

thewords“Knock, knock” would appear in the Java Output window. However, what if we wanted to provide
different behavior for the house? What if we wanted invoking the knock () method to ring the doorbell, and say,

“Ding dong,” instead? What we would need to do isoverridetheknock() method.

A subclass can override a method to change the behavior of the method. For example, here’ s how we could

define our House class if we wanted different behavior than the Dwelling class:

cl ass House extends Dwelling {

Barry Boone and Dave Mark Learn Java on the Macintosh 264

bool ean hasFirePl ace;
voi d knock() {

Systemout. println(*“D ng dong”);
}

Now, when you invoked the house' sknock () method, it would write “Ding dong” to the Java Output win-

dow. However, instances of Dwelling would still respond to knock() by displaying “Knock, knock.”

A Special Variable for Inheritance: super

Sometimes, you want to add to the behavior you inherit from your superclass, not change it completely. |s there any
way we can perform the Dwelling'sknock () behavior in conjunction with our House' sknock() behavior?You
can do just such athing by explicitly passing the method up the class hierarchy. This makes your superclass' s method
execute in addition to your own. For example, if we overrode knock() in the House class, the words “ Ding dong”
would appear in the Java Output window. If we then passed knock (') to our superclass, the Dwelling'sknock ()
method would execute, and the words “Knock, knock” would also appear in the Java Output window. The way we

refer to our superclassis by using the word super . Here's how we could rewrite the House class to do this:

cl ass House extends Dwelling {
bool ean hasFi rePl ace;
voi d knock() {
Systemout.println(“D ng dong”);
super . knock();

Using thesuper variableto refer to our superclassis similar to using thet hi s variableto refer to our-

selves. This relationship is shown in Figure 10.5.

Barry Boone and Dave Mark Learn Java on the Macintosh 265

super

this

FIGURE 10. 5 The variable namedt hi s represents the current object. The variable named super representsits

superclass.

Testing Objects

We mentioned that a variable defined as holding instances of a certain class can actually hold instances of that class's
subclasses, as well. For example, in our example with the classes Shape, Circle, and Square, we could define a vari-

able that could hold any of these by writing:

Shape s;

s could now hold an instance of class Shape or an instance of one of class Shape's subclasses—Circle and

Square. A variable declared like this, however:

Circle c;

could only hold acircle. It would not be legal to assign ¢ an instance of class Shape or Square.

Barry Boone and Dave Mark Learn Java on the Macintosh 266

Sinceitispossiblefor avariablelike s to hold different types of objects, Java provides an operator to test the

object to see what classit inherits from. This operator is called i nst anceof andisused in the following format:

obj ect instanceof C assNane

where obj ect isavariable containing your object, and Cl assNane isthe name of the classto seeif itis
an instance of. i nst anceof will returnt r ue if the object is an instance of the supplied class name. It will also
returnt r ue if the object is an instance of one of its subclasses. For example, to seeif an abject is an instance of a

Circle, you can write:

if (myQbject instanceof Circle)
Systemout.println(“myQbject is an instance of Circle”);

Sincei nst anceof evaluatestot r ue if the object is an instance of one of the class's subclasses, if my O

bj ect redlyisacircle i nst anceof will also evaluatetot r ue if you write:

myQbj ect i nstanceof Shape

Barry Boone and Dave Mark Learn Java on the Macintosh 267

Class Object

You've aready seen that you can create your own hierarchies of classes, and you' ve read that Java provides lots of

classes that you can usein your own applets. Now to combine these two ideas: Java also provides entire class hierar-

chiesthat describe its own classes. These hierarchies of pre-existing classes provide akind of scaffolding, or frame-

wor k, on which you can build your own applets.

Javadefines aclass called Object, and in Java s class framework, the role of Java s Object classiskey. In

fact, Java s Object class sits at the very top of Java' s entire class framework. Every one of Java's classes can claim

class Object asits ancestor. Figure 10.6 shows a partia class hierarchy of Java's class framework, with class Object

sitting at the root of everything.

Object

otherch asses
you haven't
|learned about
yet

Applet

FIGURE 10. 6 This diagram shows a simplified version of Java s class hierarchy. Only some of the classes you

learned about so far are represented here. Still, you can see how all of these classes are descendents of class

Object.

Math

System

Date

Why is Java s class Object so important? Because it provides the minimum level of behavior that all objects

in Javamust provide. Whether you know it or not, you’ ve been creating subclasses of class Object aready! Of course,

Barry Boone and Dave Mark

Learn Java on the Macintosh

268

since you' re creating subclasses of class Applet, your Applet subclasses, such as MyApplet, ultimately inherit from

class Object aswell, as shown in Figure 10.7.

Object

Applet

MyAppl

FIGURE 10. 7 Aswe' ve written previously, MyApplet is a subclass of Applet. Applet can also trace its ancestry

back to class Object (as can al classes).

Even aclass like Circle, which we defined before like this:

class Circle {
Col or color;
int X;
int vy,

inherits from class Object! How is this possible? We didn’t indicate that Circle extends class Object. None-

theless, Java turns such class definitions into:

class Circle extends Object{
Col or col or;

Barry Boone and Dave Mark Learn Java on the Macintosh 269

int Xx;
int y;

Java does this for you because you must provide the behavior that’ sin class Object. Otherwise, you' d never
be able to create new objects, and Java would not be able to manage the objects in your computer’s memory. This
means that there' s no escaping Java' s class framework. Y ou will aways plug in somewhere. Either you will explicitly

inherit from one of Java's classes, or Javawill provide Object as your superclass for you.

By the Way

Since all of your own classes, aswell as Java's, can trace their ancestry back to class Object, evaluating this piece of

code:

myQbj ect i nstanceof Object

will dways evaluatetot r ue.

Now that we' velooked at inheritance, and now that you have a sense that Java provides classesfor you, let’s
look at how Java organizesits classes. Rather than just provide you with abig collection of classes, Java collectsits

classesinto groups, called packages.

Barry Boone and Dave Mark Learn Java on the Macintosh 270

Packages

WEe ve even been using two of Java s packages so far, though we haven't explained this yet. Let’s take amoment to
understand how Java organizes its classes into packages and how we can use these packages ourselves. Then you'll

see how we' ve been using Java s packages all along.

Javagroups its many classes into six basic packages. Each package is focused on a particular feature set of
Java. There' s a package for developing user interfaces, there' s a package for communicating over the Internet, and so

on. We'll look at these different packages in this section.

Using Packages

Classes within the same package can access each other’ s variables and methods, as long as those variables and meth-
ods are not defined using the keywordspr i vat e or pr ot ect ed, which changesthe rules, asyou’ve learned.

Y ou've aready seen how these restrict access to variables and methods.

When you create anew applet, all of the classes that are defined as part of that applet are placed in the same,
default package. However, this default package is separate from Java s packages. The easiest way to use aclassthat’s
not in the same package as your own isto import it first. For example, if you want to use the Date class, whichisin a

package called util, you can import it like this:

i mport java.util. Date;

Thisline of code says that you will use aclass called Date, which islocated in Java's util package.

Barry Boone and Dave Mark Learn Java on the Macintosh 271

The other way to refer to a class that’ s not in the same package is to spell out exactly which package that
class belongsto. That' swhat we' ve been doing so far with the Applet class. We' ve been subclassing Applet, but we

can't just say:

public class M/Appl et extends Appl et

unless we first import the Applet class or tell Java how to find the Applet class. That's why we' ve been writ-

ing, instead:

public class M/Appl et extends java. appl et. Appl et

Thistells Javaexactly which packagetolook in to find the Applet class (namely, the package defined by Java

called applet). If we wanted to, we could instead write:

I nport j ava. appl et. Appl et ;
public class M/Appl et extends Appl et

Y ou might have noticed that we have al so been using aclass called System. We' ve used this class extensively
to write messages to the Java Output window. The reason we did not have to import System isthat it belongsto a
package called lang. Java s entire lang package isimported for you automatically. This package contains many
classes that support Java s basic features, so Javaimports al the classes in this package without you needing to ask

for them.

Barry Boone and Dave Mark Learn Java on the Macintosh 272

If you want to import al the classesin a package explicitly (and you often do), you can use awildcard nota-
tion by writing a asterisk (*). For example, there's a package called util that provides some useful utility classes. To

import all of these for use by your program, you can write:

i mport java.util.*;

Note that al of your i nport statements must come at the top of your sourcefile.

public Classes

The variables and methodsin classes, and the classesthemselves, are, by default, only available to other classesin the
same package. If you want to make a class, variable, or method available to classes in other packages, you need to
declare your class, variable, or method aspubl i c. Thisiswhy you needed to declare your applet classas publ i c:
So that Java's classes, defined in a different package, could invoke your applet’ s methods. Thisiswhy the life-cycle
methodsof i nit (),start(),stop(),anddestroy() weredeclared aspubl i c. Thiswas done so Java

could invoke these methods from the classesin its own packages.

What Classes are In Java's Packages?

Java defines six major packages. Each package contains classes that provide a broad area of functionality. These

packages are:

1. lang The lang package contains classes that provide basic behavior for your applets and for
Javaitself. These classesinclude Object, which isat theroot of all class hierarchies, and System, which allowsyou to
write to the standard output. There are many other classesin this package as well, and you'll be introduced to alot of

them as you progress through this book.

Barry Boone and Dave Mark Learn Java on the Macintosh 273

2. awt The awt package contains classes that help you create a user interface. This package was
named awt because thisis an acronym for “abstract windowstoolkit.” The ideabehind awindowstoolkit isthat it pro-
vides away to create user interfaces components, such as buttons, text fields, and menus, and containers which orga-
nize these components. These components allow users to interact with your applet in a graphical way (that is, using
the mouse, by pointing and clicking), and they allow your applet to run in agraphical environment (such asthe Mac
or Windows). Theword “abstract” is meant to explain that the classesin this package are not specific to any particular
platform. That is, if you create a button on the Mac using the classes in this package, you can create a button for Win-
dows NT using the same classesin this package. We'll touch more on this package in the next chapter, where we'll

start creating user interfaces.

3.io Theio package is used for receiving input and sending output. For example, you can use
the classes in this package to read data coming in over the Internet. Y ou can also use the classesin this package to

access files on your computer’s hard drive.

4. net This package contains some very sophisticated classes that allow you to write Internet
applications with ease. For example, there are classes for dealing with Universal Resource Locators (URLS), sockets

to allow communication between a client and a server over the Internet, and other Internet and networking functions.

5. util The util package contains a bunch of miscellaneous classes that help with avariety of pro-
gramming tasks. There'saclass that is useful for working with dates, a class for mathematics features, such as trigo-

nometric calculations, a class for generating random numbers, and more.

6. applet The only class defined in this package is the Applet class. We'll continue to explore the

features of this class in upcoming chapters.

All of these packages and the classes inside them are available for you to use as you see fit. Y ou might even

want to use these classes just for the data and methods they define. For example, the Math class defines avalue for pi

Barry Boone and Dave Mark Learn Java on the Macintosh 274

that you might want to use at some point. This variable, named PI, isaclass variable. How do you think you access

it? You got it:

Mat h. Pl

Thisjust givesyou ataste of what' savailable. Y ou' [l see many more examples of using Java s classesasyou

forge ahead.

Sample Programs

The two sample programs in this section explore overriding methods, accessing the code in an object’ s superclass,

and using keywords to control access to variables and methods in class hierarchies.

Triangle.u

For our first example, let’s return to our friend the triangle. Open thefolder 10. 01 - tri angl e in Learn Java
Projects. Open Tr i angl e. y, make the project, then run the applet by dropping Tr i angl e. ht M on the Metrow-

erks Javaicon. A number of messages will appear in the Java Output window, as shown in Figure 10.8.

The triangles =say:
t1 == t27 true

t1 == t37? false
The object=s =ay:
t1 == 127 fal=se

t1 == 137 false

FIGURE 10. 8 The messages written by the TriangleApplet to the Java Output window.

Barry Boone and Dave Mark Learn Java on the Macintosh 275

These messages relate to three triangles that we created in the code. At first, we checked to seeif triangle 1
was equal to triangle 2 and triangle 3 by asking the triangle itself. Next, we checked to seeif triangle 1 was equal to
triangle 2 and triangle 3 by asking the triangle’ s superclass, the object. Notice the difference in the output. The trian-
glesreported that triangle 1 was equal to triangle 2, while the objects reported they were different. Let’s check out the

source code and see why this occurred.

Stepping Through the Source

The source code, located in Tr i angl eAppl et . j ava, definestwo classes. The first isan applet, the second isa

classcaled Triangle. Let’slook at the Triangle classfirst.

The Triangle class starts by defining instance variables for atriangle’ s base and height.

class Triangle {
i nt base;
i nt hei ght;

The Triangle class then overrides amethod that’ s defined by class Object. Thismethod iscalled equal s() ,
and it tests to see whether the object passed in as a parameter is equal to the object responding to this method invoca
tion. If the object passed inisequal to the triangle, thismethod returnst r ue. Otherwise, thismethod returnsf al se.
Sinceequal s() isdefined asapubl i ¢ method in the Object class, we've also got to declare this method as pub-

I i ¢ hereinthe Triangle class. Theequal s() method that the Triangle class defines starts by defining avariable

caledt .

publ i ¢ bool ean equal s(Obj ect obj) {
Triangle t;

Barry Boone and Dave Mark Learn Java on the Macintosh 276

It then tests to see whether obj , the parameter passed in, is an instance of class Triangle.

if (obj instanceof Triangle) {

If this parameter is atriangle, then we can go ahead and perform the special triangle test. First, in order to
work with the parameter as atriangle, we have to get it into a variable that we declared as a Triangle. We had to
declareit asan Object in the parameter list, because that’s how equal s() isdefined in class Object, and we're over-
riding this method. We can’t change the method’ s signature (it's name and parameters), or Javawill think we're defin-
ing a new method. But now we need a Triangle. The way we get obj into avariable for trianglesis by casting.

Casting is explained further in Chapter 12. Suffice it to say that we can assign thisto a variable of type Triangle by

writing:

t = (Triangle)obj;

Once Java recognizes this object as atriangle, we can acquire its base and height, which are instance vari-
ables of atriangle. If these are equal to the current object’ s base and height, then we'll consider these two objects to

be equal, and we'll returnt r ue.

i f (t.base == base && t. hei ght == height)
return true;

Barry Boone and Dave Mark Learn Java on the Macintosh 277

For all other cases—that is, if the object is not an instance of class Triangle, or the base and height variables

were not equal—we' Il indicate that these two triangles are not equal by returning f al se.

return fal se;

The Triangle class a so defines its own instance method called obj ect Equal s() . The mission for this
method is to see what would have happened if we had not overriddenequal s() , but instead had left equal s()
alone and let the Object class respond to this method using its own code. We can get to the Object’sequal s()
method by using the variable named super . obj ect Equal s() returnsthe result of the Object’'sequal s()

method.

bool ean obj ect Equal s(Obj ect obj) {
return super.equal s(obj);
}

Now let’ sturn our attention to the appl et and see how the applet usesthis Triangle class. The applet overrides
thei ni t () method and defines three triangles. Thefirst and second triangle are set to the same base and height; the

third triangle holds a different base and height.

public class Triangl eAppl et extends java. appl et. Appl et {

public void init() {

Barry Boone and Dave Mark Learn Java on the Macintosh 278

Triangle t1 = new Triangle();
t1l. base = 10;
t 1. hei ght = 20;

Triangle t2 = new Triangle();
t2. base = 10;
t 2. hei ght = 20;

Triangle t3 = new Triangle();
t 3. base = 12;
t 3. hei ght = 52;

Then we invoke each triangle’'sequal s() method. When comparing triangle 1 to triangle 2, the triangle’s
equal s() method, not surprisingly, reports that these triangles are equal. Also not surprisingly, it reports that trian-

gle 1 and triangle 3 are not equal.

Systemout.println("The triangles say:");
Systemout.printin("tl ==1t2? " + tl.equals(t2));
Systemout.println("tl ==1t3? " + tl.equals(t3));

But the code that’ s in the Object class sees things differently. This code thinks that triangle 1 does not equal
triangle 2, and as far asthe object is concerned, it’ s right. Theseare different objects. The Object’sequal s()

method also reports that triangle 1 is not equal to triangle 3, as we would expect.

Systemout.println("The objects say:");
Systemout.println("tl ==1t2? " + t1.objectEquals(t2));
Systemout.println("tl == 1t3? " + t1.objectEqual s(t3));

Barry Boone and Dave Mark Learn Java on the Macintosh 279

This example shows that overriding a method can change the behavior for an object. It also shows how to

invoke the code for an object that’ s contained in the object’ s superclass.

Next, we'll look at some of the keywords you can use to define instance variables and instance methods, and

we' |l see how those affect access to these variables and methods.

AccessApplet.u

Open 10. 02 - access inthelLearn Java Projectsfolder. Open AccessAppl et . i, makethe project, then drop
the AccessAppl et . ht mi file onto the Metrowerks Javaicon. The applet writes four lines to the Java Output win-

dow, as shown in Figure 10.9.

Circle: radius = 20

Circle: color = java.awt. Color[r=0,g9=0,b=2351
Square: radius = 20

Square: color = jauva.awt.Color[F=255,9=255,b=255]

FIGURE 10. 9 The messages AccessApplet writes to the Java Output window.

The applet creates an object that represents a circle and an object that represents a square. It setsthe data for
these objects, and then prints out this data. The Java Output window shows that the radius for both shapesis 20; it
then displays the colors for the shapes. The color for the circleis blue. Thisisindicated by the red and green compo-
nents having a value of 0, while the blue component has the maximum value possible (255). The color for the square
iswhite. Thisisindicated by the red, green, and blue components each having their maximum value (255). (You'll

learn much more about colorsin Chapter 11.)

Let’slook at the code and see how it’s set up to control and limit access to data within a class hierarchy.

Barry Boone and Dave Mark Learn Java on the Macintosh 280

Stepping Through the Source Code

Open AccessAppl et . j ava and we'll tip-toe through the source code. There are four classesin thisfile: AccessA-

pplet, Shape, Circle, and Square. Let's start with the Shape, Circle, and Square, and come back to the applet itself.

The Shape, Circle, and Square are arranged in the hierarchy shown in Figure 10.10.

Shape

Circle Square

FIGURE 10. 10 Hierarchy of the Shape, Circle, and Square classes.

The Shape class maintains some information that the Circle and Square classes have in common. First, the
Shape classis defined asabst r act . Thisisbecauseit definesan abst r act method named dr aw() . Therefore,
the Shape class can never be instantiated itself. Only subclasses of the Shape class that have implemented the

dr aw() method can be instantiated.

abstract class Shape {

The Shape class defines aclass variable named r adi us. Thisvariableis shared between both the Circleand

the Square, which are subclasses of class Shape that we'll define next.

Barry Boone and Dave Mark Learn Java on the Macintosh 281

static protected final int radius = 20;

Notice that this class variableis defined aspr ot ect ed. This means that the only classes that can access
this variable are the Shape class itself and the subclasses of the Shape class. The applet, for example, would not be
ableto accessthisclass variable. In other words, we are making this class variable “ private” to this branch of the class
hierarchy. (We've also defined thisvariable asf i nal , which meansit cannot be changed. Y ou'll learn more about

final variablesin Chapter 13.)

The next variableis an instance variable called col or. Thisvariable is defined as holding an instance of
class Color, which storesacolor in Java. Notice that we' ve defined col or tobepri vat e. Thismeansthat thisvari-
able can only be accessed by instance methods defined by the Shape. Not even circle or square objects, which inherit

from class Shape, can accessthis variable.

private Col or color;

Next, we' vedefinedtwoi nt variables, x andy. These variables keep track of ashape’ sx andy locationson

the screen.
i nt X;
i nt Y;

These variables are not declared aspr ot ect ed or pri vat e. Thismeans that any method in any classin

the same package as the Shape can access these variables. For example, these variables can be accessed from the

applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 282

Next, we defined theabst r act method named dr aw() that the Circle and Square classes will haveto

implement.

abstract void draw);

Since we made thecol or variablepri vat e, we next provide two methods to set and get the value for

col or. Thefirst method sets this instance variable.

voi d set Col or (Col or color) {

Now, here’ sthe reason we made col or pri vat e to the Shape class. The Shape class ensuresthat a
shape’'s color (for whatever reason) can never be set to black. If other objects could accessthe col or variable
directly, they could set thisvariableto any color they wanted to, including black. However, by forcing other objectsto
go through the set Col or () method to set the color for this variable, the Shape class can intercept any attempt to
set this color to black. set Col or () handles such an attempt by setting the color to white, instead. Otherwise, it

adlowscol or to be set to the new color.

i f (color == Col or. bl ack)
this.color = Color.white;
el se
this.color = color;

Barry Boone and Dave Mark Learn Java on the Macintosh 283

The Color class defines awhole bunch of class variablesthat define colorsfor Java. These variables are com-
mon colors such as black, white, blue, red, and so on. Since they’ re class variabl es defined by the Color class, you can
access these colors by writing Col or . bl ack, Col or. whi t e, Col or. bl ue, Col or. r ed, and so on, aswe've

done in the code above.

Sincecol or ispri vat e, if wewant other objects to be able to get at it, we also have to provide a method

to retrieve the color, aswell as setting it.

Col or getColor() {
return col or;
}

The Circle and Square classes are straightforward by comparison. The Circle class, for example, starts out

by indicating it is extending the definition of class Shape.

class Circle extends Shape {

Circle, then, isasubclass of class Shape; class Shapeis a superclass of class Circle. (Since all classesinherit

from class Object, class Object is also an ancestor of class Circle; class Circle is a descendent of class Object.)

Circleimplements thedr aw() method so that it does not haveto bean abst r act classand can be instan-

tiated.

Barry Boone and Dave Mark Learn Java on the Macintosh 284

void draw) {

It suppliestwo pri nt | n() statementsfor this method. The first displays the radius for this shape.

Remember, thisisapr ot ect ed variable, which means subclasses can accessiit.

Systemout.println("Crcle: radius = + radius);

Thenextprint| n() statement displaysthe color for the circle. It does this by accessing the color using
get Col or () . Thecircle object dispatches this method to itself. Not finding it there, Javawill look in its superclass,
which is class Shape, where it does exist. get Col or () worksaswe described, returning the value of thepr i vat e

variable named col or in the Shape class. This sequence is shown in Figure 10.11.

code for the

Shape class . .
3) get Col or () isfoundin

get Color () { Shape and its code is
} executed

2) get Col or () notfoundin Circle,
look for it in Shape

code for the \

Circleclass 1) invokeget Col or ()

A

FIGURE 10. 11 Method invocations propogating up the class hierarchy. In thisexample, get Col or () isnot found

in the Circle class, so Java seeksit out in the Shape class, where it isfound and executed.

Barry Boone and Dave Mark Learn Java on the Macintosh 285

With the color object returned by get Col or () , we can use a method defined for color objects called
t oSt ri ng() . This method creates a string representing the color information for that color object. Putting this
inside of apri ntl n() statement makes thisinformation appear in the Java Output window. Thisisthe color infor-

mation for red, green, and blue that we saw when we ran the applet.

Systemout.println("Crcle: color =" +
getColor().toString());

}
}
Here' s the Square class, which is ailmost identical to the Circle class.

cl ass Square extends Shape{

void draw) {
Systemout.println("Square: radius = " + radius);
Systemout.println("Square: color =" +
getColor().toString());
}

}

Now we can look at the applet itself. First, the applet imports the Color class so that we can useit in al the

classesin thisfile.

i nport java.awt. Col or;

Barry Boone and Dave Mark Learn Java on the Macintosh 286

Then we defined ani ni t () method for the applet. We start by creating instances of the Circle and Square

classes.

public class AccessAppl et extends java. appl et. Appl et {
public void init() {

Circle c = new Crcle();
Square s new Square();

Wethen usetheset Col or () method to set the color of the circle to blue and to try to set the color for the

square to black.

c. set Col or (Col or. bl ue);
s. set Col or (Col or. bl ack) ;

However, you already know what will happen when we try to set the color to black; it will be set to white

instead! Thisis verified by what appears later in the Java Output window.

Next, the applet setsthe x andy instance variables for the circle and square. Notice how we can access these
variables directly because the AccessApplet classisin the same package as the Circle and Square classes (by virtue of

being defined in the same file).

c.Xx = 50;
c.y = 60;
s.x = 100;

Barry Boone and Dave Mark Learn Java on the Macintosh 287

s.y = 200;

Andfinally, invokingthedr aw() method for the circle and square makes each object display its datain the

Java Output window.
c.draw);
s.draw);

}

}

WEe Il use classes very similar to the Shape, Circle, and Square classes defined here in a number of applets

coming up in the rest of this book.

Review

Inheritance allows you to extend existing classes. Thisallowsyou to start with abase level of code that already works
and then add to it to write your own, custom code. Inheritance also allows you to create class hierarchies, where you

can group together common code in superclasses to share between classes.

By using special keywords, suchaspri vat e, pr ot ect ed, publ i ¢, andabst r act , you can obtain a
great deal of control over your class hierarchies. Y ou can either | et the default thing happen and have classesinherit all
of the variables and methods defined in their superclasses, or you can control which variables are inherited and which

are not.

Barry Boone and Dave Mark Learn Java on the Macintosh 288

Java definesits classes in six different packages. Y ou must import a class defined in another package before
you use it, and you can only use publ i ¢ classes. (All of the classesin the lang package are imported for you auto-
matically.) Classes within the same package can freely communicate with each other. Y ou can use awildcard symbol

(*) toimport al of the classes defined in a particular package.

What's Next?

At this point, you know enough to begin building a graphical user interface for your applet. In the next chapter, we'll
paint in the applet and display user interface components such as text fields, buttons, and check boxes. We'll even
learn enough to be able to tell when the user has interacted with them, such as when the user typesin text or clicksa

button. So hang on and let’ s have some fun!

Barry Boone and Dave Mark Learn Java on the Macintosh 289

CHAPTER 11 Creating a User Interface

Thefirst ten chapters brought you up to speed on basic Java concepts. These chapters introduced you to the CodeWar-
rior Java development environment and stepped you through enough actual code that you' re probably itching to make
your applet look like something by now, by golly! Enough of these applets with empty windows! The good newsis
that you now know enough to start putting together a user interface.In this chapter, we'll create and arrange an
applet’ suser interface. We' Il display shapes, print messages, create text fields, buttons, and choicelists, and we' Il start

interacting with the user by responding to mouse clicks and keyboard entry.

There are two ways that your applet can present aface to the world.

1. Your applet can draw, paint pictures, and display messages. Users generally cannot interact with drawn pictures
and messages—they’re just for display purposes.

2. Your applet can display user interface elements, such as buttons, text fields, and choice lists. Usersinteract with
these elements by clicking them, typing text into them, and selecting choices they present. These elements allow

users to work with your applet and control what it does.

Generally, you will use a combination of these two techniques when you make your applet appear the way
you want it to. For example, the SimpleDraw applet you worked with earlier is a prime example of using both these
techniquesin one applet. SimpleDraw provides two choice liststo allow the user to select a shape type and a color.
Then this applet paints a shape on the screen when the user clicks the applet. SimpleDraw uses user interface ele-

ments and drawing techniques when presenting its face to the world.

This chapter explains how to go about arranging your applet’s display using both drawing techniques and
user interface elements. We'll start with drawing, and then move on to creating and arranging interactive user inter-

face elements.

Barry Boone and Dave Mark Learn Java on the Macintosh 290

Drawing

Javaprovides anumber of waysfor you to draw in your applet. Y ou can draw lines, dots, circles, and squares. Y ou can
display images. Y ou can draw in different colors. Y ou can even display text in your applet by drawing it. When you

display text, you can also control the way the text looks by choosing its font and color.

Theideaof “drawing” text might sound strange, but think of it as painting the text with a brush. The differ-
ence between “drawing” text and using a user interface element, such as atext field, to display text is that when you
draw text, the user cannot edit the text. By contrast, when you use atext field to display text, the user can edit the text
(unless you set the property of the text field to be read-only). This section will show you how to draw text; the next

section will explain how to create and display text fieldsto allow the user to enter text.

Drawing is centered around the pai nt () method. So, let’s start by looking at pai nt () .

The paint() Method

Every time your applet needs to be redrawn, Javawill invoke your applet’spai nt () method. Y ou can provide a
pai nt () method, or not provide one, as you desire. Up until now, we did not provide one. And what was the result?
We had an empty applet! Our applet did not provide any behavior when it was asked to paint itself, so it presented an

empty, gray window instead.

When does Javatry to invoke your applet’spai nt () method? Thiswill occur whenever the user does
something that makes your applet’s display obsolete. For example, if the user resizes your applet, your applet’s dis-
play will no longer be current, and Javawill invoke your applet’spai nt () method. If the user is displaying another
window on top of your applet and then closes that window, Java will recognize that your applet must redisplay itself.

Again, Javawill invoke your applet’spai nt () method.

Barry Boone and Dave Mark Learn Java on the Macintosh 291

What happens if the program itself does something that makes the applet’s current display obsolete? For
example, what if the applet changes the color of acircleit’s displaying every ten seconds? If the applet wants to
repaint itself, it can ask for itspai nt () method to be invoked. The applet does this by invoking its own

r epai nt () method. Javathen knows to invoke the applet’spai nt () method.

Warning

Y ou should never invokeyour ownpai nt () method directly, because Java keepstrack of which parts of your applet
have been recently refreshed and which parts are “dirty.” If you invoke pai nt () directly, you circumvent Java's
efforts to keep track of thisinformation. However, if you invoker epai nt () , Java can then keep tabs on what's

going on, so thisis definitely the safer method to invoke.

Here' s the definition for an empty pai nt () method:

public void paint(Gaphics g) {
}

This method is declared as publ i ¢ and does not return avalue, just like the life-cycle methods. However,
unlike the life-cycle methods, pai nt () takes one parameter. Thisis an object that’s created for you by Java. This
object is an instance of the Graphics class. Let’s take alook at what the Graphics classis all about and how you can

use the graphics object to perform drawing operations.

The Graphics Class

When Javainvokes your pai nt () method, it passes you an instance of class Graphics. The simple way to under-
stand the Graphics classisto think of it as defining many methods for drawing. A graphics object can draw all sorts of
shapes and lines, and it can display text as well. But this ignores the question of where does your drawing go? If you

use agraphics object to draw ablue diamond, for example, where isthis blue diamond drawn? The whole truth is that

Barry Boone and Dave Mark Learn Java on the Macintosh 292

agraphics abject is more than just a collection of methods that draws on the screen. Every graphics object isalso tied
to aparticular user interface object. When you draw by invoking a graphic object’ s method, the particular graphics
object you use determines where your drawing shows up. If you use a graphics object tied to your applet, your draw-

ing ends up in your applet. If you use a graphics object tied to a button, your drawing shows up in the button.

When you supply apai nt () method for a user interface object, Java hands you a graphics object tied to
the object for which you’ ve defined your pai nt () method. So for your applet’spai nt () method, the graphics
object istied to your applet. If you create your own subclass of Button called MyButton and you supply apai nt ()
method for MyButton, the graphics object passed to you in MyButton’spai nt () method will be tied to the particu-

lar button that’ s being painted.

Aswe mentioned, graphics objects allow you to draw shapes such as rectangles and ovals, lines such as
straight lines and arcs, images, and even text. The methods you'll use the most when drawing with a graphics object

are:
e fillOval (),whichdrawsasolid oval (you can draw acircle by setting the width and height of the oval to the
same value)

e fill Rect(),whichdrawsasolid rectangle (as with the oval, you can draw a square by setting the width and

height of the rectangle to the same value)
e drawlLi ne(), which draws aline between two points

e drawArc(), which draws an arc within arectangle, given aninitial angle (0 is at the 3:00 position) and an end-

ing angle (positive angles make the arc draw in a counter-clockwise rotation)
e drawl mage(), which draws the image you passto it

e drawsString(), which displays the text you passto it

Y ou can also use a graphics object to find out about the current state of graphics information. For example,

here are two useful methods for getting and setting useful graphics information:

Barry Boone and Dave Mark Learn Java on the Macintosh 293

e set Col or (), which setsthe color to use when drawing

e set Font (), which setsthe font to use when displaying text

There are many more instance methods defined by the Graphics class. Y ou can check out the documentation
for the classes for a completelist. You can also look at Chapter 15 for information on how to look up information

using the HTML files documenting Java’ s packages.

Warning

In general, you should never try to create your own graphics object. Instead, use the one that Java provides for you in
the pai nt () method. Another way to get a graphics object isto ask Javafor the one that’ stied to a particular user
interface component. Y ou can do this by invoking the component’sget Gr aphi ¢s() method, which will return a

graphics object. If the component is not currently displayed on the screen, get Gr aphi c¢s() returnsnul | .

Color

Javaprovides a class called Color. This class makes it unlikely that you'll ever create any color objects yourself,
although it’'s easy enough to do so. The beauty of Java's Color classisthat it defines a number of class variables that
aready contain predefined color objects. These include most common colors, such asblue, red, yellow, green, orange,
black, white, and gray. These class variables are named after the colors they encode, so to get a color object that rep-
resents red, for example, you can simply refer to Col or . r ed. To get acolor that’s set for blue, you can use

Col or. bl ue.

To create your own color, you need to supply the Color’s constructor with the red, green, and blue compo-
nents of your color. Each of these three color components ranges on ascale of 0 (no trace of thiscolor isin the overall

color) to 255 (use this color at full intensity).

You'd need acolor chart to figure out all the many colors you can create by ranging the red, green, and blue

components between 0 and 255. But here's a sense of what' s happening. Y ou can think of each of these colors (red,

Barry Boone and Dave Mark Learn Java on the Macintosh 294

green, and blue) as a spotlight. If none of them are on, you have darkness (black). If all of them are on, the total light
appears white. If only one spotlight is on, the light appears to be that color (red, green, or blue). If different spotlights
are on with different intensities, you can create every other color thereis. (Y our television and computer monitor use

this exact same technique to create colors, by the way.) Here are some examples.

If you had the blue component set to 255 and the red and green components set to O, the resulting color
would be blue. If you had the red and green components set to 255, and the blue component set to O, the resulting
color would be yellow (really). To get black, you would set all three componentsto 0. To get white, you would set all

componentsto 255. To get gray, you would set all components midway between 0 and 255: You'd set them to 127.

Here' s an example of creating a new color object that produces orange, which results from a combination of

red and green in different intensities, and no blue component:

Col or nyOrange = new Col or (255, 200, 0);

Aswe said, you'll usually just use a color object that's been created for you and is maintained by the Color
class. You'll use acolor object when you draw. For example, to set the current drawing color, you use a method pro-
vided by the graphics object called set Col or () . To set the current drawing color to pink, for example, you could
writeset Col or (Col or. pi nk) . Then, any lines, shapes, or text you drew using that graphics object would show

up in pink.

Fonts

When you want to use the graphics object to draw text, you’ Il sometimes be concerned about what font your text
appearsin. You can usetheget Font () and set Font () methods provided by the graphics object to get and set

the current font, and you' I use afont object, much as you used a color object above, to specify a particular font.

Barry Boone and Dave Mark Learn Java on the Macintosh 295

Java does not predefine abunch of fonts, asit doeswith colors. However, it's very easy to create aparticular
font object. All you need to do is specify the name of the font, its style, and its point size when you invoke the con-

structor for the Font class.

These are pretty easy parameters asfar asfar asthe font name and point size are concerned. The styleisalit-
tletricker and we'll get to that in amoment. Y ou can refer to afont namewithin astring, asin “Helvetica,” “Courier,”
“Times Roman,” and so on. Typical point sizesare 10, 12, 14, and 18. The styles are provided by class variables
defined by the Font class. Here are the three you' | use most often (it seems pretty clear what style each classvariable
represents):

e Font. PLAIN

e [Font.BOLD

* Font.ITALIC

For simple styles—for example, for afont that’ sitalic, or bold, or plain, you use a constant defined by the

Font class that represents this style. Here's an example of creating afont that’s an italic Helveticain size 14.

Font f = new Font("“Hel vetica”, Font.ITALIC, 14);

In case you' re wondering,

the font looks like this.

If you want to combineitalic and bold, you use the “logical or” operator that we touched on in atech block
in Chapter 6. This combines the values represented by Font . | TALI Cand Font . BOLD, and produces a value that

Java recognizes as meaning both. So, to do the same thing as above but also make the font bold, we would write:

Barry Boone and Dave Mark Learn Java on the Macintosh 296

Font f = new Font(“Helvetica”, Font.|ITALIC | Font.BCOLD, 14);

Which would make

the font look like this.

Java's User Interface Elements

Java provides awhole bunch of classes that define user interface elements. The way that you use these classesis by
creating instances of them and then arranging them inside your applet. This chapter will go about showing you how to
do this. Keep in mind that Java s user interface elements work in any operating environemt—Windows NT/95,
Solaris, the Mac, and wherever else Java exists. Of course, we' |l use the Mac to develop our own user interfaces, but

the same code we devel op on the Mac to present a user interface will work anywhere.

Some User Interface Components You Can Use

Java provides classes that implement all of the standard user interface elements you’ ve come to expect from modern

software applications. These include;

text fields, which allow the user to enter text using the keyboard
* choice lists, which present a drop-down list of choices for the user to select from
¢ buttons, which perform some action when the user clicks them

* check boxes, which allow the user to choose an option (if assigned to a check box group, only one check box will

be selected at atime)

Barry Boone and Dave Mark Learn Java on the Macintosh 297

labels, which display some text for titles and information (but which the user cannot edit)

Figure 11.1 shows an example of an applet that displays these user interface elements. (Y ou can find the

source code for this applet in the Learn Java Projectsfolder under 11. 01 - conponents.)

=[0= Applet Diewer: UIApplet.class :

e] | ()

| am a label '::3' Yes {:} flo @ Faybe

applet started

El

FIGURE 11. 1 An applet that displaysachoice (currently displaying “ Apple”) atext field (currently blank), abutton

(that says “Click me") alabel (that says“| am alabel”) and three check boxes (Y es, No, and Maybe) in a check
box group.

Figure 11.2 shows how you can interact with these components, selecting anew choice, entering text into the

text field, and selecting a new check box (you can aso click the button, though you can't interact with the label).

=[0= Applet Diewer: UIApplet.class ==

[Taz Art Glasd |
Banana

Cherry) Yes) Mo () Maybe

applet started

Barry Boone and Dave Mark

Learn Java on the Macintosh 298

FIGURE 11. 2 Here, the user has interacted with the user interface components in the applet. The user has clicked
the choicelist and is currently holding down the mouse button. This makes the choices in the choice list visible,
allowing the user to slide the mouse cursor to the appropriate choice to select it. The user has also typed some text
into the text field and has selected a new check box. Selecting the new check box has unselected the previously
selected check box, which was “Maybe.” This occurred because these three check boxes are part of the same
group. If they did not belong to the same group, they would behave independently, and more than one check box

could be selected at the same time.

Java provides some other user interface components which we won’t go into here. These include menus,
scroll bars, and text areas, among others. Check out Appendix G for information on where to find examples of these

other components.

Thereis aso another set classes that allows you to arrange these componentsin relation to each other and
group together related components. We'll examine some of these classes, called layout managers and containers, later
in this chapter. For now, let’ stake alook at each one of the user interface components displayed in the applet in Fig-

ure 11.1 to understand how we can go about creating them.

Creating New Elements

It' sfairly straightforward to create user interface components like the onesin the applet in Figure 11.1. All you have
to do is perform the following three steps:

1. Create anew instance of the appropriate component class.

2. Initialize the component so that it contains the choices you want.

3. Add the component to your applet’s display.

When you create a user interface, you most likely want to create it once, when your applet begins, and never

again. This meansthat most of the time, you will create your user interface in your applet’s i ni t () method. That's

Barry Boone and Dave Mark Learn Java on the Macintosh 299

what we' ve done for the applet in Figure 11.1. Let’slook at each of the four components we displayed in our smple

applet one at atime.

Buttons

One of the button’s constructors takes a string, which allows you to name the button when you create it. For example,

one way you can creat abutton titled “Click me,” like we did in the applet just shown, isto write:

Button nyButton = new Button(“Click ne”);

Labels

Labels are created similarly to buttons. Y ou can provide a string for the label when you createit. The difference

between buttons and labels is that you can interact with a button by clicking it; labels are for display only.

Button nyLabel = new Label (“1 ama | abel ");

Text Fields

To create an instance of class TextField, you can use afew different constructors. One of these specifies what text the
text field should contain initially. (The purpose of text fieldsisfor usersto type their own text into these fields.) When
you create atext field, you can also specify the width of the text field by indicating its number of columns. Thisisa

rough indication of how many characters the field can contain.

Barry Boone and Dave Mark Learn Java on the Macintosh 300

For example, to create atext field that initially contains the character O (zero) and can hold 8 characters

(approximately), you can write:

TextField tf = new TextField(“0", 8);

Choices

Choices provide a selection list for the user to pick one of afew different strings. Creating the choice itself is easy

enough:

Choi ce ¢ = new Choi ce();

To fill up the choice with the strings the user can select, you can use the choice’'saddl t en{) method, like

this:

c.addltem(“First Choice”);
c. addl tem(“ Second Choi ce”);

and so on, for however many choices you have.

Checkbox

To create acheck box, you can use one of two common constructors. Thefirst creates a check box that’ s not related to

any other check box:

Barry Boone and Dave Mark Learn Java on the Macintosh 301

Checkbox ¢ = new Checkbox(“first choice”);

Thiswould create a new check box that was initially unselected. (Y ou can always select it from your own

code by invoking itsset St at e() method and passingittrue orf al se.)

If you created another check box, like this:

Checkbox c2 = new Checkbox(“second choice”);

and displayed both check boxes, the user would be able to turn them on or off (select them and unselect
them) indepently of each other. If you wanted them to be tied together, so that only one of these check boxes could be
selected at one time, you can create an exclusive choice check box. Theway you do that is by creating an instance of
class CheckboxGroup, and assigning the mutual ly-exclusive check boxes to the same check box group. Y ou assign
the check box group when you create the check box, and you also indicate whether the check box should be on or off

(by a'so passing the constructor the valuet r ue or f al se). For example, you can write:

CheckboxG oup group = new CheckboxG oup();
Checkbox cl1 = new Checkbox(“first choice”, group, true);
Checkbox c2 new Checkbox(“second choi ce”, group, false);

Thiswould create two check boxes, and the check box group would make sure that only one of these was
selected at atime. At first, the check box inc1 would be on, and the check box in ¢2 would be off (notice thet r ue

and f al se values passed to the constructor that indicate this).

Barry Boone and Dave Mark Learn Java on the Macintosh 302

Making the Components Appear

To make auser interface component part of the applet’ s display, you can invokethe applet’sadd() method and pass
it the component you want to add to the display. (We'll ook at what’s going on withtheadd() method injust a

moment.)

Putting this all together, here’ sthe full listing for thei ni t () method for the applet we displayed in Figure

11.1.

i mport java.awt.*;

public class U Appl et extends java. appl et. Appl et {

But t on but t on;
Choi ce choi ce;
TextField t ext Fi el d;

/** Create a user interface. */
public void init() {

Checkbox checkbox;
CheckboxG oup checkboxG oup;
Label | abel ;

/'l create a choice |ist
choi ce = new Choi ce();
choi ce. addl t em(" Appl e") ;
choi ce. addl t em(" Banana") ;
choi ce. addl ten(" Cherry");
add(choi ce);

/'l create a text field
textField = new TextField(10); // 10 col unms w de
add(textFi el d);

/'l create a button
button = new Button("Cick nme");
add(button);

Barry Boone and Dave Mark Learn Java on the Macintosh 303

/1l create a | abel
| abel = new Label ("I ama | abel");
add(| abel);

/] create 3 exlusive-choice checkboxes
checkboxG oup = new CheckboxG oup();

checkbox = new Checkbox("Yes", checkboxG oup, false);

add(checkbox) ;

checkbox = new Checkbox("No", checkboxG oup, false);
add(checkbox);

checkbox = new Checkbox("Maybe", checkboxG oup, true);
add(checkbox) ;

Later in this chapter we'll show you how to detect when the user has interacted with these components.

Arranging User Interface Elements

So far, we' ve created components just fine, and we' ve even added them to our applet’s display so that they appeared
on the screen. We used theadd() method to make them appear, but we haven't really investigated what the add()
method is doing; we just trusted this method to arrange our user interface components for us and make sure they were
displayed. It'stime to look at what’s really going on here and what you can do to influence the arrangement of your

user interface elements.

Barry Boone and Dave Mark Learn Java on the Macintosh 304

Containers

Y our components can't just be displayed on their own, independently of the rest of your user interface. Instead, they
need to be contained in something. What you need to do is place your componentsinto a subclass of Java s Container

class. Thisideais shown in Figure 11.3.

container

I |
| |
component
| component |
I |
| component |

FIGURE 11. 3 All component objects must be placed within an instance of class Container or a subclass of class

Container.

Asit happens, the Applet classitself is asubclass of class Container! This means that your applet class can
contain user interface components. Very convenient. Thisiswhat happened when we invoked theadd() method for
the applet in the example in the previous section: the component we passed along as a parameter for add() was

added to the applet; the applet became the component’ s container. Thisideais shown in Figure 11.4.

| |
| |
component
| component |
| |
| component |

Barry Boone and Dave Mark Learn Java on the Macintosh 305

FIGURE 11. 4 Applets can contain components because appletsinherit all the behavior of containers, sincethey are

subclasses of class Container.

Arranging Elements With Layouts

Onething we haven't covered yet is how these components know where they should appear within a container. When
you use add() to add auser interface component to a container, where does the component go? That is, how does
the container know how to position the component? Does the container position objects left to right? top to bottom?

Do all the components end up on top of each other in the middle of the container?

The answer is, it depends. What it depends on is the layout manager assigned to the container in which
you're placing the components. Java defines five different types of layout managers, and each one does something a
little bit different. We'll list the five here, discuss two of them in alittle more detail, and then use these two in the

Sample Programs at the end of this chapter.

The five layout managers supplied by Java are:
* FHowLayouts, which arrange components left to right until it must move to the next line to fit a new component
into the display. At the end, each line will be centered.
e GridLayouts, which arrange components in arectangular grid the size that you specify.

* BorderLayouts, which arrange components on either the | eft, right, top, bottom, or center. BorderL ayouts use
directionsto indicate where to place a component. These directions are “East” for left, “West” for right, “North”

for top, and “ South” for bottom. “Center” places the component in the center of the container.
e CardLayouts, which present different screen arrangements (or cards, asin cardsin a deck) to the user.

e GridBagLayouts, which allow you to create sophisticated arrangements of objects on the screen. These arrange-
ments are grid-like, but almost more in the sense of agame of Tetristhan in a strict grid, because user interface

components can take up more than one grid.

Barry Boone and Dave Mark Learn Java on the Macintosh 306

Let’slook at thefirst two types of layout managersin thislist in alittle more detail.

Flow Layouts

Flow layouts are perhaps the easiest layout to use. Thisis the default layout manager for applets. Flow layouts start
placing components at the top left of your container (if you’ re adding components to your applet, then the flow layout
startsin the top left of your applet). Asyou add more components to this container, the flow layout will continue add-

ing components along the top, moving left to right. Thisis shown in Figure 11.5.

container

component 1] | component 2| | component 3

FIGURE 11. 5 FlowL ayouts arrange components in a container |eft to right as they are added, starting along the top

of the container.

When the next component to be added no longer fits on that row, the flow layout manager begins anew row.

It then centers everything on the first row. Thisis shown in Figure 11.6.

Barry Boone and Dave Mark Learn Java on the Macintosh 307

container

| component 1] | component 2| | component 3

FIGURE 11. 6 When the next component to be added won't fit on the current row, the FlowL ayout placesit on the

next row, and centers everything on the first row.

New components are now added to the second row, moving left to right. New components will be added on
this second row until they no longer fit on the second row, at which time the flow layout manager begins athird row.
Again, everything on the second row is centered. When the container isfinally displayed, all of the rows are centered.

Figure 11.7. shows what the final display would like for three rows of objects.

container

| component 1|| component 2|| component3|

| component 4| | component 5 |

FIGURE 11. 7 A container with three rows of components that used a FlowL ayout to arrange them.

The applet we created that displayed the choice, the text field, button, label, and three check boxes were

added to the applet using the applet’s default layout manager—a flow layout. If you resize the applet, the flow layout

Barry Boone and Dave Mark Learn Java on the Macintosh 308

will rearrange the components according to the ruleswe just covered. For example, Figure 11.8 shows what the appl et

would look like if we decreased the width and increased its height.

=[E= Applet Diewer: | =

[Apple |

| |
| am a label

) ves () Mo

':E' Maybe

applet started

@

FIGURE 11. 8 Changing the dimensions of the container (in this case, of the applet) causes the flow layout manager

to rearrange the components.

Thereason that FlowL ayouts are easy to useisthat you don’t really have to worry about them. Y ou just keep

adding your components to the container, and the FlowL ayout takes care of arranging them.

Grid Layouts

Grid layouts can help you arrange your user interface elementsin a precise grid. When you create a grid layout man-
ager, you can indicate the number of rows and columns you’'d like the grid to have. Here' s an example of creating a

grid layout object that would arrange objectsin a grid that’s 5 rows by 3 columns:

Barry Boone and Dave Mark Learn Java on the Macintosh 309

GidLayout | ayout = new GridLayout (5, 3);

To attach the grid layout manager to the container, you need to invoke that container’sset Layout ()
method and pass this method the new layout manager. (You'd haveto usetheset Layout () method for any new
layout manager you assign to a container. For an applet, its default layout manager is a FlowLayout, so we didn’t
have to create our own.) For example, here's how you can assign anew grid layout object in avariable called

| ayout totheapplet insidethe applet’si ni t () method:

set Layout (| ayout) ;

When you add new components to a container using agrid layout, the components are arranged row by
row, starting in row one, column one, then row one, column two, and so on through the number of columns. Then
the grid layout manager startsin the next row at column one, and so on, until all of the columns and rows are filled.

Thisisshownin Figure 11.9.

Barry Boone and Dave Mark Learn Java on the Macintosh 310

FIGURE 11. 9 The GridLayout progresses left to right, row by row. All the components end up occupying one cell

inthegrid.

The sample programs provide examples of using a flow layout (which isthe default for applets) and a grid

layout (which we'll create especially to arrange a user interface in a precise grid within an applet).

User Interface Hierarchies

Applets make great containers. For the appletsin thisbook, we'll always use an applet as our container. However, one
of the flexible things about containersis that containers can container other containers. This allows you to build up
fairly complex user interfaces. This section touches on how you can go about doing this and what classes Java pro-

vides to help you.

While you can often just use alayout manager to arrange your components in your applet, sometimes your
user interface will be too complex to arrange inside of only one container. For example, imagine the front pandl of a
stereo. If stereo designers just added each control to the stereo as they thought of them, the front panel of the stereo

might be a confusing jumble of options—something like what's shown in Figure 11.10.

treble

i ect
Lo O T

volume pause

| >
stop I@hi play @ _
I basehl

FIGURE 11. 10 The controls on a stereo might be confusing if they were arranged when the designer thought of a

new one.

There are lots of controls there, but if you group them together, they’ re not so confusing. Y ou might group

together dials for the volume, treble, and base. Y ou might group together buttons to control your compact disc player.

Barry Boone and Dave Mark Learn Java on the Macintosh 311

Each of the different sets of controls might be organized into separate collections, something like what's

shownin Figure 11.11.

@10 I@hi I(@hi

volume treble base

a- p| 1
gect| | play| |pause| | Siop

FIGURE 11. 11 The designer of this stereo interface brought order to chaos by grouping together related controls.

User interface controlsin your applet are not much different than the controls on a stereo. If you have acom-

plex arrangement of items, you might decide to create containers to hold each group of items, and then add the differ-

ent containers to your applet, as shownin Figure 11.12.

applet
r—— - - - - - - - - - — — 1
| container |
| e) |
| | [component| |component| | |
Lo _
| , |
| container |
r— - - - - - - - - — — 1
| |
| |

| [component| | component| | component| |

FIGURE 11. 12 Here, the user interface designer has collected components into containers, and then has added the

containers to the applet. One way to do this, for example, isto use a GridLayout to arrange your containers within

your applet in agrid that’ s two rows by one column.

Barry Boone and Dave Mark

Learn Java on the Macintosh

312

To help you arrange items, Java provides some additional subclasses of class Container (in addition to the

Applet class). Thereinclude:

* Frames, which can display atitle and a menu bar

* Panels, which act as generic containers

Check out Appendix G for where to look for more examples of using these containersin your own applets.

Events

Remember back in Chapter 4 when you played around with the SimpleDraw applet? In SimpleDraw, you clicked on
the applet, and anew square or circle appeared, drawn in the color that you selected from achoicelist. Every timeyou
clicked the mouse on the applet, you generated an event. In Java, an event represents some action taken by the user.
Every time the user interacts with your applet, the user generates an event. For example, if the user clicks the mouse,
this generates an event. If the user typesin characters using the keyboard, this generates an event. Javatells your pro-
gram about events generated by the user, and that allows your program to take the appropriate action to react to the

user.

How Java Informs You of Events

How do these events reach you? If the user is constantly clicking and creating new shapes, how do you hear about it?
Thinking about what you’ ve learned about how Java works, you might be able to figure it out. For example, when
your applet needs to know about a new phasein life that it’ s entering, the appropriate life-cycle method is invoked.

Similarly, when your applet needs to know about a new event, the appropriate event method is invoked.

Barry Boone and Dave Mark Learn Java on the Macintosh 313

How Events are Propogated

Java starts by informing the particular component that the user interacted with that an event occurred. Figure 11.13

shows a possible arrangement of objects on the screen and which component isinitialy told about the event.

_1) User clicks the button

~ | _2)Javainformsthe

— button of this event

panel

applet

FIGURE 11. 13 When an event first occurs, Javainforms the component that the user interacted with that there was

an event.

If the button handles this event, then that’ s the end of the event. But if the button does not handle the event,
Java sees if some other object wantsit. The object that Javainforms next is the user interface container in which the
buttonisplaced. In Figure 11.13, we' ve placed the button inside apanel. So, next, Javainformsthe panel of the event

that occurred to the button. Thisis shown in Figure 11.14.

_1) User clicks the button

~ | _2) Javainformsthe

[buttonZg- | [button of thisevent
L L - 3) Javainformsthe

panel - panel of thisevent

applet

Barry Boone and Dave Mark Learn Java on the Macintosh 314

FIGURE 11. 14 If the button does not handle the event, Java tells its container—in this case, a panel—about the

event that occurred to the button.

If the panel handlesthis event, then that’sthe end of the event. But if the panel does not handle the event, the

event goes to its container, which in the diagrammed exampleis the applet. Thisis shown in Figure 11.15.

_1) User clicks the button

-~ _ 2) Javainformsthe

1 button of this event
- - -3 Javainformsthe

panel pandl of this event
applet <& T - 4) Javainformsthe

applet of this event

FIGURE 11. 15 If the panel does not handle the event, Javatells its container—in this case, the applet—about the

event that occurred to the button.

At this point, either the applet handlesthe event or it doesn’t. There’s no where else for the event to go if the

applet does not handle the event here. The event will just kind of “disappear” if no one ever handlesit.

One useful consequence of this event propogation isthat you don’t have to go around subclassing every user
interface component there isto make it do what you want. Instead, you can subclass a container that groups together
many other objects, or you can simply use your applet that contains everything, and supply amethod that will react to
an event that occurs to one of the components contained within your container or applet. Y our method can detect
where the event occurred and to what component and can take the appropriate action based on what the user clicked

or entered with the keyboard. Y ou'll see examples of this in the sample programs coming up.

Barry Boone and Dave Mark Learn Java on the Macintosh 315

Event Methods

There are avariety of event methods that are invoked for different situations—in particular for mouse clicks, mouse
movements, and keystrokes. These are the methods you're likely to deal with the most, and we'll get to thesein a

moment. Before we look at these, however, you need to know about a method called handl eEvent () .

The method handl eEvent () isamethod that's always invoked for every type of event. This method
takes an object that's created by Java. This object encodes the information for the event and is an instance of class
(drumroll, please...) Event! The event object you receive identifies the user interface component in which the event
occurred as well as what type of event actually occurred. The two instance variables that you might deal with when

using an event object are:

e target,which containsthe user interface component that the user interacted with to trigger this event

¢ | d, which contains an identifier for this event

Thei d variable can be one of afew different values, and Java supplies awhole bunch of these as class vari-
ablesin the Event class. So, for example, you can check to seeif the event’si d isequal to Event . MOUSE_DOAN
(that is, if the user clicked the mouse) or Event . SCROLL_PAGE_UP (which will be the caseif the user scrolled up
by apage) or Event . KEY_ACTI ON (if the user pressed a key on the keyboard). There are many more valuesfor the

wide variety of events that can occur; these are documented with the Event class.

If you choose to supply ahandl eEvent () method, you can use the event object that’s passed to you as a
parameter to identify what the user did and take the appropriate action. However, handl eEvent () isnot necessar-
ily the most convenient method to override, because handl eEvent () isinvoked for every little thing that happens.
If al you'reinterested in is mouse clicks, it would be great to override a method that only deals with mouse clicks. In
fact, Javamakesthis possible. The default behavior for handl eEvent () istoinvoke other methods, depending on

the type of event the user generated. These other methods (and their parameters) are:

Barry Boone and Dave Mark Learn Java on the Macintosh 316

e nmouseEnter (Event e, int x, int y),whichindicatesif the mouse entersthe boundaries of acom-

ponent

* mouseExit (BEvent e, int x, int y),whichindicatesif the mouseleavesthe boundaries of acompo-

nent
* nouseMve (Event e, int x, int y),whichisinvoked everytimethe mouse moves acrossthe screen

e mouseDrag (Event e, int x, int y),whichisinvoked when the mouse movesacrossthe screen

while the mouse button is being held down
e mouseUp (Event e, int x, int y),whichsignalsthat the mouse button has been released
* mouseDown (Event e, int X, int y),whichindicatesthatthe mouse button has been pressed

e keyDown (Event e, int key),whichisinvoked whenver the user typesin anew character using the key-

board (the parameter key indicates which key the user typed)

e action(Event e, Object obj), whichisinvoked for every action that occurs, such asamouse click or

the user pressing enter (but not for every event, such as the user typing a keyboard character)

Thex andy parameters indicate where the user clicked if the event was generated using the mouse. So, if
all you care about are mouse clicks, you might decide not to override handl eEvent () and filter the events that
rush in like atidal wave, and instead pan in the stream of special events, looking for the event in which you're

interested. In other words, if you're interested in mouse clicks, you have two choices:

1. Youcanoveridehandl eEvent () and check every event object’si d variable for amatch to

Event . MOUSE_UP.

2. Youcanoverride mouseUp() .

The same event object is passed along to the special event methods, so you can still check the target of the

event to make sure the event occurred in a component that you want to handle.

Barry Boone and Dave Mark Learn Java on the Macintosh 317

Earlier in this chapter, we arranged a user interface containing of achoicelist, atext field, a button, alabel,
and three check boxes. All we showed so far wasthei ni t () method that created these components. Now, let’ slook

at what we might do if we wanted to detect which components the user selected.

We can do thisby overriding theact i on() method for our applet. Since we saved the text field, button,
and choice objectsin instance variables, we can compare these directly to the event’st ar get variableto seeif one
of these isthe component the user interaced with. Since we did not save the individual check boxes (though we could
have done so easily enough), we will check instead to seeif the target object isin fact an instance of a check box.

Here' sthe code:

publ i c bool ean acti on(Event e, Object arg) {

iIf (e.target == textField)
Systemout.println("User entered text into the text field");

else if (e.target == button)
Systemout.println("User clicked the button");

else if (e.target == choice)
Systemout.println("User selected a new choice");

else if (e.target instanceof Checkbox)
Systemout.println("User clicked a check box");

el se
System out. println("Unrecogni zed event");

return super.action(e, arg);

At the end, we return what the superclass feelsis appropriate for this action. We' |l look at other examples of

handling eventsin the sample programs.

Barry Boone and Dave Mark Learn Java on the Macintosh 318

One last thing. All of the event methods return abool ean value. Thisreturn value lets Java know if the
method handled the event or not. If you do handle the event yourself, you should returnt r ue. That stops the event
from propogating up to the next container. If you don’'t handle the event, you should return f al se, so that Java can
seeif any other object isinterested in what the user did. Y ou can invoke your superclass s method and return the same

value that your superclass returns.

Sample Programs

WEe'll look at afew different samplesin this section, starting simply at first before building up more sophisticated user

interfaces. We'll start with an applet that displays a message inside the applet itself.

PaintHello.pu

Open11. 02 - paint hell ointheLearn Java Projectsfolder. OpenPai nt Hel | 0. u, make the project, then
drop thefilePai nt Hel | 0. ht M onto the Metrowerks Javaicon. When the appl et appears, it will actually do some-
thing within the applet window itself! Y ouwon’t have to look to the Java Output window to see the results of running

this applet. What it does is display a greeting inside the applet. Figure 11.2 shows what the applet looks like.

=[0I Applet Diewer: PaintHello.class

Hello, applet!

applet started

Barry Boone and Dave Mark Learn Java on the Macintosh 319

FIGURE 11. 16 The applet PaintHello displays a greeting message inside the applet itself.

A friendly little applet, isn't it? Let’slook at the source.

Stepping Through the Source

Open Pai nt Hel | 0. j ava. You'll seethere are only afew linesto this applet. The applet doesn’t override any

applet life-cycle methods, but it does define what happens when the appl et paints itself.

Thisfile starts by importing the Graphics class, whichisin Java sawt library. We need this class because an
instance of this classis passed to the pai nt () method as a parameter. We'll use an instance method defined by

Graphicsto write “Hello, applet!” to the applet.

i mport java.awt. G aphi cs;

The applet is defined in the usual way, by extending Java s Applet class.

public class PaintHell o extends java. appl et. Appl et {

We then provide the behavior for the pai nt () method. This method isinvoked for you by Java whenever

your applet’ s display needs to be refreshed. Java passes an instance of the Graphics classto pai nt () .

public void paint(Gaphics g) {

Barry Boone and Dave Mark Learn Java on the Macintosh 320

We use an instance method defined by the Graphics class to display the text in the applet. This method,
drawsSt ri ng() , takesthree parameters: Thefirst isthe string to display; the second is the horizontal position (mov-
ing from the left edge of the applet the specified number of pixels) to start writing the text; the third isthe vertical
position (moving from the top edge of the applet the specified number of pixels) to place the text. The horizontal and

vertical positions indicate the bottom left of the text, as shown in Figure 11.17.

(o))

P increasing X

< X

Iext to display

™ — |&ft, bottom for text

increasingy

FIGURE 11. 17 Positioning text using the horizontal and vertical positionsindr awSt ri ng() .

Here' sthe code we'll use in PaintHello:

g.drawString("Hello, applet!"”, 80, 50);

That'sall thereistoit! dr awSt ri ng() “draws’ the string into the applet.

For our next example, we'll 1ook at how to paint a shape into the applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 321

SimpleDraw.y, Version 1

Open11. 03 - paint circleinthelLearn JavaProjectsfolder. OpenSi npl eDr aw. 4, make the project,
then run this applet as you' re used to, by dropping the file Si npl eDr aw. ht ml onto the Metrowerks Javaicon.
When the applet runs, you'll see ared circle appear inside the applet. Figure 11.18 shows what this looks like (in

gray-scale, of course, though the circle really is red on the screen).

E[E= Applet Viewer: SimpleDraw.class =—}

applet started

[

FIGURE 11. 18 Our first version of SimpleDraw simply paints ared circle in the center of the applet.

That's all thereishere. Thisapplet isamost as simple as the applet that painted the string “Hello, applet!” in

the previous example. Let’ s take alook.

Stepping Through the Source Code

Open thefile Si npl eDr aw. j ava. Thisisyour first exposure to the source code for the SimpleDraw applet you
played with in Chapter 4. Over this chapter and the next, we'll build up this applet until it has all the functionality you

saw in Chapter 4.

Barry Boone and Dave Mark Learn Java on the Macintosh 322

Like the PaintHello applet, this applet also only overridesthepai nt () method. This applet needs two

statementsto display thered circle. First, it must set the current drawing color to red; then it must draw the circle.

Thisfile starts by importing the Applet class and the classes in the awt package. We actually only need two
classesin the awt package—Color and Graphics—but it’s common to make the entire awt package available to an

applet, so we'll start adopting this technique for many of the sample applications.

i mport java. appl et. Appl et ;
i mport java.awt.*;

Then we defined the Applet subclass, which we'll call SimpleDraw.

public class SinpleDraw extends Applet {

Now to override thepai nt () method. You aready know how to do this:

public void paint(Gaphics g) {

Thepai nt () method will do two things. First, it will set the current drawing color. We'll use an instance
method defined for graphics objects called set Col or () todothis. We'll supply one of Java s predefined colorsthat
it makes available asaclassvariablein the Color class. Thiscolor will bered, and it’ skept in the class variable named

r ed that’sin the Color class.

g. set Col or (Col or. red);

Barry Boone and Dave Mark Learn Java on the Macintosh 323

And finally, we'll draw the circle. Java defines a method for graphics objectscalledfi | | Oval (). This
method takes four parameters: the first two are the top left and top right of the oval; the second two are the width and

hieght of the oval. The patternforf i I | Oval () is

fillOval (left, right, width, height);

Thisisshown in Figure 11.19.

;zg p= increasing x
left,top . _ _
] A
| height
increasing y

FIGURE 11. 19 Drawing anova usingfi | | Oval () . Thefirst two parametersforfi | | Oval () determinethe

oval’sleft and top; the second two parameters determine the oval’ swidth and height.

Here' s the code we'll use in SimpleDraw:

g.fillOval (115, 55, 40, 40);

Barry Boone and Dave Mark Learn Java on the Macintosh 324

By using the same value for the width and height of the oval, we' ve drawn acircle. The placement of the cir-
cle (at left = 115 and top = 55) was chosen to center the circle based on the dimensions of the applet supplied in the

HTML file, and also taking into account the diameter of the circle.

SimpleDraw.y, Version 2

Now it’stime to react to user input events, such as mouse clicks. Enough of these passive applets! In thisversion,

we'll move the painted circle to wherever the user clicks.

Open11.04 - circle at clickinLearnJavaProjectsand open Si npl eDr aw. p. After making
the project, drop Si npl eDr aw. ht m onto the Metrowerks Javaicon. Now start clicking away on the applet. The
red circle doesn't just stay in one place, like it did in the previous applet. Thistime, it hops over to draw where you

clicked! Figure 11.20 shows where the circle appears when you click near the top right of the applet.

=E= Applet Viewer: SimpleDraw.class —=}

applet staried

Barry Boone and Dave Mark Learn Java on the Macintosh 325

FIGURE 11. 20 Our second version of SimpleDraw paints ared circle wherever the user clicks with the mouse.

Thisillustrates how applets can respond to user-generated events, such as mouse clicks.

This version of SimpleDraw might seem very similar to the previous one, but we' ve changed things around

quite abit. Let'slook at what's new.

Stepping Through the Source Code

Open Si npl eDr aw. j ava. There are two classes defined here, the applet and a class called Circle. The applet
defines three methods. Each of these methods overrides a method defined by the Applet classitself. The first method,
i nit(), createsacircleto start with. The method nrouseUp() detects where the user has clicked. The method

pai nt () redrawsthecircle. For the Circle class, we defined two methods. Thefirst drawsthe circle. The second ini-

tializes new circles.

Thefile starts out by importing the Applet class aswell asthe classesin the awt package. Again, we need the

Graphics and Color classes. We also need aclass called Event that’s defined in awt.

i mport j ava. appl et. Appl et ;
I nport java.awt.*;

The SimpleDraw applet defines an instance variable to keep track of the current circle.

public class SinpleDraw extends Applet {

Circle C;

Barry Boone and Dave Mark Learn Java on the Macintosh 326

Inthei ni t () method, we create acircle, assign it to the applet’ s instance variable namedc, and initialize
thecircle’ sposition to 50, 50 (that is, 50 pixels from theleft and 50 pixelsfrom the top of the applet). We have written
the Circle class so that when the circle redraws, it will offset itself so that 50, 50 becomes the center of the circle,
rather than the top-left. To initialize the circle’ s position, we use an instance method supplied by the circle called

initialize().(Welllookatinitialize() inamoment.)

public void init() {
c = new Circle();
c.initialize(50, 50);

Whenever the user clicks the applet with the mouse, Javawill invoke a number of applet methods to tell the
applet that an event occurred. One of these methodsisnouseUp() , and we can override this method to find out
wherethe user clicked, since thisinformation is passed in as parameters. W€'ll create anew circle, justasini ni t ().
Thistime, however, wewon’'t hard-code the circle’ s position to 50, 50. We' Il usethe x and y values of the mouse click

determine this position.

publ i ¢ bool ean nouseUp(Event e, int x, int y) {
c = new Grcle();
c.initialize(x, y);

Now that we've defined anew circle, we have to tell the applet to redraw itself. We can do this by invoking

repaint().

repaint();

Barry Boone and Dave Mark Learn Java on the Macintosh 327

SincemouseUp() returnsabool ean value, we havetoreturnt r ue or f al se. The return value indi-

cates whether this event has been handled or not, and indeed we have handled it. So, we can returnt r ue.

return true;

Thepai nt () method asksthe circleto redraw itself. We pass the graphics object to the circleto help it get

the job done.

public void paint(Gaphics g) {
c.draw(g);
}

The next step isto look at the Circle class. From the appl et, we can see the Circle defines two instance meth-

odsiinitialize() anddraw() . Let'stakealook.

The Circle class starts out by defining three instance variables. These will be used to keep track of the cir-

cle'scolor and center.

class Circle {
Col or color;
int Xx;
int y;

Barry Boone and Dave Mark Learn Java on the Macintosh 328

Thedr aw() method isvery similar to what you saw in the previous version of SimpleDraw in the applet’s
pai nt () method. dr aw() isour own custom method. It takes one parameter, the graphics object provided to the
applet by Java, and uses this graphics object set the current color and draw the circle. Notice that we offset the circle
by half the circle’ s diameter (that is, by itsradius) so that the x and y values become the center of the circle, rather

than the top left of the circle.

void draw(Graphics g) {
g.setCol or(this.color);
g.fillOval (this.x - 20, this.y - 20, 40, 40);

Theinitialize() method setstheinstance variables for the circle. The circle's color is aways set to
red, and the x and y values are set to the position of the user’s mouse click (which ispassed into thei ni ti al -

i ze() method asthex andy parameters).

void initialize(int x, int y) {
col or = Col or.red;
this.x = X;
this.y =vy;

Barry Boone and Dave Mark Learn Java on the Macintosh 329

SimpleDraw.y, Version 3

So far, the SimpleDraw applet isdoing alot. Namely, it's painting and responding to user input events. Now, let’s put

in a couple of user interface components to really start to give the user some control over the proceedings.

Open11. 05 - sinple drawinLearnJava Projects. Open Si npl eDr aw. 1 and make the project.
Drop Si npl eDr aw. ht m onto the Metrowerks Javaicon. Y ou' Il notice the applet that appears now has two choice
lists. Thefirst provides the shape choices of “Circle’ and “ Square.” The second offers the color choices of “Red,”

“Green,” and “Blue.”

At first, the applet worksjust likein the previous version. The default shapeis circle, and the default color is

red. The applet displays ared circle wherever the user clicks. Thisisshownin Figure 11.21.

== Applet Diewer: SimpleDraw.class = |

| Circle «] | Red |

applet started

&

FIGURE 11. 21 Our third version of SimpleDraw allows the user to define whether to draw acircle or asquare, and
in what color, wherever the user clicks with the mouse. This illustrates creating user interface components and

displaying them in an applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 330

However, in this version, the user is not limited to red circles. By using the choice lists, the user can choose
to draw agreen circle, or ablue square, or any combination of shape and color. Drawing ablue square is shown in

Figure 11.22.

E[@= Applet Viewer: SimpleDraw.class =—=

| Square + | | Blue |

applet started

[

FIGURE 11. 22 Here, the user has chosen to draw a blue square and has clicked in the appl et to draw this shape.

Let'slook at the source.

Stepping Through the Source

Let’slook at the classes that define the shapes first, and then back-track to the applet. The Circle and Square classes
are organized similarly to the hierarchy we developed in the Sample Programs section in Chapter 10. Y ou might recall
that we created an abstract Shape class to act as the superclassto a Circle and Square class. We'll do the same thing

here.

The shape class defines common variables to the Circle and Square classes. Theseinclude the shape' sradius,

color, and x and y positions. Since the radius will not change, it can be declared to be a class variable that'sf i nal .

Barry Boone and Dave Mark Learn Java on the Macintosh 331

abstract class Shape {
static public final int shapeRadius = 20;

Col or col or;
i nt X;
I nt Y;

The Shape class also definesan abst r act method called dr aw() . This means that the subclasses of
Shape—the Circle and the Square—will have to implement this method. By defining this method here, we enable the

dr aw() method to be invoked using variables declared as instances of class Shape, which we' [l want to do in the

applet.

abstract void drawm G aphics g);

Declaring thisabst r act method meant we had to declarethe classasabst r act , aswell. This prevents

us from instantiating the Shape class directly; instead, we'll end up instantiating its subclasses, the Circle and Square.

The definitions for the Circle and Square classes can be fairly smple, and you’ ve seen similar code already.
These classes only define one method, a new method called dr aw() . The Circle and Square set the current color to
what they’ ve stored in their instance variable, and then draws the appropriate shape, centered at the x and y positionin

their instance variables.

class Circle extends Shape {
void draw(Graphics g) {
g. set Col or (this.color);

Barry Boone and Dave Mark Learn Java on the Macintosh 332

g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

}
}
cl ass Square extends Shape{
voi d draw Graphics g) {
g.setCol or(this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadi us,

shapeRadi us * 2, shapeRadius * 2);
}
}

Thefileitself starts out in the usual way, by importing the Applet class and awt classes.

i mport java. appl et. Appl et ;
i mport java.awt.*;

Asbefore, the applet overrides three methods: i ni t (), pai nt (), and nouseUp(), and we'll look at

each of these methods in turn.

The applet starts by declaring three instance variables. The first enables the applet to keep track of the cur-
rent shape that the user has drawn. The next two keep track of the choice components that contain the shape and color

choices. (We'll create these choicesinthei ni t () method.)

public class SinpleDraw extends Applet {
Shape current Shape = nul | ;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

Barry Boone and Dave Mark Learn Java on the Macintosh 333

Thevariablecur r ent Shape issettonul | initially. Thisletsthepai nt () method know later on not to

try to draw a shape until the user has actually defined one.

User interface components are often created inthei ni t () method. We'll use this approach to create the
choices for the shape and color. Creating choice components are fairly straightforward. There is asimple, three-step

process:

1. Create anew choice object.
2. Usethemethod add! t en{) to add a string to the choice representing one of the choices.

3. Add the choice object to the container where it will appear (in this case, the container is the applet).

Here'sthei ni t () method and the code to create the choices.

public void init() {

shapeChoi ce = new Choice();
shapeChoi ce. addltem("Circle");
shapeChoi ce. addl t em(" Squar e") ;
add(shapeChoi ce) ;

col or Choi ce = new Choi ce();
col or Choi ce. addl ten(" Red") ;
col or Choi ce. addl ten{" G een");
col or Choi ce. addl t en(" Bl ue");
add(col or Choi ce) ;

The default layout manager for the applet isaFlowLayout. Thisisfine for what wewant. A FlowLayout will
arrange the components going from left to right, starting at the top of the applet. If there is no more room to place a

component along the first row, the FlowL ayout will start asecond row. If it runs out of room on the second row, it will

Barry Boone and Dave Mark Learn Java on the Macintosh 334

start athird row. In the end, each row will be centered. With the applet sized asit is according to the width in the

HTML file, the two choicesfit easily in the first row along the top of the applet.

Thepai nt () method doesn’t do any drawing itself, but del egates that task to the shape. If thereisacurrent
shape (that is, if theinstance variable cur r ent Shape isnot equal to nul 1), then the pai nt () method invokes
that shape’'sdr aw() method. We'll passthedr aw() method the graphics object so that it can set the current color

and draw the appropriate shape (acircle or square, depending on the object).

public void paint(Gaphics g) {
if (currentShape != null)
cur r ent Shape. draw(g) ;

All that remainsisto handle user input events. Again, all we haveto doisoverridenouseUp() . Here'sour
approach. When Javartells us the user has just clicked the mouse, we'll find out the current choice in the shape and
color choice components. Then we'll find out the color to use, create the appropriate shape, and initialize the new

shape. Here we go:

publ i ¢ bool ean nouseUp(Event e, int x, int y) {
Col or color;
String shapeString = shapeChoi ce. get Sel ectedl ten();
String colorString col or Choi ce. get Sel ectedltem();

WEe Il use the variable color to hold the color in which to draw the new shape. By using the method get Se-
| ect edl t en() , we veretrieved the string representing the user’ s current choices as displayed in each of the choice

components.

Barry Boone and Dave Mark Learn Java on the Macintosh 335

Now let’s determine the color in which to draw this new shape. We need to obtain the appropriate color
object based on the string we retrieved from the choice object. What we need to do istest each string, seeif it isone
of the three colors, and when we' ve identified the color represented in the string, assign the variablecol or to the

matching color.

if (colorString.equal s("Red"))
col or = Col or.red;

else if (colorString.equals("Geen"))
col or = Col or. green;

el se
col or

Col or. bl ue;

(Notice at the end we could just assume the color would be blue if it wasn't red or green.)

Now we do a similar thing with the shape. If the string in the shape choice is“ Circle,” create anew circle.

Otherwise, the string must be “ Square,” so we create a new sguare.

if (shapeString.equals("Crcle"))
current Shape = new Circle();
el se
current Shape = new Square();

Noticethat we're creating a Circle or Square instance and assigning it to an instance variable defined to hold
a Shape. Since circles and squares are subclasses of shapes, thisis perfectly legal. If we did not use inheritanceto cre-
ate a common shape superclass, we would need to have duplicate variables and code to handle the two different class

types. With one superclass, we can combine the variable and code into one.

Barry Boone and Dave Mark Learn Java on the Macintosh 336

Next, we initialize the values for the new shape (its color that we determined above, and the location of the

mouse click as passed into this method).

current Shape. col or = col or;
current Shape. X = X;
current Shape.y = vy,

All that'sleft to doisissuear epai nt () andreturnt r ue, indicating we handled this event.

repaint();

return true;

That'sall we'll do with SimpleDraw for now. In the next chapter, you'll learn how to keep track of all of the
shapes the user created—that is, each shape made with each click—and you'll redraw all these shapes each time the

applet repaints.

Payroll.p

The next applet, Payroll, shows how you can work with keyboard input. We'll create three text fields and respond to
events generated by these text fields. We won’t do anything with the text the user entered until the next chapter, when
you'll learn more about working with data. But we'll start the Payroll applet here, arranging the user interface and

recognizing when the user has pressed enter in atext field.

Barry Boone and Dave Mark Learn Java on the Macintosh 337

Open11. 06 - payroll inlLearnJava Projects, open Payr ol | . i, make the project, and drop Pay-
rol | . ht ml ontothe Metrowerks Javaicon. The Payroll applet will appear. It’ s user interface consists of two col-
umns and four rows. The first column on the |eft contains labels that identify what each row is about. The first three
rows on the left contain text fields that allow the user to typein integers using the keyboard. Thereisalabel in the
fourth row, second column which is blank for now but will eventually be used to display the employee’s earned

income. This arrangement is shown in Figure 11.23.

Eljg Applet Diewer: Payroll.class §|

Ermployes number:
Hourly wage:
Hours worked:

Earned income:

applet started

&

FIGURE 11. 23 The Payroll applet arrangesits display in agrid of two columns and four rows. The first column
displayslabelsto identify the componentsin the second column. Thefirst three rowsin the second column contain
text fields that the user can type into. The fourth row in the second column contains alabel that will display the

employee' s earned income.

To enter text into one of these text fields, click the text field, enter a number, and press enter. Figure 11.24

shows what the applet 1ooks like when the user has entered some datainto it.

Barry Boone and Dave Mark Learn Java on the Macintosh 338

[EE==— Applet Diewer: Payroll.class

Employes number: 101
Hourly wage: 15
Hours worked: 45

Earmed income:

applet staried

[

FIGURE 11. 24 When the user types a number into one of the text fields and presses the return key, the appl et

detects the event and writes a message to the Java Output window.

At the moment, all this applet does is detect the event generated by pressing enter. When the applet detects
this event, it writes a message to the Java Output window indicating it has identified which text field the user entered

text into. Figure 11.25 shows a sequence of such messages.

Employes number
Hour ly wage
Hour=s worked

FIGURE 11. 25 The messages displayed in the Java Output window when the user presses enter in each of thefields

in succession.

In the next chapter you'll turn thisapplet into afully functional database. L et’ swork our way there by check-

ing out the source code for how these components were arranged.

Stepping Through the Source Code

The applet begins by importing the Applet class and the awt package, as usual.

Barry Boone and Dave Mark Learn Java on the Macintosh 339

i mport java. appl et. Appl et ;
i mport java.awt.*;

The applet defines four instance variables to identify each of the components in the second column. These

components include the three text fields and the label that we'll use later.

public class Enpl oyeeAppl et extends Applet {
TextField textFiel dEnpl oyee;
TextFiel d textFiel dWage;
TextField textFieldHours;
Label | abel Ear ned,;

We create the user interface in thei ni t () method. Since we want an arrangement of four rows and two
columns, we set the layout manager for the appl et to be an instance of class GridLayout. Weinitialize thisinstance so

that it is set to four rows, two columns.

public void init() {

/'l Arrange the user interface in a grid.
set Layout (new Gi dLayout(4,2)); // 4 rows, 2 colums

Now we begin adding components to the applet. The layout manager will ensure that the components are
arranged row by row, first filling in column one, then column two, then column one for the next row, then column two,
and so on. For each row, we'll create alabel to identify the row. We'll put thislabel in the first column. Then we'll

create anew text field, set to be 20 columns wide, and we'll add thistext field to the applet. (The value of 20 columns

Barry Boone and Dave Mark Learn Java on the Macintosh 340

wideisfairly arbitrary, but this should be large enough to hold our values for the employee number, salary, and hours

worked.) The GridLayout will complete the row by putting the text field into the second column before moving to the

next row.

/1 1st row

add(new Label (" Enpl oyee nunber:"));

t ext Fi el dEnpl oyee = new TextFiel d(20); // 20 colums w de
add(t ext Fi el dEnpl oyee);

/'l 2nd row

add(new Label ("Hourly wage:"));

t ext Fi el dWage = new TextFiel d(20); // 20 colums wi de
add(t ext Fi el dWage) ;

/1l 3rd row

add(new Label ("Hours worked:"));

text Fi el dHours = new TextFi el d(20); // 20 colums w de
add(t ext Fi el dHour s) ;

The fourth row is alittle different, in that we place a blank label at the end.

/'l 4th row

add(new Label ("Earned i ncome:"));
| abel Earned = new Label ();

add(| abel Ear ned) ;

To detect input events, we'll override the method called act i on() . AswithnmouseUp() , this method

returns abool ean indicating whether or not it handled the event. It takes two parameters. Thefirst is an object rep-

Barry Boone and Dave Mark Learn Java on the Macintosh 341

resenting the input event. The second is an object representing the action that’s occurring, which wewon’t usein this

method.

Here' swhat we' [l do. We'll usetheinstance variablenamedt ar get in the event object to identify whether
the input event we' re handling occurred in one of the three text fields. Since we saved the text field objectsin the
applet’ sinstance variables, thisis an easy check to make. If one of these text fields does match up with the target of
theinput event, we' I write asimple message to the Java Output window to indicate we have identified the text field in

which the user pressed enter.

publ i c bool ean acti on(Event e, Object arg) {
if (e.target == textFiel dEnpl oyee) {
System out . printl n("Enpl oyee nunber");
} else if (e.target == textFi el dWage) {
Systemout. println("Hourly wage");
} else if (e.target == textFieldHours) {

System out. println("Hours worked");

To determinewhat valueto return (t r ue or f al se), we'll pass this method up to our superclass and let the

default behavior take over.

return super.action(e, arg);

Barry Boone and Dave Mark Learn Java on the Macintosh 342

Though we haven’t done so yet, we intend to make use of an object that maintains information for each
employee. Each employee object will maintain the employee’ s number, hourly wage, and hours worked. Each
employee will also be able to calculate its own earned income. Here' s how we'll define the Employee classto handle

these chores.

cl ass Enpl oyee {
i nt i dNunber;
i nt hourl yWage;
i nt hour sWor ked;

i nt earnedl ncome() {
return hourl yWage * hour sWrked;
}

Once you learn how to work with datain Chapter 12, we'll be able to make this applet really come alive.

Review

This chapter showed you how to put together a user interface. Y ou saw how to paint on the screen using a graphics
object. You learned what components Java makes available to you and how to use some of the more common compo-
nents to interact with the user. Y ou learned how to arrange these components into containers, and you learned about

the role of layout managersin arranging your components inside of containers.

Barry Boone and Dave Mark Learn Java on the Macintosh 343

Y ou also learned that your applet itself is a container, which alows you to add new components directly to
your applet. The applet uses a FlowLayout as its default layout manager, though you can also change this default to

another type of layout manager if you want to.

Y ou learned about events, which are generated when the user interacts with your applet. By detecting when
the user moves the mouse or clicks abutton, you can execute your own code to make things happen. For example, you

saw how to detect when the user clicks the mouse to create a new shape at the location of that mouse click.

What's Next?

We re beginning to reach the limit of what we can do based on the data types we learned about so far. We need better
ways of working with data, organizing data, and keeping track of the objects we create. That’s what the next chapter
isal about. Once you work through Chapter 12, we'll be able to complete the SimpleDraw and Payroll applets we

started here.

Barry Boone and Dave Mark Learn Java on the Macintosh 344

CHAPTER 12 Working With Data

Y ou already learned about variablesin Chapter 6, and you’ ve been working with data since then in your methods and
objects. You'velearned abouti nt variables, which hold integers, and bool ean variables, which holdt r ue/f al se
values. This chapter provides more details about integers and booleans. It aso discusses other types of data, such as
floating point numbers and characters. You'll learn how you can turn the characters users type with the keyboard,
which are represented in Java as string objects, into numbers that you can store using ani nt variable. Thisisan
important type of conversion to be able to perform, because variables that expect to holdi nt values cannot hold
string objects. Performing this type of conversion also means being able to respond to error conditions, which you'll

learn how to do here in Chapter 12.

In addition, this chapter introduces a number of classes supplied by Javathat you can use to help manage the
datain your applets. These classes, Vectors and Hashtables, will enable us to finish the SimpleDraw and Payroll

applets we started in Chapter 11.

To kick off this chapter, let’s start with the types of datayou’ ve already seen and discuss more details about

storing integers.

Integer Data

In addition to the datatypei nt , which you will use most often to store integers, there are three other data types that
also store integers. The difference between these different data types is the size of the number that they can maintain,
and correspondingly, the amount of memory in the computer they need to store their data. The larger the number, the

more memory they need in the computer.

Barry Boone and Dave Mark Learn Java on the Macintosh 345

byte

byt e datatypes areintegersthat can rangein value from-128 to 127. byt e valuestake up the least amount of room

in the computer (they only require one byte, as you might have guessed).

When dealing with only afew integer variablesin your entire program, it’s not that important to worry about
whether a particular variable takes up one byte of memory or alittle bit more. But let’s say you're General Motors,
and you are using the applet we discussed earlier to maintain payroll for your employees. If you need to keep track of
an integer value for each employee that will always fall within the range of byt e values (-127 to 128), it might save

you agreat deal of memory to use byt esinstead of i nt sfor your hundreds of thousands of employees.

Detail

A single byte represents a very small amount of memory in modern computers. For example, it'slikely that the hard
drive on your Mac holds many millions of bytes, perhaps five-hundred million or more (each meg of storage repre-

sents approximately one million bytes).

byt e variables are declared by using the keyword byt e, like this:

byt e nyByte;

You can usebyt e variablesjust likethei nt variables you’ re aready familiar with, assigning values to

them, using them in equations, and so on.

nyByte = 5;
myByte *= 2,
Systemout. println("The value of nmyByte is

+ nmyByte);

Barry Boone and Dave Mark Learn Java on the Macintosh 346

This code snippet would display "The value of myByte is 10" in the Java Output window.

short

short datatypestake up twice the memory of byt e values, though thisis still not very much in terms of your com-

puter’smemory. Touseashort value, just declareit usingshort asits datatype:

short nyShort;

long

| ong values take up awhopping eight bytesin your computer! (Which still is not that much, relatively speaking, but
it'sthe largest integer sizethereisin Java) | ong values are great for storing extremely large positive and negative
integers, but you should only use them when it’s possible you' I be dealing with such ahuge number. Ani nt value

can be aslarge as 2,147,483,647 and as small as-2,147,483,648, and this usually works out just fine.

Detail

If you want to know how big and how small your numbers can be for al ong, try running the following program:

public class M nMax extends java. appl et. Appl et {
public void init() {
Systemout.println("max int is " + Long. MAX VALUE);
Systemout.println("mnint is " + Long. M N _VALUE);

Barry Boone and Dave Mark Learn Java on the Macintosh 347

This uses a Java class called Long that provides behavior forl ong datatypes. This applet displays the larg-

est and smallest values that al ong value can contain.

Touseal ong value, just declare your variable asal ong:

| ong nylLong;

int
Wheredoi nt valuesfitin? Variablesdeclared asi nt take up four bytes. You'll amost awaysusei nt valuesin

your own programs. These offer a great combination of holding large positive and negative numbers, as well as

requiring half the memory of | ong values.

Floating Point Data

Calculationsinvolving integer values take place much faster in a computer than floating point calculations. However,
while integer values often get the job done, sometimes you' |l reach the limits of what an integer can offer. For exam-
ple, we' ve already seen some code snippets that would cause our data to be inaccurate if we used integers. One such

calculation involved finding the area for atriangle. Earlier, we defined a Triangle class like this:

class Triangle {
I nt base;
i nt hei ght;
int area() {
return (base * height) / 2

Barry Boone and Dave Mark Learn Java on the Macintosh 348

If atriangle’ sbase was 5 and its height was 3, thear ea() method would return 7. But clearly, thisis not
correct! Thetriangle' sareaisrealy 7.5. What we need is away to represent fractional values as well asinteger val-

ues. What we need are floating point numbers.

By the Way

Theterm "floating point" refers to the way numbers requiring a decimal point can maintain a varying degree of accu-
racy in the computer. For example, if you divide 10 by 3, afloating point number can be 3.3, 3.33, 3.333, and so on,
up to the level of accuracy desired, and depending on the amount of storage allocated to that floating point number. In
other words, the decimal point "floats." Floating point numbers are different from fixed point numbers (which Java
does not define). Fixed point numbers always maintain the same level of accuracy (for example, two places after the
decimal point). Floating point numbers, which do not have this constraint of afixed level of accuracy, are therefore

much more powerful and flexible.

There are two types of floating point numbersin Java. Aswith integer numbers, floating point numbers offer

atrade-off between the size of a number they can maintain and the amount of memory required to store that number.

float and double

The type of floating point number you may end up using the most isf | oat . f | oat valuestake up four bytes of
storage, just likei nt values. However, they can store incredibly large numbers. Up to a certain point, these numbers
are extremely accurate. However, for really large numbers, float val ues trade-off accuracy to keep up with how big the

number is actually getting.

For example, most numbersyou'll deal with, such 7.5 in our triangle example, or avalue like 1/8th, whichis

.125, are handled with complete accuracy. Numbers that range into the number of seconds that have elapsed since the

Barry Boone and Dave Mark Learn Java on the Macintosh 349

big bang, however, are less precise, though they are accurate as far as the order of magnitude is concerned. For exam-
ple, at 15 billion years and 5 seconds (to be exact), the number of seconds since the beginning of the big bang is

473,040,000,000,000,005. How would Java do with such a number? If you run this program:

public class Bi gBang extends java. appl et. Appl et {
public void init() {
float f = (fl oat)473040000000000005. O;
Systemout.println("el apsed seconds is " + f);

the Java Output window will contain the message:

el apsed seconds is 4.73040e+17

which is scientific notation for 4.73040 times 10 raised to the 17th power. Or put another way, it is 47,304
followed by 13 zeroes. Thisis pretty accurate—but what happened to the 5 at the end? Java had to drop off thefivein
order to maintain the order of magnitude of the number. If you would like more information, check out Dave Mark’s

Learn C on the Macintosh, from Addison-Wesley.

doubl e valuestake up eight bytes, and doubl e variables can store much larger values than even a
f |1 oat . Decimal numbersarel ong values by default. For example, if you have a number that you' ve written as

3.14, Java assumes this number isal ong value.

Barry Boone and Dave Mark Learn Java on the Macintosh 350

Conversions

Floating point numbers are represented differently in the computer than integer numbers. With thisin mind, what do

you think would happen if you tried to execute a code snippet like the one below?

int nmylnt;
fl oat nyFloat = 5;

nylnt = nyFl oat;

This code seems reasonabl e enough, but the Java compiler would complain about this! This code is request-
ing that data stored in avariable that can maintain very large and accurate numbers (f | oat) be assigned to avariable

that stores smaller and less-accurate numbers (i nt). The compiler will have none of this foolishness!

Thereisaway to assure the compiler that everything isall right, that it should go ahead and make the assign-
ment, even if it resultsin alossin accuracy. Thisis done by casting. To cast between datatypes, you need to write the
data type that you' d like the value to become, in parentheses, in front of the value itself. For example, to perform the

above conversion fromf | oat toi nt, you can write:

nylnt = (int)nyFl oat;

Thistells the compiler to go ahead and make the conversion from af | oat valuetoani nt, evenif the

number loses accuracy by dropping afractional value.

Y ou can also cast objectsin addition to data types. Here' sa quick example (you'll see lots of examples of

this throughout this book, and we'll provide some more later in this chapter):

Barry Boone and Dave Mark Learn Java on the Macintosh 351

doubl e areaO ACi rcl e(Shape s) {
if (s instanceof Circle) {
Crcle c =(Crcle)s; [/l cast a shape to a circle
return c.radius * c.radius * Math.Pl;
} else
return O;

This codefirst checks to seeif a shape that has been passed to it as a parameter isin fact acircle. If itis, this
shape object is cast to become a circle. We can then use this object just as we would use acircle, by accessing
instance variables and invoking methods. (This example also uses a class supplied by Java called Math to obtain the

valuefor pi.)

Division By Zero

Integer numbers and floating point numbers behave very differently at times. One such example is when dividing by
zero. Generally, dividing by zero is not something you would want to do on purpose. Mathematically, performing an

operation such as "10 divided by 0" is not defined. Usually, the result of such adivision istaken to be infinity.

With integer values, if you perform adivision by zero, Javawill generate an error when your program exe-
cutes. Thiserror will have the likely conseguence of displaying a nasty-looking error message and halting your pro-
gram in mid-stride. This is definitely not what you want to have happen! If ever in doubt when performing division
with integersthat might result in adivision by zero, you might want to check first that thiswill not occur, aswith code

that looks like this:

i f (divisor > 0)
rati o = di vi dend/ di vi sor;

Barry Boone and Dave Mark Learn Java on the Macintosh 352

This assumes, of course, that di vi sor, di vi dend, andr ati o areall declared asi nt values and that

di vi sor anddi vi dend have been initialized before this code executes.

With floating point values, however, dividing by zero will not cause Java to generate an error. Instead, Java
suppliesameaning to division by zero for floating point values: Theresultin Javafor such adivisionisinfinity. If you

want to, you can just go ahead and perform division with floating point numbers:

rati o = divi dend/ di vi sor;

If di vi sor isequal to O, r at i o will be positiveinfinity if di vi dend is positive, and negative infinity if
di vi dend isnegative. Javadefines a special variable called FI oat . PCSI TI VE_| NFI NI TY and another called

Fl oat . NEGATI VE_|I NFI NI TY that represents these values.

Boolean Data

Wecoveredbool ean data(t r ue/f al se values) inthe previous chapters. There are just acouple of detailsto recap

here.

Y ou cannot convert between anumber, suchasani nt or af | oat , and abool ean value. Thisisimpor-
tant to know, especialy if you have tried your hand at programming in some other language such as C. In C, for
example, you can assign numberstobool ean values. If the number is0, thebool ean vauewill bef al se. If the
number is anything other than O, the bool ean valuewill bet r ue. In Java, thiskind of thing just isn’t possible.
Instead, if you want to use a number to determine whether abool ean variable should contain the valuet r ue or

f al se, you have to use the number in an expression that evaluatestot r ue or f al se, such as:

bool ean isZero = (nmylnt == 0);

Barry Boone and Dave Mark Learn Java on the Macintosh 353

Inthisexample, theexpressionnmyl nt == Oisevaluated first. Thisyieldsaresult thatist r ue orf al se,
depending on the value of ny| nt . If nyl nt isequal to zero, this expression will evaluatetot r ue, andi sZer o
will bet r ue. If myl nt isanything other than O, such as 1, this expression will evaluate tof al se, andi sZer o

will bef al se.

Also, if you declare abool ean variable but do not assign avalue to it, its default value will bef al se.

Character Data

There' saspecia data type you can use to store characters, suchas’a, 'b’, or '$'. This data type is needed because
characters, clearly, are not numbers. The way you define a character datatype is by using the keyword char , like

this:

char nyChar;

Y ou can assign values using single quotes (unlike double quotes which are used with strings). For example,

to assign the character 'x’ tomy Char , you could write:

myChar = ' X’ ;

Barry Boone and Dave Mark Learn Java on the Macintosh 354

Normally, you'll use string objects to store text, but sometimes it’s more convenient to use char variables.
For example, each time the user hits a key on the keyboard, Java generates an input event. This event supplies your

applet with the character the user typed by passing your applet avariable declared aschar .

An example of when you might useachar inyour own program is when storing a selection of choices.
Let’s say you're keeping track of the size of a pizza ordered over the Web. Y ou want to know whether the individual
ordered asmall, medium, or large. Rather than keeping track of "magic numbers' inani nt variable, where you
might use 1 to represent small, 2 to represent medium, and 3 to represent large, you could instead defineachar vari-
ableanduse’S for small, "M’ for medium, and 'L’ for large. Now, just glancing at the data stored in this variable

makes it clear what the user has ordered.

In case you're curious: in Java, char variablestake up 2 bytes.

Objects

Asyou know, variables can refer to objectsin addition to maintaining values such as integers and floating point num-
bers. Y ou've already seen examples of variablesthat refer to objects. All you haveto do to declare an object that refers

to an object is to use the class name as the data type, such as:

Triangle t1;

or

Enpl oyee jpFinch; // fromHow to Succeed in Business...

Barry Boone and Dave Mark Learn Java on the Macintosh 355

The first example would be able to maintain an object that was an instance of class Triangle (or an instance
of asubclass of class Triangl€). The second example would be able to maintain an object that was an instance of class

Employee (or an instance of a subclass of class Employee).

There is one more thing to say at this point about variables that refer to objects. Y ou know that the default
value for anumber is 0, but what about the default value for an object? If you have avariable for an object that does
not actually refer to an object yet, it is set to the valuenul | . This allows you to do things like test to see whether a
variableisinitialized to an object or not. For example, say you have atriangle applet containing a method that
searches for a particular triangle. This method might be called sear chFor Tri angl e() and might be defined to

return atriangle object, like this:

Triangl e searchFor Tri angle() {
/'l Code to search for a triangle goes here.
}

What happensif sear chFor Tri angl e() doesn’t find the triangleit’s searching for? One option in this
situationisfor sear chFor Tri angl e() toreturnthevauenul | . This method would do so with a statement that

was written like this:

return null;

The code that invoked this method might be prepared for a possiblenul | value and could written as fol-

lows:

Barry Boone and Dave Mark Learn Java on the Macintosh 356

triangle nmyTriangl e;

nmyTriangl e = searchFor Tri angl e();
if (nyTriangle !'= null) {

/1 We found the triangle. Do somnething here.
}

This code shows that after searching for the triangle, we only execute the code that usesmy Tr i angl e if

nmyTri angl e hasbeen initialized to the triangle we were searching for.

Strings

We' ve been working with strings since we first started writing programs in this book. Everything written between
double quotesisastring in Java, and Java even supplies a class to manage the text inside a string. Java sclassis

called, naturally enough, String, and it is defined in the lang package.

By encoding text in the String class, you can manipulate and work with text very easily. The String class
supplies a number of methods for manipulating and searching for text within a string and for comparing different

strings to one another.

Creating Strings

Creating a string is easy to do in Java. We aready have seen examples of thisin Chapter 8 when illustrating how to

pass parameters to constructors. Here' s the standard way to create a new string:

Barry Boone and Dave Mark Learn Java on the Macintosh 357

String belushi = new String("Hanburger, hanburger, hanburger”);

Here, the string named bel ushi would maintain the data for the characters supplied in double quotes.

Warning

Strings are read-only! This meansthat if you do not supply text for a string when you create it, the string will never
have any text, because you can’twriteto it. Y ou can only read the text it contained when it was first created. There-
fore, you'll amost always supply text when you create a new string. If you want to change a string after you' ve cre-
ated it, you should use an instance of class StringBuffer instead of String. The StringBuffer classis described later in

this chapter.

System.out.printin() Explained

Now, you' ve reached a point in your studies of Javawhere you know enough to understand one of the very first Java

statements you learned in this book:

Systemout.println("Hello, world!'");

We left it at more or less amystery as to how this statement got its message to the Java Output window (that

is, to the standard output). Let’s clear up thislittle mystery and explain this line of code once and for al.

The primary thing you' re doing in thisline of code isinvoking an instance method named pri nt | n() .
This method takes one parameter, a string. When you pass quoted text as a parameter for astring, Javacreates astring

object for you. So, defining a method like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 358

public void printIn(String s) {
/'l print code goes here
}

and invokingpri nt 1 n() likethis:

println("Hello, world!'");

creates an object of class String with the text "Hello, world!" and assigns this new string to the parameter s

intheprintl n() method.

Theprintl n() method isdefined for instances of the class PrintStream (which isdefined in Java'sio
package). This method displays text in the standard output, which CodeWarrior maps to the window called Java Out-
put. Since pri nt 1 n() isaninstance method, you’'ve got to be able to get access to an instance of this classto
invoke this method. Rather than Java forcing you to create such an instance, Java' s System class, defined in the lang
package, defines such an object as one of its class variables. The name of the class variable in the System class that

refersto an instance of class PrintStream is caled out .

Now let’s put all the piecestogether. To get to a predefined instance of class PrintStream, you can write
Syst em out . Syst em out , then, refersto an object (an instance of class PrintStream). To invoke the instance
method called pri nt | n() that’'sdefined for instances of class PrintStream, you write Sy s-
temout. println().Andto passastring as aparameter, you can put the text in quotes and Java will create an
instance of class String and assign it to the string parameter in the method you' re invoking. And there you have it:

Systemout.println("Hello, world!"); indlitsglory!

Barry Boone and Dave Mark Learn Java on the Macintosh 359

Formatting Strings

You've aready learned that you can combine numbers with strings, asin

i nt scorelMets = 4;
int scorePirates = 3;

if (scoreMets > scorePirates)
String s = new String("The Mets beat the Pirates " + scoreMets
+ " to " + scorePirtes);

el se

String s = new String("The Pirates beat the Mets " +
scorePirates + " to " + scoreMets);

you can also use special characters to format what the string displays. For example, how do you think you

canwriteaquote (") in astring? If you tried to create a string like this:

String s = new String("Adam said, "Madam |’ m Adant'");

the Java compiler would complain about a syntax error, because it would have thought the string actually
read "Adam said, " and everything starting at and to the right of the letter M was amistake. In order to tell Javato

make the quote be a part of the string, you can use a backslash (\) in front of the quote, like this:

String s = new String("Adam said, \"Madam |’ m Adam"");

Barry Boone and Dave Mark Learn Java on the Macintosh 360

There are also some formatting commands you can put into your strings using a combination of a backslash
and aletter. Here are two that you might find the most useful. To make Java start displaying text on the next line, we
can use\ n (the"n" standsfor "new line"). For example, we can write out the colors of the rainbow like we did earlier,

but thistime we can use just onepri nt | n() statement instead of seven by using\ n, like this:

System out. println("red\norange\nyel | owh ngr een\ nbl ue\ ni ndi go\ nvi o
et");

Another special formatting command you might find useful is atab stop, written as\ t (the "t" standsfor

"tab"). You can align text using the tab stop. For example, say you have an Employee class defined like this:

cl ass Enpl oyee {
String nane;
String ssn

Y ou might want to print out each employee’s name and social security number so that they all line up in two

columns. Y ou can do so by writing code that |ooks something like:

Enpl oyee e;
/'l 1oop through all the enpl oyees
/'l retrieve a particular enployee and assign it to e

Systemout.println(e.name + "\t\t\t" + e.ssn);

Barry Boone and Dave Mark Learn Java on the Macintosh 361

Thisline of code writes out the name of the employee, then moves over three tab stops, and then writes out

the employee’ s social security number.

StringBuffers

If you want to be able to modify a string, you should use an instance of class StringBuffer. String instances are read-

only; StringBuffer instances are read/write. Y ou can create a new StringBuffer object just as you do for Strings:

StringBuffer sb = new StringBuffer("l |like Paris ");

To add text to the end of sb, you can use the method append() , asin:

sb. append("in the springtine.");

StringBuffer is not areplacement for a String. That is, StringBuffers are not the same as Strings, only with
the ability to write to them. Thisisimportant, because most methods use Strings as parameters. If you have defined a
StringBuffer, you've got to convert the StringBuffer to a String before you can use it where a String is expected. The

way you do thisisto usethe methodt oSt ri ng(), likethis:

String s = sb.toString();

Then, you can use the variable s, above, wherever you need to use a string.

Barry Boone and Dave Mark Learn Java on the Macintosh 362

The Integer and Floating Point Classes

There are two types of datain Java. There are ssmple data types, which are the integers, floating point numbers, bool-
ean values, and character data (not strings) that we covered in thefirst part of this chapter. Then there are the objects,
which is everything else. You' Il almost always use the simple, non-object datatypesof i nt andf | oat when you
want to use numbers. With variablesdeclared asi nt andf | oat , you can use al the arithmetic operators to perform

calculations, compare values, and control the flow through your code.

Sometimes, however, you want your numbers to have some behavior. The most common exampleis convert-
ing a number to a string object. It would be great to be able to invoke a method for the number that would cause it to
return a string object representing its value. Another exampleisthe ability to tell what the largest and smallest value

isthat a number can hold.

To do things like this, Java supplies classes that maintain a number and provide behavior for that number.
When you make an instance of one of these classes, you provide the number that this object will maintain. These
objectsarejust like all of Java s other objects; you can’t use them in calculations or for comparisons, like you can do

with regular numbers. But they do provide methods to help you do things.

There classes are called Integer, Long, Float, and Double. Objects created from these classes are great for
maintaining a value and providing methods to manipulate that value. For example, you can create a new instance of

class Integer by writing:

I nt eger nunber = new I nteger(10);

If you want a string representing the value in this integer instance (say to display the value inside a text

field), you could use the instance method t oSt ri ng() , likethis:

Barry Boone and Dave Mark Learn Java on the Macintosh 363

String s = nunber.toString();

Now, s would contain the text "10".

These classes a so define some very useful class variables and class methods. For example, they define class
variables that hold the maximum and minimum values that these data types can store. (These variables are called
MAX_VALUE and M N_VALUE.) These classes also provide methods which we' |l use in the next section to convert a

string into an instance of an Integer, Long, Float, or Double.

Handling Exceptions

Let’s say you want to convert a string into a floating point number. Fortunately, Java provides a class that does this,

and it's easy to use. You can find the value of astring named s that represents a floating point number by writing:

float f = Float.valueO (s).fl oatVal ue;

This works fine as long as the string says something like “100.51” or “-.003" or some other valid floating
point number, but what do you think Java does if the conversion runs into trouble? For example, what happensif the
string contains “ 100A” or “1.2.3"? These are not valid floating point numbers, and Fl oat . val ueO () would not

be able to perform the conversion.

In situations like this, the designers of Java had an interesting problem to solve. They could have displayed a

message to the standard output when something like this occurred (in CodeWarrior, that would have made a message

Barry Boone and Dave Mark Learn Java on the Macintosh 364

appear in the Java Output window). But FI oat . val ueOf () returnsavalue—in particular, an object representing a

Float instance. What value should this method return if there’ s an error? This method could have returned nul | , but

then what would happen when the code hit nul | . f | oat Val ue() ? The code would have fallen apart at the seams!

The solution to a Java method encountering this kind of problem liesin not handling the error at all, and

instead just reporting that an error occurred. That is, the method doesn’t display an error message, or returnnul | or

any other value that might indicate an error. What the method does do isto tell the method invoking it that something

went awry. It does this by throwing an exception.

Throwing an Exception

The terminology “throwing an exception” isvery visual, and it is agood image. If something goes wrong way in the

bowels of Java's own methods, Java creates an object based on a class called Exception (or on one of Exceptions sub-

classes, some of which we'll mention soon) and throws this object back to the code that invoked it. Thisis depicted in

Figure 13.1.

Y our code

A S

invokes

FIGURE 13. 1 Java creates and throws an exception object if it runsinto a problem that it can’'t handle.

Java' s code
something goes wrong here

Java creates an exception object

| ~ and throws it back to you

Barry Boone and Dave Mark

Learn Java on the Macintosh

365

Catching an Exception

So what do you think you have to do when Java throws you an exception? Right! Y ou have to catch it. There’'s a spe-
cial keyword called cat ch that you can use for just this purpose. Here' s the way it works.
1. First, you try to execute some code that might cause an exception to be thrown.

2. Then, you usethe cat ch keyword to catch any exceptions that Java actually throws. If Javadoesn’t throw an
exception, then everything' s fine, and you can continue along as normal. If Java does throw an exception, you
need to execute special code. Thisis the code that followsthecat ch keyword. Here' s an outline of what this

looks like in Java code:

try {
/'l do sonething here that m ght throw an exception
} catch (Exception e) {

/'l do sonething appropriate for the error that occurred

For example, when performing the conversion from a string to afloat value, thet r y block would contain

code that performs the conversion and might cause the exception to be thrown.

String s = new String("1.23");
float f;

try {
f = Float.valueO(s).floatVal ue();

Systemout.println("f is " + f);
} catch (Exception e) {

Barry Boone and Dave Mark Learn Java on the Macintosh 366

f = (float)0.O0:;
}

Systemout.println("W’re past the try-catch statenents");

Here, we try to execute the conversion code. If everything goes fine with the conversion, f would be
assigned thef | oat value, and the very next line of code to execute would writetheline"f is1.23" to the Java Output
window. Following that, the very next line of code to execute would write "We' re past the try-catch statements' to the

Java Output window.

However, if Javafound that s did not contain avalid floating point number, it would throw an exception. In
that case, the statement that wrote the value of f to the Java Output window would never execute Instead, Javawould
throw an exception, and our cat ch statement would execute next. Thiswould assign the object that Javathrew to the
variable e, and we would set f to 0.0. The next line of code to execute after settingf to 0.0 would write "We're past

the try-catch statement” to the Java Output window.

It's helpful in learning aboutt r y- cat ch statementsto comparethemtoi f - el se statements. How does

thet r y- cat ch shown above compare with the following code?

if (noError()) {
f = Float.valueOr(s).fl oatVal ue();
Systemout.println("f is " + f);
} else {
Exception e = errorType();
f = (float)O.O0;

Isthisthe same asthet r y- cat ch? Not quite. This saysthat if the method noEr r or () returnst r ue,

then execute thei f block. Otherwise, execute theel se block. Thisisvery different thanthet r y- cat ch state-

Barry Boone and Dave Mark Learn Java on the Macintosh 367

ments, but in very subtle ways. First, thet r y keyword isnot ani f . Thereis no expression that is evaluated to see if
we should execute the codeinthet r y block. Wejust start executing it. We keep on executing the statements, line by
line, and if there are no errors, we branch around the cat ch block (which isjust like branching around the el se
block in the code above). However, if in the course of executing the statementsinthet r y block thereis an error, we
jump immediately to the cat ch block. In the code above, we assigned the variable e to the type of error that
occurred, and thisis similar to thecat ch block, where the error that occurred is assigned to an object with the name

e (though you can name this variable anything you want to, such asx, except i on, or er r or —not just e).

Types of Exceptions

Java defines lots of subclasses of the Exception class. The purpose of these different types of exceptionsisto be able
to identify exactly what went wrong. For example, if you try to use a string that’ s supposed to contain a number but
contains something that’ s not anumber, Java doesn't just through an instance of class Exception; it throws an instance

of asubclass of class Exception, called NumberFormatException.

Here' sanother example. If you try to create a new object but there is no more memory in the computer, Java
will throw an instance of OutOfMemoryError. Java defines many, many types of exceptions. Since they all descend
from class Exception, you can always just catch an instance of class Exception, and you'll be fine. But you can also

use the specific exception typein thecat ch block, asin:

catch (Qut O MenoryError error) {
/'l error handling code
}

The reason for supplying these different exception subclassesis to be able to distinguish between excep-

tions. Chapter 13 shows you how to do that.

Barry Boone and Dave Mark Learn Java on the Macintosh 368

How Do You Know If You Need to Handle an Exception?

The documentation filesfor Java' s classeslet you know if you need to handle an exception. Chapter 15 describes how
to read the HTML documentation for Java's classfiles. Y ou might have looked at these files already. If not, here'sa

sneak preview.

All of Java' s classes are defined using HTML filesthat you can look at in aWeb browser. Figure 12.2 shows

what the documentation looks like for one of the Integer class's constructor.

« Integer

public Integer(String =) throws HumberFormatException

Constocts an Integer object indtialized to the walve specified b the Sfring paraimeter. The
radix iz assuwmed o be 10,
Parameters:
3 - the 3fiing 10 be converted to an Integer
Throws: HumberFormaiException
If the Sting does not contain & parsable infeger.

FIGURE 12. 2 The documentation for one of the Integer class's constructor. This constructor takes a string object.

This constructor will throw an exception if the string does not contain avalid integer.

This constructor indicates that it will throw an exception if it cannot create an Integer object based on the

string supplied to it. For example, what would happen if you tried to create a number like this:

I nt eger nunber = new I nteger("Doo wop doo wop");

The Integer class would not be able to make heads or tails of this. Rather than creating any old number, it

throws an exception. The documentation indicates it throws an exception called NumberFormatException. If a

Barry Boone and Dave Mark Learn Java on the Macintosh 369

method or constructor indicates that it might thrown an exception, you must be prepared to catch it. (If you don't use
atry- cat ch block with amethod that might throw an exception, you'll know about it, because the compiler will
warn you about thisand won't let you compile the code.) So, the real way to create a new Integer instance based on a

string would be to write:

try {

I nt eger nunber = new I nteger("Doo wop doo wop");
} catch (Nunber For mat Exception x) {

Systemout.println("Gauranteed to execute in this case!");

So check the documentation to see if you need to handle an exception, especialy if the compiler tells you

that you do!

Arrays

Using individual variablesto keep track of data works fine—usually. For example, for the triangle example, using an
i nt variableto keep track of the base and ani nt variable to keep track of the height works perfectly fine. As
another example, if an applet class created atriangle object, it could keep track of the triangle by using avariable

declared like this:

Triangle t1;

Barry Boone and Dave Mark Learn Java on the Macintosh 370

Thisisfinefor onetriangle, but what happens if the applet needs to keep track of three triangles? This still

isn't so bad; the applet can declare three variables:

Triangle t1, t2, t3;

But you might begin to see where this could lead to problems. What if the applet needs to create 100 trian-

gles? Or 1,000 triangles? Does the program need to declare 1,000 variables, fromt 1 uptot 1000?

Thereis an easier way, and that way involves using an array.

What Are Arrays?

Arrays are collections of variables of the same type. When you declare an array, you indicate to the compiler that you
want to work with awhole set of variables, al of the same type. For the triangle example, you can declare an array
that holds 1,000 triangles. As another example, if you needed to keep track of 254 integers, you could declare an array
that holds 254 integers. Then, if you wanted to access a particular triangle or a particular integer, you would access

one of the elements of that array.

When you declare a variable to hold one integer, you tell the compiler to set aside enough memory to hold
that oneinteger. When you declare avariable to hold an array of a certain number of integers, you tell the compiler to
set aside enough memory to hold all of those integers, one right after the other. Figure 12.3 provides a high-level pic-
ture of what happens in your computer’ s memory when you declare one integer and when you declare an array of

integers.

Barry Boone and Dave Mark Learn Java on the Macintosh 371

Y our Computer’'s Memory

declare one integer - int

declareanarray of 4integers —— | int [int | int [int]

FIGURE 12. 3 Declaring one integer sets aside enough memory in your computer to hold one integer value.
Declaring an array of four integers (for example) sets aside enough memory to hold four integer values, one right

after the other.

Declaring an Array

When you declare an array, you define avariable that will represent that array. The way that you indicate you want to
declare an array of values, instead of asingle value, is to use square brackets. For example, to declare a variable that

will hold an array of integers, you write code like this:

int[] nylntArray,;

Style

There' s another notation that programmers often use for declaring arrays, and that is to put the square brackets after
the variable name, rather than after the data type. For example, it's perfectly legal to declare an array called ny | n-

t Arr ay that will hold an array of integers, like this:

int nylntArray[];

Barry Boone and Dave Mark Learn Java on the Macintosh 372

Programmers coming from other language, where thisis the only way to declare an array, often prefer this
syntax, since thisiswhat they’ re used to. However, this has a subtle disadvantage over the first method. The disadvan-
tage isthat the data type is not truly reflecting the type of variable you are declaring. For example, here are two vari-

able declarations:

int tenp;
int results[];

You can't tell what kind of variablest enp and r esul t arejust by looking at the datatype. Y ou’ve got to
look at thevariableitself, not at its datatype, and seeif the variable contains a set of square brackets at the end. In this
book, we'll use the approach of putting square brackets on the data type itself. In other words, our variable declara-

tions will look like this:

I nt t enp;
int[] results;

After you' ve defined the variable that will be used to reference the array, you still need to indicate how large
the array should be—that is, how many elements the array will contain. The way that you do thisis by using the same
new operator you' ve used before to create objects. Thistime, however, instead of using parentheses to indicate the
parameter list, you use square brackets and indicate how large to make the array. For example, here’s how you'd cre-

ate an array of four integers:

Barry Boone and Dave Mark Learn Java on the Macintosh 373

int[] nylntArray = new int[4];

This sets aside enough room in the computer to hold four i nt values. You'll usethevariableny| nt Ar r ay

to accessthese four i nt s (asyou'll seein amoment).

Thiskind of thing worksfor any type of datawhatever, including objects. For example, to declare an array of

1,000 triangles objects, you could write:

Triangl e[] theTriangl eLi brary = new Triangl e[1000];

One other thing that can be very useful in declaring an array is that the size of the array can be provided in a

variable. For example, instead of the statement above, you could write (aslong asnumlr i angl es isdeclared asan

integer):

Triangl e[] theTriangl eLi brary = new Triangl e[nunilri angl es] ;

Y ou might do this kind of thing, for example, if you need to calculate how large to make your array, and you
don’t know how large your array will be at compile time (for example, this might occur if you’ re reacting to choices

made by the user).

Barry Boone and Dave Mark Learn Java on the Macintosh 374

Accessing Elements in an Array

Once you have set aside enough memory for your array, you can put elements into the array and retrieve elements
from the array. Y ou access el ements in the array by indicating which element number you want, using notation like

this:

int onelnt = nylntArray[2];

This accesses the integer stored as element number two in an array of i nt sdeclared asnmyl nt Array.You

can also put valuesinto an array using this notation, such as:

nylnt Array[2] = 421,

Arrays can sometimes be tricky because of the way that elementsin the array are numbered. If you want the
first element in an array, you do not start at element 1. Instead, you start at element 0! Here's an example. What do

you think this chunk of code does?

int[] nylntArray = new nylntArray[4];

for (int i =0; i < 3; i++)
nylntArray[i] =1i;

Barry Boone and Dave Mark Learn Java on the Macintosh 375

Thefirst statement declares avariable that will hold an array of integers. It then allocates (sets aside) the
memory in the computer by using the new operator, and specifies how many i nt sthisarray will hold (in this case,

thisarray will hold 4i nt s).

The next statement sets up aloop from 0 to 3. The loop contains asingle statement. In that statement, we
access an element in the array and assign avalueto it. Thefirst time through the loop, i will be 0. We access element
0 and assign it the value of i (which is 0). The second time through the loop, i will be 1. We access element 1 and
assign it the value of 1. The third time, we assign the third element the value of 2. The fourth time, we assign the

fourth element the value of 3.

This chunk of code has accessed al the elements in the array—elements 0, 1, 2, and 3—and assigned each
element the value corresponding to its position in the array. Note that there is no element 4! Figure 12.4 shows what

the array of i nt slookslike in memory after they have been initialized by the loop we just went through.

eement0 elementl element2 element3
L0 [1 [2 [3 |

FIGURE 12. 4 An array holding four integersinitialized to values corresponding to their position in the array.

Warning

Starting with element 0 as the first element often confuses programmers new to arrays, and for good reason! It's only
natural for a person to think of the first element as starting in position 1. However, thisis not the way that computers

think. For a computer, thefirst positionis 0.

Where thisis most often an issueis when accessing the last element in an array. For example, it's quite natu-

ral for peopleto think of the last element in an array 1000 elements|ong as being number 1000. However, with arrays,

Barry Boone and Dave Mark Learn Java on the Macintosh 376

thisisnot the case! Since arrays start at 0, the last element in an array 1000 elementslong is at position 999. If you try
to access an element beyond the end of the array (say element 1000 in an array 1000 elements long), you will cause

Javato generate an error. In particular, Java will—you guessed it—thr ow an exception.

Determining the Size of an Array

To help you keep out of trouble by inadvertently accessing an el ement beyond the length of an array, Java provides a
way for you to test how big an array actually is. The way you find the length of an array namedny| nt Ar r ay, for
example, istorefer tonyl nt Array. | engt h. This represents the number of elements that the array can hold. For
example, what do you think the Syst em out . pri nt | n() statement will display in the Java Output window in

the following block of code?

int[] mylntArray = new int[52];

Systemout.printIn("nylntArray is " + nylntArray.length + "
el enents long.");

In this case, message "myIntArray is 52 elementslong” will appear in the Java Output window. To recap: an

array of i nt s52 elements long starts at element 0, ends at element 51, and can hold atotal 52 nt s.

These are al examples of one-dimensional arrays. One-dimensional arrays are good for holding datawhere
you want alist of things, such asalist of the distances you jog each day over the course of a month (which might be a
floating point array that is 31 elements long), or the list of test scores from each pupil in the class (which might be an

integer array whose length was equal to the number of studentsin the class).

But sometimes a one-dimensional array is not powerful enough to do the job. For example, how would you
maintain the squares on a checker board with a one-dimensional array? Perhaps you are maintaining whether a square

contains ared checker, ablack checker, or isempty: three values. Perhaps you want to storea 1 for ared checker, a2

Barry Boone and Dave Mark Learn Java on the Macintosh 377

for ablack checker, and a0 if the squareis empty (we'll ignore kings for now). Y ou would need eight arrays of inte-

gers eight elements long.

Working with all these arrays can be alittle awkward. What would really comein handy right now would be
an array of arrays—and fortunately, you can do thisin Java. Y ou can define an array of arrays for a checker board

like this:

int[][] checkerBoard;

Notice the double set of brackets? This means we want a two-dimensional array. What about a three dimen-

siona array for agame of 3D Tic Tac Toe? You would define it like this:

int[][][] ticTacToe;

To allocate the memory for our checker board (agrid of squares 8 by 8), you can write:

checkerBoard = new int[8][8];

Aswith al uninitializedi nt values, each element in the checker board starts out set to 0. To accessthe first
row, second column, you can writechecker Boar d[0] [1] . To accessthe very last square in the eighth row,

eighth column, you can writechecker Board[7] [7] .

Warning

Barry Boone and Dave Mark Learn Java on the Macintosh 378

Be careful not to try to access an element in an array that has not yet been allocated. For example, even though you

might have defined a variable that will hold an array, like this:

int[][][] ticTacToe;

don't start accessing elementsin the array until you've alocated it (by writingnew i nt [3] [3] [3]); if

you try to access an element in an array that has not yet been allocated, Java will thrown an exception.

Vectors

Arraysare great for maintaining a collection of items when you know how many itemsyou’ || need before you declare
the array. For example, if you need to determine the popul ation of the United States and you happen to know the pop-
ulation for each state, you can declare an array of integers, allocateit to 50 elements, and store each state’ s population

in each element. Then, you can loop through the array and add each entry in the array to your running total:

I nt popul ati on;
int[] state = new int[50];

/'l set each entry in the array to the popul ation of a state

/1l then find the total population
for (int i =0; i < 50; i++)
popul ation += state[i];

Barry Boone and Dave Mark Learn Java on the Macintosh 379

Thisisafinetechnique for afixed number of items. But what happens when you need to maintain a collec-
tion of items where the number of items changes over time? For example, for the SimpleDraw applet, the user is con-
tinually creating new shapes. We need away to keep track of these shapes without locking ourselvesinto a
predetermined maximum number of shapes. Java provides a class that allows us to work with alist of objects whose

size changes over time. Thisclassis called Vector and is defined in Java s util package.

Objects created based on Java' s Vector class can keep on growing in size as more items are added to the vec-
tor. Thisislike an array without limits—except that you'll still generate an error if you try to access an element num-

ber beyond the bounds of what the vector contains. Y ou can construct a vector object just like any other object:

Vector v = new Vector();

Then, you can use instance methods defined by the Vector class to access el ements in the vector. Here are

four methods you might use most often with vectors:
* Toadd anew object to the end of the vector, use the method addEl enent () . This method takes one parameter:
The object to add to the end of the vector.

* Toretrieve an object from the vector at a specific location within the vector, use el emrent At (') . This method

takes one parameter: The element to retrieve. This method returns the object at that |ocation.

¢ To change an object in the vector at a specific location within the vector, use set El ement At () . This method

takes two parameters: Thefirst is the object to place into the vector, the second is the entry in which to placeit.

e There'salso auseful method that allows you to tell how many objects a vector contains. This method is called

size().

Here' s an example of how the SimpleDraw appl et uses avector to keep track of all the circles created by the

user. First, the applet creates a vector objectini nit ().

Barry Boone and Dave Mark Learn Java on the Macintosh 380

Vector circlesToDraw = new Vector();

At first, the vector is empty and doesn’t contain anything; the methodci r cl esToDr aw. si ze() would

return O.

When the user created a new circle, we could add this new circle object (referenced, for example, by a vari-

ablenamed ci r cl e) to the end of the vector likethis:

circl esToDr aw. addEl enent (circl e);

And finally, when it wastimeto draw all of the circles, the applet could loop through the vector by accessing
each element in order. One important piece of information you need to know about with retrieving objects from avec-
tor isthat you must cast the object returned by el ermrent At () to the type of object stored there. For example, you

could retrieve circles (created from aclass called Circle) like this:

Crcle circle;
int nunCircles = shapesToDraw. si ze();

for (int i =0; i < nunCircles; i++)
circle = (G rcl e)shapesToDraw. el ement At (i) ;

Noticethe last line of this code snippet. shapesToDr aw. el enent At (i) returnsthe object at position

i inthe vector. The object returned is declared in the method to be of type Object. This means, to use the returned

Barry Boone and Dave Mark Learn Java on the Macintosh 381

object asacircle, you've got to cast it to acircle and assign it to a variable defined as a Circle instance. Thisiswhat

we do in the snippet above. The Sample Code coming up contains more examples of this.

HashTables

Vectors work great when all you want is to step through the elementsin the list of objects sequentially. For example,
SimpleDraw has no need to access the fourth shape (and only the fourth shape) that the user created, or the first one,
or thelast one. All that SimpleDraw hasto do isto add a new shape to the list and step through the entirelist in the

applet’spai nt () method. (You'll do thisyourself in the Sample Programsin this chapter.)

But thisis not the case for all your programs. For example, the payroll applet we started earlier would very
likely have a need to access one and only one employee. That is, if we wanted the employee with an employee num-
ber of 987, it would be great just to ook up the employee by this number and have it hop out of the collection, without
the need for looking through each item in the collection ourselves. To do thiskind of thing, Java provides a class

called Hashtable. (Like Vector, Hashtable is also defined in Java's util package.)

The Hashtable Class

Hashtables are actually very simple to use considering the power they provide. Here' sthe idea. Using a hashtable is
like using agood filing system in afile cabinet. When you put away afile, you put it inits proper place in thefile cab-
inet, stored in the right drawer and in the right folder, so that when you return at some future time to retrieve thefile,
you know right whereit is. Y ou don’'t have to look through every filein order, starting with the first drawer—you can

directly to the drawer and folder where you put it.

Using ahashtable, you can file an object and retrieve it later by going directly to it. When you file an object,
you need to specify two things. Thefirst is the object you wish to file. Simple enough. The second thing is akey, or

index, that you can find the object again later.

Barry Boone and Dave Mark Learn Java on the Macintosh 382

An index can be anything that makes the object unique. It could be a social security number in the case of an
employee. It might be the employee’s email address. For a collection of baseball cards, it might be the card number
on the back of the card. Whatever you use as akey doesn’t matter, aslong asit’ sunique (and aslong asyou'll be able

to remember what the key was so you can retrieve your object at alater datel).

To create a hashtable, you can write the following:

Hasht abl e db = new Hasht abl e();

The variable name db in this example stands for "database." To place and retrieve data from the hashtable,

let'slook at two methods hashtables define just for this purpose.

get() and put()

Putting an object into a hashtableis easy. All you have to do is use the hashtable object’sput () method and specify
two parameters: The key you' Il use to identify the object, and the object you want to put. For example, for an instance

of class Employee defined like this:

cl ass Enpl oyee {
String nane;
String ssn;

Y ou might store an employee object named e in the hashtable like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 383

db. put (e.ssn, e);

Notice that we use the key as the first parameter, and the object itself as the second. Notice also that the key
isan object! If you want to use a number as akey, you' ve got to first find away to convert the number to an object.

The Sample Programs show you how to do this kind of thing.

Now, to retrieve an object, you use the hashtable’'sget () method and supply the key. Theget () method
returns an object, which you’ ve got to cast to the proper type of object (just like you did with vectors). So, to accessan

employee with the social security number represented by the string ssn, you could write:

Enpl oyee e = (Enpl oyee) db. get (ssn);

Pretty easy! You can fill up the hashtable and retrieve values as if there were no tomorrow.

Sample Programs

We ll start the sample programs by looking at floating point numbers and arrays. Then we'll get back to the applets

we started in Chapter 11, finishing SimpleDraw and Payroll by using vectors and hashtables.

FloatingPt.p

Openthefolder 12. 01 - fl oating pt inLearnJavaProjects, double-click Fl oat i ngPt . 1, makethe
project, and drop thefile Fl oat i ngPt . ht m onto the Metrowerks Javaicon. You'll see the following two lines

appear in the Java Output window:

Barry Boone and Dave Mark Learn Java on the Macintosh 384

area of t1lis 67.5
area of t2 is 23.4451

This applet calculates the areas for two triangles. Notice the decimal points! How did wefinally achieve this

kind of precision? We used floating point numbers! Let’s take alook.

Stepping Through the Source Code

Open Fl oat i ngPt . j ava. You'll seethere are two classes here, an applet and a Triangle class. The Triangle class
looks like what we' ve seen before, except thistime it defines its data using the floating point data typedoubl e,

rather than the integer datatypei nt .

class Triangle {
doubl e base;
doubl e hei ght;

doubl e area() {
return base * height / 2.0;
}

Now the applet can interact with this Triangle classin avery similar way to what we' ve already seen. Here's
what the applet doesinitsi ni t () method. First, it defines a couple of triangles. Thefirst triangle takes the values 9
and 15 for its base and height. (We can assign an integer value to a floating point value without casting it, since float-
ing point val ues are more accurate than integers.) The second triangle has the value 14.232 for the base and 3.2947 for

the height.

Barry Boone and Dave Mark Learn Java on the Macintosh 385

public class FloatingPt extends java. appl et. Appl et {
public void init() {
Triangle t1 = new Triangle();
tl. base = 09;
t 1. hei ght = 15;
Triangle t2 = new Triangle();

t 2. base = 14. 232;
t 2. hei ght = 3.2947;

Then all wedo isprint out the areafor each triangle. The triangle performsthe floating point calculation, and

we display the results in the Java Output window.

Systemout.println("area of t1lis " + tl.area());
Systemout.println("area of t2 is " + t2.area());

So now you know how to work with two different kinds of numbers: integer and floating point. As you can
see, floating point values are just as easy to work with asinteger values; just declare adatatype asf | oat or dou-
bl e and away you go. Just remember these two rules:

1. When written out, floating point numbers, such as 4.0, 3.14 or -100.0292, have the data type of doubl e.

2. If you assign afloating point number to an integer, remember to cast it so the compiler won't compain.

Barry Boone and Dave Mark Learn Java on the Macintosh 386

ArrayApplet.u

Openthefolder 12. 02 - arraysinLearn Java Projects Double-click Ar r ay Appl et . p and make the project.
Drop thefile Ar r ayAppl et . ht m onto the Metrowerks Javaicon. This applet displays fortunes and advice. There
are five fortunes, chosen at random. A new fortune is displayed every time you resize the applet. A sample sessionis

shown in Figure 12.5 and Figure 12.6.

=]

Applet Diewer: ArrayApplet.class

Look for opportunities

applet started

FIGURE 12. 5 A fortune displayed by the ArrayApplet.

E[@== Applet Viewer: ArrayApplet.class ——

amell the roses

applet started

FIGURE 12. 6 Another fortune that’s displayed by resizing the applet.

Let'stake alook at the source to get afeel for working with arrays.

Barry Boone and Dave Mark Learn Java on the Macintosh 387

Stepping Through the Source Code

This applet illustrates how to create and work with an array. It also uses three other classes you'll somtimes take
advantage of in your own programs: The Date class (in the util page), the Random class (also in the util package), and

the Math class (in the lang package). The only class this applet createsis the Applet subclass, called ArrayApplet.

At the top of thisfile, before we define our new class, we need to import three of Java's classes used by this
applet that are not part of the lang package (remember, the classes in the lang package are imported for us automati-
cally). These are the Graphics class, which we' |l need to override thepai nt () method; the Random class, which
we'll useto randomly select afortune; and a Date class, which we'll use to seed the random number, initializing it to
avalue so that the applet is unlikely to repeat the same sequence of fortunes the next time you run the applet. The

Random class and the Date class are defined in Java' s util package.

i mport java.awt. G aphi cs;
I nport java.util.Random
i mport java.util.Date;

The applet defines three instance variables. Thefirst, nuntt r i ngs, isused to keep track of the number of
fortunesin our array of strings. The second, pai nt St r i ng, defines the string array, but it does not yet allocate it.

Thethird, r, will be used to hold an instance of a class called Random, which we'll use to generate random numbers.

public class ArrayAppl et extends java. appl et. Applet {

i nt nunstrings = 5;
String[] paintStrings;
Random r;

Barry Boone and Dave Mark Learn Java on the Macintosh 388

Inthei ni t () method, we'll create an instance of the Random class. We could create this instance with an
empty parameter list, likethis:r = new Randon() , but instead, we'll supply al ong value to seed the random
number. Supplying a seed value makesit likely that we' Il get a different sequence of numbers every time we run the
applet. To seed this number, we need afairly random number to start with! (Kind of a Catch-22....) Here's how we' |l
proceed: We'll find the number of milliseconds that have elapsed between 1970 and the current date and time. Since
this value will change every time we run the applet (that is, the number of elapsed milliseconds keeps on increasing
from second to second), we can use this as our random number seed. Java provides away to get these milliseconds.
Given the current date as maintained by an instance of class Date, there's amethod calledget Ti me() that returns
the number of milliseconds since 1970. To create a new date object with today’ s date, al you have to do is create a

new date without supplying any parameters. Thisis shown in the code below.

public void init() {
Date d = new Date();
r = new Randon{d. get Ti me());

Now we have arandom number object, assigned to our instance variabler . We'll use this random number

object in our pai nt () method to choose afortune at random.

Our next step isto alocate the array of strings that will hold our fortunes and to initialize this array. We'll

create anew string array set to hold five strings. Then we'll create anew string for each element in the array.

pai nt Strings = new String[nunttrings];

pai nt Stri ngs| O] = new String("Look for opportunities");
paintStrings[1] = new String("Take chances");

pai nt Stri ngs[2] new String("Beware of tricks");

pai nt Stri ngs|[3] new String("Take the day off");
paintStrings[4] = new String("Snell the roses");

Barry Boone and Dave Mark Learn Java on the Macintosh 389

Everything' sinitialized. All that remainsisto display arandom fortune when the appl et repaints. We can do

thisin three lines of code by overriding thepai nt () method.

First, we'll use the random number object to generate a random number. There's a method called nex-
t 1 nt () defined by random numbers that returns a random integer over the range of all integers, both positive and
negative. By dividing this number by the number or strings we have and taking the remainder, we can whittle this
number down to the range of -4 to 4. Thisoperation is called modulo, asin "nextint() modulo 5," and iswritten using

the %character.

public void paint(Gaphics g) {

int index = r.nextInt() % nunttrings;

We're going to use thevariablei ndex asan index into the array. However, we can’t use a negative number
as an index! The only valid indexes range from zero to one minus the number of elementsin the array (in this case,
from 0 to 4). So, we need to take the absolute value of i ndex, to turn a possible negative value into a positive value.

The Math class defines a class method called abs () that provides this behavior.

i ndex = Mat h. abs(i ndex);

Now index ranges from 0 to 4. We want to usei ndex to select astring in the string array. We do this by
writing pai nt St ri ngs[i ndex] . Wecanusethedr awSt ri ng() method supplied by the graphics object to

make this new string appear inside the applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 390

g.drawStri ng(pai ntStrings[index], 50, 25);

Now, every time the applet repaints, such aswhen it'sresized, it will contain a new fortune, randomly

selected from its array of strings.

SimpleDraw.y, Final Version

Open12. 03 - Si npl eDr awin theLearn Java Projectsfolder. Open Si npl eDr aw. W asthe current project file
and make the project. Run the applet by dropping Si mpl eDr aw. ht ml onto the Metrowerks Javaicon. At long last,
we' ve recreated the applet you first saw in Chapter 4! Figure 12.6 shows what the applet look like when you create a

number of different shapesin different colors.

=[I= Applet Viewer: SimpleDraw.class =—]

| Circle | | Blue |

applet started

FIGURE 12. 7 SimpleDraw is too much fun!

Barry Boone and Dave Mark Learn Java on the Macintosh 391

Inthelast chapter, we got asfar as drawing a shape according to the user’ s preference (shape type and color).
However, we were only able to draw the most recent shape; we did not keep alist of al the shapes the user had cre-
ated with each click of the mouse. Here, we remember each shape and redraw each shape in the applet’spai nt ()

method. Let’s see how we are able to keep track of all these shapes.

(By theway, it's not quite accurate to say thisisthefinal version! You'll see three more versions of this
applet in the upcoming chapters. First, you' Il see aversion where you can pass parameters to this applet from your
HTML file; second, you'll see aversion of this applet that runs separately from aWeb browser or Applet Viewer; and
third, you'll see aversion that illustrates the basics of multithreading. All of these versions await you in Chapters 13,

14, and 15.)

Stepping Through the Source Code

Open Si npl eDr aw. j ava. You might notice that this code |looks almost identical to what you saw in the previous
version in Chapter 11. It's very similar, but there' s one crucia difference: the use of the Vector class. We'll point out

the differences here.

First, in addition to importing the Applet class and the classesin the awt package, we also import the classes

in the util package. This package defines the Vector class that we'll use to keep track of the shapes drawn by the user.

I nport j ava. appl et. Appl et ;
i mport java.util.*;
i mport java.awt.*;

The SimpleDraw class starts by defining an instance variable that will hold the vector; it also defines the

choice objects that you saw before.

Barry Boone and Dave Mark Learn Java on the Macintosh 392

public class SinpleDraw extends Applet {
Vect or drawnShapes;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

Thei ni t () method isnext. It starts by creating a new instance of the Vector class.

[** Create the QU . */
public void init() {
dr awmnShapes = new Vector();

Thei ni t () method then moves on to create the choice objects for selecting the shape to draw and the

color in which to draw it. Thisisthe same code you aready saw; we'll mark its place here with a comment.

/'l Create the two choice objects and add themto the appl et

After thei ni t () method, we've defined themouseUp() method. This method starts by creating a new

shapejust asit did before. Again, we'll put in a placeholder for this code by using a comment.

publ i ¢ bool ean nouseUp(Event e, int x, int y) {
Shape s; // This shape will be either a circle or a square.

/Il Create the shape just |ike before

Barry Boone and Dave Mark Learn Java on the Macintosh 393

The previous version of SimpleDraw assigned the new shape to an instance variable maintained by the
applet. Thistime, we don’t keep track of individual shapesin the applet itself; we only keep track of the collection of

shapes in the vector. So, here, we add the new shape to the vector, and then invoker epai nt () , aswe did before.

dr awnShapes. addEl enent (s) ;
repaint();

return true;

We aso returnt r ue to indicate we handled this event.

Thefinal method that has changed isthe pai nt () method. Thistime, instead of repainting the single shape
maintained by the applet, we repaint every shape in the vector. This means we have to perform these steps:
1. Determine how many shapes are in the vector.

2. Access each shape, one at atime, and redraw that shape.

Here' show we do that. First, pai nt () definestwo variables: s will hold the shape we access from the vec-

tor, and nunShapes will hold the number of shapesin the vector.

public void paint(Gaphics g) {
Shape s;
i nt nunShapes;

Barry Boone and Dave Mark Learn Java on the Macintosh 394

We'll determine the number of shapesin the vector by using an instance method supplied by the vector,

caledsi ze().

nunShapes = drawnShapes. si ze();

Then, we'll 1oop through the number of shapes in the vector, accessing each onein turn.

for (int i = 0; i < nunBhapes; i++) {

s = (Shape) drawnShapes. el enent At (i) ;

Notice that we need to cast the object returned by el enent At () , which accesses a particular object in the
vector by number, to the proper classtype. el enent At () isdefined as returning an object of class Object; we know
this object will be a shape object and we want to assign to assign it to a variable that holds a shape. To do this, we
must cast the returned object to be of type Shape. (Be aware that this code only works because we are dealing with
objects that really are shapes; you can’t just go around casting any old object into a shape or some other classtype

that it is not. However, you'll use thistechnique alot in situations like this.)

At the end of this method, we redraw the shape by invoking itsdr aw() method.

s.draw g);

Barry Boone and Dave Mark Learn Java on the Macintosh 395

The Shape, Circle, and Square classes are identical to what you saw before; we won't repeat them here.

Noticethat using an array to keep track of the shapes would not have worked as well as using a vector. With
an array, we would constantly have to worry about adding a new shape to the array beyond the bounds of the array. If
we ever maxed out the array, we would have to alocate a new array alittle bit larger than the one we were using,
move all the elements from the old array to the new array, and then add our new shape to the new array. The vector
object handles all these details for us. Thisisanother good example of Java supplying a class that makes our program-

ming task easier.

Payroll.u, Final Version

Open12. 04 - Payrol | inLearnJava Projects. Open Payr ol | . pu asthe current project file and make the

project. Drop thefile Payr ol | . ht m onto the Metrowerks Javaicon to run the applet.

Thisapplet isfully functional and allows you to enter new employeesinto a database and retrieve previously
entered information for employees. (Of course, acommercial payroll applet would have better look-up methods, offer
confirmation of changes, provide some security, allow for data other than integers, and so on. While all these features
would be great, the point of this applet isto show how to develop a user interface that accepts keyboard entry, illus-

trate how to keep track of data using a hashtable, and provide an example of handling an exception.)

To enter anew employee into the payroll applet or to search for an existing employee, click in the text field
named Employee number, enter a number, and press enter. If information for that employee exists in the payroll

applet, that information is displayed in the text fields. Otherwise, the payroll information will be all zeroes.

To enter new values or change the values for the employee’ s hourly wage and hours worked, click in the
appropriate text field, enter anew number, and press enter. When there is data for both the hourly wage and hours

worked, the applet will display the employee’ s earned income.

Barry Boone and Dave Mark Learn Java on the Macintosh 396

EE=—— Applet Diewer: Payroll.class

Employes number: 1

Hourly wage: 15
Hours worked: B2
Earned i ncome: 930

applet staried

[

FIGURE 12. 8 This screen shot shows the payroll information for employee number 1. The user typed 1 into the
text field for the employee number and pressed enter. The user then typed in the hourly wage and hours worked,
pressing enter for each text field. Once all the data was entered, the applet totalled that employee’ s earned income.

All this data was saved in the employee object and made part of the database.

EE=== Applet Diewer: Payroll.class ——
Employee number: z2
Hourly wage: 20
Hours worked: gd
Earned income: 1680
applet started
[

FIGURE 12. 9 Thistime, the user entered information for employee number 2; the applet saved all of employee
number 2'sinformation into the database. Now there are two employees in the database. If the user now typed a1l
into the employee number field and pressed enter, the applet would look up the payroll data for employee number

1 and redisplay that information in its text fields.

Barry Boone and Dave Mark Learn Java on the Macintosh 397

Stepping Through the Source Code

Open Payr ol | . j ava to see what's changed from the previous version. Here's the concept of what we're going to
do. We're going to create new employee objects based on the information the user entersinto the text fields. We're

going to use an instance of class Hashtable to keep track of the employee objects. By using a hashtable, we'll be able
to retrieve any employee object, aslong as we have their employee number. We'll use the employee number for each
employee as the employee’ s key. When the user types a new number into the employee number text field, we'll take
the characters the user typed and turn them into a number, then use that number as the key to look up that employee
object in the hashtable. If the employee is found, we'll display the employee’ s payroll information in the other text

fields. If the employeeis not found, we'll create a new employee object using this number and add it to the hashtable.

WEe'll start looking at the code by examining three utility methods. Thefirstisi nt Fr oniText Fi el d() , an
instance method defined as part of the applet. This method’ s purpose in lifeisto take the characters a user enters into

atext field and convert them into ani nt datatype. This method takes atext field as a parameter and returnsani nt .

int intFromlextField(TextField tf) {

It starts of f defining two variables. The strings will be used to hold the character datain the text field;

val ue will beused to hold thei nt we'll return.

String s;
i nt val ue;

This method starts by retrieving the charactersin the text field passed to this method. The method get -

Text () returnsastring object that has the characters the user typed.

Barry Boone and Dave Mark Learn Java on the Macintosh 398

s = tf.getText();

Toconvertthisintoani nt , we'll use aclass method defined by Integer called par sel nt () . This method
takes a string and returnsani nt . Since this method might throw an exception, we haveto use at r y- cat ch block
so that we're prepared to catch the exception. WE'll try to perform the conversion inthet r y block; we'll catch any

exceptions thrown in thecat ch block.

try {

val ue = Integer.parselnt(s);
} catch (Exception e) {

val ue = 0;

setCurrent (null);

If the conversiontoani nt did not work and Javathrew an exception, we set val ue to 0 and set the current
employeetonul | . (You'll look at themethod set Cur r ent () inamoment. The purpose of theset Current ()
method is to save the current employee object in an instance variable namedcur r ent . Thisinstance variableis
maintained by the applet. set Cur r ent () also redisplaystheinformation inthetext fields so that it' s appropriate to

the current employee.) Finally, we return the value, and the method ends.

return val ue;

Barry Boone and Dave Mark Learn Java on the Macintosh 399

Next, let'slook at amethod calledf i ndEnpl oyee() . Thisisalso an instance method defined as part of

the applet. This method takesani nt as a parameter and returns an instance of class Employee.

Enpl oyee fi ndEnpl oyee(int nunber) {

This method consists of a single statement, though there’ s alot going on in this statement. This method
returns an employee object that it finds in the hashtable. To get the employee object, this statement usesthe get ()
method, supplied by the hashtable. The instance variable we usein this applet to keep track of the hashtableis called
db (for "database"). Toinvokeget () , then, we can say db. get () . Theget () method takes akey, and hashtable
keys must be objects. To obtain an appropriate object based on the employee number, we can create an instance of
class Integer to represent this number. We can do this by writing new | nt eger (nunber) . Thefull statement

lookslike this:

return (Enpl oyee)db. get (new I nt eger (nunber));

Notice that, aswith the vector, get () returns an object of class Object. This meansthat if we want to work
with an instance of class Employee, we need to cast it to Employee. We can safely do this because all the objectsin

the hashtable are instances of class Employee; if they were instances of some other class, we could not do this.

One more thing: If thereis no employee object that uses the key we' ve indicated, then get () will return

nul |, and that’swhat f i ndEnpl oyee() will return, aswell.

Barry Boone and Dave Mark Learn Java on the Macintosh 400

For our third utility method, take alook at addNew() . Thisinstance method creates a new employee object
given an employee number and adds this employee to the database. This method takes the employee number as a

parameter and returns the newly created employee object.

Enpl oyee addNew(int nunber) {

After creating the new employee object, this code initializes the employee number and sets the other

instance variables to 0.

Enpl oyee e = new Enpl oyee();
e. i dNunber = nunber;

e. hour | yWage = O;

e. hour sWwor ked = 0;

It then uses the hashtable’sput () method to put the new employee object into the hashtable. Theput ()
method requires akey asitsfirst parameter. Again, we'll create an Integer instance out of the employee number. The

second parameter for put () isthe employee object to add.

db. put (new I nt eger (nunber), e);

At the end of this method, we again use the method set Cur r ent () to set the current employee main-
tained by thecur r ent variable and to display this new employee' sinformation in the text fields. Then, wereturn the

new employee object.

Barry Boone and Dave Mark Learn Java on the Macintosh 401

setCurrent(e);

return e;

With an understanding of these methods and the approach taken by this applet, let’slook at the rest of the

applet.

Thefile begins by importing the Applet class and the awt and util packages. We need the util package for the

hashtable.

I nport j ava. appl et. Appl et ;
i mport java.awt.*;
i mport java.util.*;

Aswith the previous version of Payroll, we define instance variablesto hold the text fields. We also define an

instance variable to hold the hashtable.

public class Payroll extends Applet {
Hasht abl e db;
Text Field textFiel deEnpl oyee;
TextField textFiel dWage;
TextField textFieldHours;
Label | abel Ear ned;

In addition, we also define an instance variable to hold the current employee.

Barry Boone and Dave Mark Learn Java on the Macintosh 402

Enpl oyee current;

Thei ni t () method creates a new hashtable. Therest of thei ni t () method creates the same labels and

text fieldsin agrid layout you saw before. We' Il mark its place with a comment.

public void init() {

/'l Create the enpl oyee dat abase.
db = new Hasht abl e();

/! Create the | abels and text fields.

Before we leavethei ni t () method, we also invokeset Cur r ent () and indicate that we're not cur-

rently looking at any employee object—since there aren’t any yet to look at.

setCurrent(null);

Themethod act i on() handles the events generated by this applet. The previous version showed how we
could tell when the user typed into atext field and pressed return. In this version, we'll access the datain the text

fields and use them to initialize the employee objects.

Theact i on() method starts off by defining variables to hold an employee object and the employee num-

ber.

Barry Boone and Dave Mark Learn Java on the Macintosh 403

publ i c bool ean action(Event e, Object arg) {
Enpl oyee enpl oyee;
I nt nunber ;

One of the parameters passed to this method is an event object, which contains the information that indicates
what generated this event. Just as with the previous version, we test to see what text field the user has just typed text
into. Theevent'st ar get instance variable holds thistext field. Thefirst possibility is the employee number text

field.

if (e.target == textFi el dEnpl oyee) {

If the text field is the one used for the employee number, we use the methodi nt Fr omText Fi el d(),
which we' ve already seen, to retrieve the employee number. Then, we use the method f i ndEnpl oyee() , which

we've also seen, to retrieve the employee with this number from the hashtable.

nunber = int Fronilext Fi el d(t ext Fi el dEnpl oyee) ;
enpl oyee = fi ndEnpl oyee(nunber);

If an employee with this number could not be found in the hashtable, enpl oyee will beequal tonul I . If
thisisthe case, then we want to create a new employee using this number. We use the method addNew() , which we

also covered earlier.

if (enployee == null)
enpl oyee = addNew(nunber) ;

Barry Boone and Dave Mark Learn Java on the Macintosh 404

Now weinvokeset Cur r ent () with thisnew employeetoinitializethecur r ent variable and display

this employee’s payroll information.

set Current (enpl oyee) ;

If the event’ starget is the hourly wage field, then we want to set the current employee object’ s hourly wage
to the value the user entered into thisfield. We can use the method i nt Fr omText Fi el d() to retrievethisi nt

from the charactersin thisfield.

else if (e.target == textFi el dWage) {

if (current !'= null) {
current. hourl yWwage = int Fronirext Fi el d(t ext Fi el dWage) ;

We also want to update the display for the earned income. If the user has just changed the value for the
hourly wage, we can reflect that change in the earned income display immediately. The method r ecal cEar ned()

performs this simple recal culation and displays the new value in the appropriate label in the applet.

recal cearned();

Barry Boone and Dave Mark Learn Java on the Macintosh 405

We want to do the identical kind of thing with the hourly wage text field. That is, we want to retrieve the
value the user entered into the text field, assign it to the appropriate instance variable for the current employee, and

recal culate the value for the earned income.

} else if (e.target == textFieldHours) {

if (current !'= null) {
current. hour sWr ked =i nt Fronilext Fi el d(t ext Fi el dHour s) ;
recal cearned();

When we exit thisact i on() method, we'll return whatever the superclass thinks is appropriate (t r ue or

fal se).

return super.action(e, arg);

Let’'stake aquick look at the two methods we haven't seen yet for thisapplet: set Current () and
recal ckarned().set Current () startsby assigning the new employee object to the applet’ sinstance variable

named cur r ent .

voi d set Current (Enpl oyee e) {
current = e;

Barry Boone and Dave Mark Learn Java on the Macintosh 406

If thereis not a current object (that is, if itisequal to nul I), then set the text fields to contain O.

if (e == null) {
t ext Fi el dEnpl oyee. set Text ("0");
t ext Fi el dWage. set Text ("0");
t ext Fi el dHour s. set Text ("0");

Otherwise, if there is an employee object, convert thei nt data maintained by this employee into a string,

and display thistext in the text field.

el se {
t ext Fi el dWage. set Text (I nteger.toString(current. hourl yWage));
t ext Fi el dHour s. set Text (I nteger.toStri ng(current. hoursWrked));

}

At the end, recalculate the earned income to reflect any new data.

recal cearned();

recal cEar ned() asksthe current employee object to calculate its own earned income (hourly wage

times hours worked). If there is no current employee, then we set the earned income to be 0. The last line sets the

label in the applet that displays the earned income.

Barry Boone and Dave Mark Learn Java on the Macintosh 407

voi d recal cEarned() {

i nt earned;
if (current !'= null)

earned = current. earnedl ncone();
el se

earned = 0O;

| abel Ear ned. set Text (I nteger.toString(earned));

The Employee classisidentical to what you saw before so we won't repeat it here.

Thisappletillustrates alot of functionality. It shows you how to arrange auser interface, how to acquire data
from the user, how to convert betweeni nt datatypesand objects (such as Integers and Strings), and how to store and

retrieve datain a hashtable. Y ou are likely to do many of these things when writing your own Java applets.

Review

This chapter rounded out your knowledge of how to work with datain Java. Working with data involves integer and
boolean data as well as floating point values, characters, and objects that maintain data such as strings and instances

of class Integer.

To keep track of collections of data, you can use arrays. Java also defines two useful classes called Vector

and Hashtable. Vectors contain asimple list of objects, Hashtables allow you to find objects based on akey.

Barry Boone and Dave Mark Learn Java on the Macintosh 408

What's Next?

Chapter 13 snoops around some advanced areas of Java programming, including how to pass values to your applet
from your HTML file, how to define more than one method with the same name, and how to throw exceptions (that is,

in addition to catching them, which you learned about here).

After the next chapter, we'll cover how to make your Java programs run separately from aWeb browser, and

we'll closein Chapter 15 by pointing out areas you can explore further to learn even more about Java.

Barry Boone and Dave Mark Learn Java on the Macintosh 409

CHAPTER 13 Advancm T0p| CS

This chapter highlights some advanced features you can take advantage of in your own applications. Evenif you don't
use these features right away, they're useful to know about because you're likely to run across them when you look

over other Java programs generally available on the Web. The advanced features of Java discussed hereinclude:

e applet parameters

* methods overloading
e constructors

* constants

* throwing exceptions

Applet Parameters

So far, al of the HTML files that have incorporated our applets have been very simple. These HTML files used the
<appl et > tag to specify the name of the applet to run aswell asthe initial height and width of the applet’ swindow.
With only these parameters, our applets had to be self-contained. That is, the HTML file that launched the applet did

not change anything about the applet, other than itsinitial size.

However, it is possible to embed values, or parameters, in your HTML page that the applet can access. The
way you do thisisto place the parameters within tags named <par an® right between the <appl et > and </

appl et > tags.

For example, if you wanted to supply a parameter named “minimumwage” to the payroll applet, to make

sure you don't initialize any employeesto anillegal value, you could write something like:

Barry Boone and Dave Mark Learn Java on the Macintosh 410

<appl et code="Payroll.class" w dth=270 hei ght =150>
<par am nane=m ni nrumnvage val ue="4. 25" >
</ appl et >

Now, when Congress passes a new minimum wage law, or when a business in another country wants to use

the payroll applet, users of this applet can set this value according to the new conditions.

Toretrieve this value in an applet, you use an applet instance method defined by Java called get Par amne-
t er (). This method takes a string with the name of the parameter to access. get Par anet er () returnsastring

representing the value of this parameter. Here' s a snippet:

String wageString = get Paraneter(“m ni numnage”) ;

In thisexample,wageSt r i ng isnow “4.25”. If wewant afloat number, we haveto convert thisstring to a

number before we can use it like a number. For example, we can write:

fl oat wageFl oat ;

try {
fl oat wageFl oat = Fl oat. get Val ue(wageString).toFl oat;

} catch (Exception e) {
wageFl oat = 4.25; // default
}

Barry Boone and Dave Mark Learn Java on the Macintosh 411

The Sample Programs at the end of this chapter contain an example of how to customize your applet by

passing valuesto it from your HTML file.

Method Overloading

So far, al of our methods have used unique names. This might seem to be a requirement for methods—that each one
have its own, unique name—>but thisis not precisely true. The real requirement is that each method belonging to the
same class have a unique signatur e. What do we mean by a signature? A signature consists of a method’ s name and
parameter types. This means that two methods in the same class can be named identically, as long as either the num-
ber of parameters or, if two methods with the same name have the same number of parameters, thetypes of parame-

ters are different. Here are some examples that illustrate thisrule.

Let’'s start with asimple method calledaddTheseNunber s() , defined like this:

i nt addTheseNunbers(int numl, int nunR) {
return nunlt + nun®;

}

This method would work fine as long as there were only two numbers to add. However, what if we some-
times wanted to add two numbers, and other times we wanted to add three numbers? It would be nice not to have to
worry about different method names, but to always invoke a method called addTheseNunber s() , regardless of

how many numbers we had to add.

Barry Boone and Dave Mark Learn Java on the Macintosh 412

One way to solve this problem is by writing two methods, both called addTheseNunber s() . Thefirst
method would define two parameters. The second would define three parameters. Here' s how these two method defi-

nitions might [ook:

i nt addTheseNunbers(int numl, int nunR) {
return nunml + nun®;

}

i nt addTheseNunbers(int numl, int nun, int nunB) {
return nunli + nun + nunsS;
}

What happens when we write aline of code that looks like the following?

i nt sum = addTheseNunbers(10, 20);

In this case, Javais smart enough to invoke the first method named addTheseNunber s() , since that

method defines two parameters. What happens with the following line of code?

int sum = addTheseNunbers(10, 20, 15);

Y ou guessed it: Java invokes the second method, matching the three values here to the method that declares

threei nt parameters.

Barry Boone and Dave Mark Learn Java on the Macintosh 413

Asbefore, the parametersin your method invocations must match up with one of your method definitions. If
Java cannot find a method that matches an invocation, you' |l either receive acompiler error or aruntime error

(depending on the class your compiling and the class defining the method).

In addition to defining a different number of parameters for two methods with the same name, it’s aso per-
fectly legal to define a second method with the same name and the same number of parameters—aslong as at least
one of those parametersis of a different type than in the first method. For example, here’ s another method with the

Same name:

doubl e addTheseNunber s(doubl e nunil, double nunR) {
return nunml + nun®;
}

Now, if you invokeaddTheseNunber s() likethis:

int i = addTheseNunbers(10, 15);

the method for i nt valueswill execute, and it will returnthei nt value 25. If you invokeaddTheseNum

bers() likethis:

doubl e d = addTheseNunbers(10.3, 14.6);

Barry Boone and Dave Mark Learn Java on the Macintosh 414

the method for doubl e valueswill execute, and it will return thedoubl e value of 24.9. Even with the
same number of parameters, Javais smart enough to figure out which method is the appropriate one to invoke. Notice
that in all of these examples, the return value does not play arolein determining what method to invoke! Only the

method name, the number of parameters, and the types of parameters are used to distinguish between methods.

Constructors

When you create a new object from aclass, Java allocates the appropriate amount of memory in the computer to hold
your new object. Then, Javainvokes any constructors that are defined for your new object. Y our constructor can do
whatever it wants to do. The most common task for a constructor isinitializing instance variables, and this is what

you'll do most often if you define your own constructor.

Constructors are defined somewhat similar to methods, except they don't take any keywords or define a

return value. For example, here's an example of a class called Employee that defines a constructor:

cl ass Enpl oyee {
int ssn;
i nt hourl yWage;
i nt hour sWr ked,;

/! Define a constructor.

Enpl oyee() {
hour | yWage = 10;
}

/1 Define an instance nethod.
i nt earnedl nconme() {

return hourl yWage * hour sWr ked,;
}

Barry Boone and Dave Mark Learn Java on the Macintosh 415

Thisclassissimilar to what we worked with before when we defined an Employee class. Only thistime, we
have defined a constructor for the class. The constructor initializes anew employee' s hourly wage to 10. Perhaps after
afew months the employee will get araise, but new hires start out with 10 as their base wage. What this means, then,

isthat when you create an instance of an Employee class like this:

Enpl oyee e = new Enpl oyee();

e. hour | yWage will start out equal to 10, and e. hour sWor ked will start out equal to O (remember, Java

setsyour i nt variablesto 0 if you don’t initialize them yourself).

Y ou can also pass parameters to constructors. You'll find that Java defines lots of constructors for its classes
that take parameters. For example, if we wanted to set the employee’ s number when we created it, we might write a

constructor like this:

Enpl oyee (int ssn) {
this.ssn = ssn;
hour | yWage = 10;

Now we can create a new employee like this:

Enpl oyee e = new Enpl oyee(401);

Barry Boone and Dave Mark Learn Java on the Macintosh 416

which we might write for the 401st person to join the company. Even if this were the only constructor we
defined, we could still create an employee object without passing avalue for the ssn parameter value to the construc-

tor. That is, we could still create an employee like this:

Enpl oyee e = new Enpl oyee();

We can do this because Java always defines a default constructor for you, and this default constructor does
not take any parameters. With the default constructor, al of your object’ sinstance variableswill be set to their default

values, but at least Java saves you the trouble of needing to create a constructor if you only want the default behavior.

By the Way

Y ou don't have to invoke your superclass' s constructor. Javawill do this for you automatically.

Constants

Variablesare great for keeping track of datathat changes over time. Sometimes, however, you' |l want to keep track of

data that won't change, ever, while your program is running.

For example, we saw an example of this kind of thing already in SimpleDraw. The user was able to tell the
applet what shape to draw and what color to draw it in, but the user was unable to set the size of the shape—the size
of the shape was always constant. Appropriately enough, programming languages refer to these types of data ascon-

stants. In other words, avariable that has a value, but cannot be changed, is called a constant.

Y ou can define a constant in Java by using the keyword f i nal , meaning the value can never be changed.

For example, SimpleDraw can define a constant to represent the radius of acircle like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 417

final int radius = 20; // circles are 20 pixels in radius

Often, constants are placed in the class. This allows any part of your code to easily access the constant. So,

you could also definer adi us likethis:

static final int radius = 20; // circles are 20 pixels in radius

Java uses the convention of writing all its constant namesin capitals. Thisis ahold-over from C, and alows

you to tell at a glance whether avariable is a constant or not.

By the Way

Why use aconstant? Why not just use the value 20 wherever the program needed to know theradius of acircle? There
are two reasons for using a constant. First, awell-named constant documents what the number is used for. Second,
using constants can speed up Java' s execution. And third, if the value ever changes, al you need to do is change the

number in one place.

Throwing Exceptions

Y ou learned the basics about handling exceptions, but, like packages, exceptions are available for you to use, aswell.
That is, they’re not just something you have to catch; your code can also throw its own exceptions. All you haveto do
is create your own Exception subclass or use one of Java's. If you hit an error condition in your own code, you can

write:

Barry Boone and Dave Mark Learn Java on the Macintosh 418

t hrow new MyException();

And your code exits, tossing the exception object to the code that invoked your method. Y our method must

declare that it might throw a method if you use at hr ow keyword. For example, you might write:

void myMet hod() throws MyException {
i1 f (errorCondition())
t hrow new MyException();

This code also assumes you' ve defined your own subclass of Exception, called MyException:

cl ass MyExcepti on extends Exception {

}

There' saso anifty keyword calledf i nal | y that allows you to execute a block of code, no matter what

happened. For example, you can write:

try {
/'l try sonmething here

} catch (Exception e) {

/| catch an exception here
} finally {

/| execute this code no matter what happened in the above try
and catch bl ocks

Barry Boone and Dave Mark Learn Java on the Macintosh 419

Remember how we talked about different types of exceptionsin the previous chapter? By catching a particu-
lar type of exception, you can choose to do different things, depending on the exception that occurred. Y ou can catch

more than one type of exception by presenting afew different cat ch blocks, like this:

try {
/1l try sonething here

} catch (ExceptionSubcl assl e) {

/'l catch an exception of type ExceptionSubclassl here
} catch (ExceptionSubclass2 {

/| catch an exception of type ExceptionSubclass2 here
} catch (Exception e) {

/'l catch any other type of exception here
}

You can aso “handle” an exception by re-throwing it. For example, you can write:

try {
/'l try sonmething here

} catch (Exception e) {
t hrow e;
}

If you do this, you must declare your method as indicating it throws an exception. Also, be aware that if no
one el se handles the exception, your program (or more technically, the thread that is currently executing) will cometo
ahalt. Barry Boone's Java Essentialsfor C and C++ Programmers, from Addison-Wesley, has many more examples

of why, when, and how to create and use your own exceptions.

Barry Boone and Dave Mark Learn Java on the Macintosh 420

Sample Programs

We'll look at three different programsin this section. TThe first shows you how to pass values to your applet from
your HTML file. The second shows you how to initialize objects by rolling your own constructor. The third program

provides an example of throwing your own custom exception.

SimpleDrawCustom.pu

Open thefile Si mpl eDr aw. pinthefolder 13. 01 - appl et par ans inthe Learn Java Projectsfolder. Make
the project, then run this applet by dropping the HTML file Si npl eDr aw. ht ml onto the Metrowerks Javaicon. A
similar applet to the SimpleDraw applet will appear—except that you'll notice the colors are different than before

(Figure 13.1). Once you’ re done playing around with these new shape colors, quit the Applet Viewer so we can take a

look at the source.

- Applet Viewer: Simpledraw.class =

T
[
I

| Circle «] | ‘white w |

applet started

FIGURE 13. 1 Shapesthat are white, black, and pink.

Barry Boone and Dave Mark Learn Java on the Macintosh 421

Looking at the Source

The original SimpleDraw applet hard-coded the colors that were used to display the shapes. These colors were built-
into the applet’si ni t () method and were set to red, green, and blue. In the version here, rather than forcing red,
green, and blue to be the colors, we have instead structured the appl et so that every person placing the applet in aWeb
page could choose which colors the applet would use. What' s wrong with pink, cyan, and orange? Y ou have a prob-
lem with that? With applet parameters, thisis no problem at al, because you can change them, just by changing the

HTML file.

Double-click thefile Si npl eDr aw. ht nl to see how thisfileis set up. Thisfile will appear asin Figure

13.2.

=—————————————— Simplebraw.html

<applet n:n:-deb-:lge="5impletlr*-:|w"| code="Simplelraw. class" width=270 height=1303
‘param name=color-1 value="Hhita">
dparam name=col|orZ walue="Black"
‘param names=co o walue="Fink"
Llapplet:

i fes | ﬁ

MEE] |Line: 16

FIGURE 13. 2 The Si npl eDr aw. ht m file that supplies custom colors to the applet.

Thisfile names each parameter so that the applet can find it later. Here, we' re supplying three colors. We' ve
called these colorscol or 1, col or 2, and col or 3. We usethe nane keyword to define the parameter’ s name.

Immediately following the name, we use theval ue keyword to supply avalue for this parameter.

<appl et codebase="Si npl eDraw' code="Si npl eDraw. cl ass" w dt h=270
hei ght =150>
<par am nane=col or1 val ue="Wite">

Barry Boone and Dave Mark Learn Java on the Macintosh 422

<par am nane=col or 2 val ue="Bl ack" >
<par am nane=col or 3 val ue="Pi nk" >
</ appl et >

(The values are defined inside of quotes in case the values contain spacesin their text.)

The next step is to access these values in your applet. Originally, we defined a new choice object and

added the choicesto it by writing:

col or Choi ce = new Choi ce();
col or Choi ce. addl ten(“ Red”) ;
col or Choi ce. addl tem(“ G een”);
col or Choi ce. addl ten(“Bl ue”);

Now, however, we want to get the parameter given its name. To do this, we use the method
get Par anet er (). This method takes a string with the name of the parameter to access. get Par anet er ()
returns a string, which is exactly what we want for theadd! t en{) method for choices. Here's how we would get

the value for the color parameters embedded in the HTML file:

col or Choi ce = new Choi ce();

col or Choi ce. addl t en(get Paraneter ("col orl1"));
col or Choi ce. addl t en{ get Par anet er (" col or2"));
col or Choi ce. addl t en{ get Paranet er ("col or3"));

get Par anmet er (“col or 1”) would retrieve the value “White,” given the HTML file we supplied
above. Similarly, get Par aret er (“ col or 2”) would retrieve the value “Black,” and

get Par anet er (“ col or 3”) would retrieve the value “Pink.”

Barry Boone and Dave Mark Learn Java on the Macintosh 423

With al these color possibilities, we need more choicesin our color selection code. We might expand the

choices of red, green, and blue to look more like this:

if (colorString. equal s("Red"))

S.

el se

S.

el se

S.

el se

S.

el se

S.

el se

S.

el se

S.

el se

S.

color = Col or.red;

i f (colorString.equal s("Geen"))
color = Col or. green;

if (colorString.equal s("Black™))
col or = Col or. bl ack;

if (colorString.equal s("Blue"))
col or = Col or. bl ue;

if (colorString.equal s("Pink"))
col or = Col or. pi nk;

if (colorString. equal s("Cyan"))
col or = Col or. cyan;

if (colorString. equal s("Orange"))
col or = Col or. orange;

color = Color.white; // default col or

(Red, green, pink, and the others are a few of the color choices predefined in the Color class. You can look

at the documentation for the Color class supplied in the Java APIs (Application Programmer Interfaces) to see a

completelist of colorsthat are provided by Java. Aswe covered in Chapter 11, you can always create your own

custom colors, aswell.)

Y ou might want to play around with this applet and HTML file, changing the colorsto get afeel for how

thisall works. (It's even more fun with funkier colors like cyan and orange, but the screen shots for this book

required colors that would be somewhat apparent in gray-scale.)

Barry Boone and Dave Mark Learn Java on the Macintosh 424

Constructor.p

Gotothefolder 13. 02 - const ruct or intheLearn Java Projectsfolder. Open Const r uct or . p and make
the project. Run the applet by dropping Const r uct or . ht m onto the Metrowerks Javaicon. Thisapplet will write

the following three messages to the Java Output window:

This circle’s radius is 10
This circle’s radius is 20
This circle’s radius is 20

Each of the three circles created in this applet were created with a different constructor. Let’ s take alook.

Stepping Through the Source

Open thefile Const ruct or . j ava to view the source code. There are two classes defined in thisfile: Constructor,
which isan applet, and Circle. Thetop part of the Circle class defines one instance variable and one class variable, set

to adefault radius:

class Circle {
static int defaultRadius = 10;
i nt radi us;

Then the class defines three constructors. The first constructor overrides the default constructor, which does
not take any parameters. The code for this constructor simply assigns the circle’ sradius to be the value of the default

radius.

Barry Boone and Dave Mark Learn Java on the Macintosh 425

Crcle() {
radi us = def aul t Radi us;
}

The second constructor takes a radius as a parameter, and uses this value to set the radius for this circle.

Circle(int radius) {
this.radi us = radius;
}

Thethird constructor takes a circle object as a parameter, and uses this object to set the radius to the same

valuein this object.

Circle(Crcle referenceCrcle) {
this.radius = referenceCircle. radi us;

}

We can write three constructors, al with the same name, because of method overloading. The first construc-
tor is distinguished from the second and third because of the different number of parameters (zero and one). The sec-

ond and third constructors can be distinguished by the different parameter types (i nt and Circle).

The Circle class a so defines an instance method that displays the radius for a particular circle.

voi d displaylnfo() {
Systemout.println("This circle's radius is " + radius);
}

Barry Boone and Dave Mark Learn Java on the Macintosh 426

Going back up to the top of the code, the Constructor applet definesani ni t () method. Thei ni t ()

method defines three variables, one to hold each circle it will create.

public class Constructor extends Applet {
public void init() {
Crcle c1, c2, c3;

Thei ni t () method then creates three circles, each time using a different constructor defined in the Circle
class. Thefirsttime, i ni t () does not supply any parameters, so the circle will take on the default radius (the value
10). The second time, i ni t () suppliesaradius, so the circle will take on that radius value (the value 20). The third
time, i ni t () passesthe second circle as areference circle, so the third circle will have the same radius value as the

second circle (that is, it will be 20).

cl = new Circle();
c2 = new Circle(20);
c3 = new Crcle(c2);

Then, each of the circle' sinformation is printed, resulting in the display to the Java Output window.

cl. displaylnfo();
c2.di splaylnfo();
c3.di splaylnfo();

Barry Boone and Dave Mark Learn Java on the Macintosh 427

ExceptionApplet.u

For our last example, goto thefolder 13. 03 - excepti on, open Excepti onAppl et . g, make the project,
and run the applet in the usual way—in this case, by dropping Except i onAppl et . ht m onto the Metrowerks

Javaicon. Here are the messages the ExceptionApplet writes to the Java Output window:

Exception with radius -20

This circle’s radius is 10
This circle’s radius is 20
This circle’s radius is 10
This circle’s radius is 20

This applet is very similar to the one we just saw that defined three constructors for the Circle class. This

time, we created four circles, and creating one of these circles caused an exception to be thrown! Let’stake a look.

Stepping Through the Source

Open Except i onAppl et . j ava. At thevery bottom of thisfile, we' ve defined our own Exception subclass, called
ImaginaryCircleException. We've simply created an empty class; the class's name is enough to identify what excep-

tion this defines.

cl ass I magi naryGi rcl eExcepti on extends Exception {

}

Barry Boone and Dave Mark Learn Java on the Macintosh 428

The Circle' s class definition is the same as before, except we' ve changed the constructor that takesthei nt

parameter for the circle' sradius. Thistime, instead of writing:

Circle (int radius) {
this.radi us = radius;
}

we'realittle more careful about the circle we' re creating! Instead of creating acirclewith any old radius, we
first verify that the radiusisin fact not a negative number. If it is, someoneis attempting to create an imaginary circle.
If that is the case, we want to throw an exception so that the code creating this circle can handle this problem in away
it finds appropriate. The circle constructor does not presume to know what the code creating the circle wants to do
when it tries to create an illegal circle. All the circle constructor does is notify the code that this kind of circle can’t

exist. Here' s the new constructor:

Circle(int radius) throws | nmaginaryC rcleException {

if (radius < 0)

t hrow new I magi naryGi rcl eException();
el se

this.radius = radi us;

Asyou can see, the constructor must indicate that it might throw an exception. It does this by using the
t hr ows keyword, followed by the type of exception it might throw. The codeitself creates and throws an instance of
ImaginaryCircleException if the radiusis negative. Otherwise, all isfine, and the circle takes on the radius value sup-

plied to it.

Barry Boone and Dave Mark Learn Java on the Macintosh 429

The ExceptionApplet code progressesin a similar way to what you saw earlier. Itsi ni t () method starts
out defining variables to hold the new circle objectsit will create. It then creates a circle using the default constructor,

which hasn’t changed from before.

public class ExceptionAppl et extends Applet {
public void init() {
Crcle cl, c2, c3, c4;

cl = new Crcle();

Next, thei ni t () method triesto create two circles using the new circle constructor. First, it triesto set the
circle’sradiusto 20. In order to use the new constructor, which might throw an exception, the call to this constructor

must bewrapped inat ry block. Thet ry isfollowed by acat ch.

try {
c2 = new Circle(20);
} catch (I magi naryGircl eException e) {

Systemout. println("Exception with radius 20");
c2 = new Crcle();

If the constructor throws an exception of type ImaginaryCircleException, thecat ch block will be ableto
handle this situation. It will display a message to the Java Output window indicating what went wrong, and it will
then create a default circle. Asit happens, everything goes fine with creating a circle of radius 20; the constructor

never throws the exception, since the radius value supplied is not negative.

Barry Boone and Dave Mark Learn Java on the Macintosh 430

However, thei ni t () method then triesto create a circle with aradius of -20. Trying to do that triggers the
circle’ s constructor to throw an exception. Y ou can see the exception message appear in the Java Output window, and

the third circle has aradius of 10, which iswhat’s created by the default constructor.

try {
c3 = new Circle(-20);
} catch (I nmagi naryGCircl eException e) {

Systemout. println("Exception with radius -20");
c3 = new Crcle();

Therest of thei ni t () method is similar to what was there before: A new circleis created using the third

constructor, and then the information for each circleis displayed.

c4 = new Circle(c2);

cl. di splaylnfo();
c2.di splaylnfo();
c3. di spl ayl nfo();
c4. di splayl nfo();

As this example shows, you don’t just have to respond to Java' s exceptions; you can aso use exceptions to

signal and handle error conditions that arise in your own code.

Barry Boone and Dave Mark Learn Java on the Macintosh 431

Review

This chapter brought you up to speed on some advanced topics and concepts in Java that you are likely to use as you
develop ever-more sophisticated programs. Thisincludes how to customize your applets by supplying valuesfor your
applet as part of aWeb page; how to write methods with the same name but that take a different set of parameters;

how to get into the act of initializing your objects by creating your own custom constructors; and how throw your own

exceptions.

There are afew more features of the language that we'll touch on in Chapter 15, where we'll also suggest

places for learning more about Java.

What's Next?

Y ou've amost reached the end of your complete tour of the Java language. Before you take a peek at the remaining
language topics in Chapter 15, you should familiarize yourself with how to create Java applications that run apart

from aWeb browser. That's the subject of Chapter 14, coming up next.

Barry Boone and Dave Mark Learn Java on the Macintosh 432

CHAPTER 14 Sand-Alone Applications

So far, al of the programs in this book have been applets. That is, the Java programs we developed so far were all
meant to run either in aWeb browser or in CodeWarrior’s Applet Viewer. But thisis not the only way you can write
and run a Java program. There is no requirement that Java programs only run as part of the Web—only that the com-
puter on which a Java program is running has a Javainterpreter. When you run a Java application that is not meant to

be run as part of the Web, it is said that the program runs stand-alone (that is, apart from a Web browser).

In fact, you can do just about everything (and in some cases, alittle bit more) in an environment that isnot
connected to the Web than you can do in an applet which is part of the Web. For example, some security restrictions
are lifted when running separately from the Web—such as gaining access to the file system—because the browser
does not need to guard the gate, asit were. There' s nothing coming in over the wild and wooly Internet. Everything is

running locally on your machine, the programs exist on your hard drive, and you are in complete control of what's

happening.

You can't just launch an applet stand-alone, however, without making some minor adjustments to your pro-
gram so that it can run without abrowser. This chapter will show you how to make these changes and how to plan out

a stand-al one application.

Barry Boone and Dave Mark Learn Java on the Macintosh 433

What Is a Stand-Alone Application?

A Review of the Java Virtual Machine

Stand-alone applications run just like any other application you might be used to from the Mac. You don't need a

modem, an Internet access provider, a Web browser, MacTCP, and so on. All you need is a Java interpreter to act as

the Java Virtual Machine (JVM). Remember, your Java programs are compiled into a machine language that does not

run on any particular chip. Instead, the machine language produced by a Java compiler istailored to a theoretical

machine—the JVM. The Javainterpreter implementsthe VM in software and acts as a transl ator between your com-

piled Java code and your Mac (different Java interpreters translate between your program and other environments on

which you want to run your Java program). Thisis depicted in Figure 14.1.

Java program

L compile

compiled code ready
to run on the Java
Virtual Machine (JVM)

L run

the Javainterpreter
(implements the VM
in software)

¢ trandate

your Macintosh

FrErri

SimmDraw.java
#compile

[~
r
1“1-

SimpleDraw.class

&

Metrowerks Java.

¢ trand ate
%

Barry Boone and Dave Mark Learn Java on the Macintosh

434

FIGURE 14. 1 Your compiled Java program runsin a machine implemented in software. This machineisthe Java
Virtual Machine (JVM).The Java Virtual Machine is called Metrowerks Java in the CodeWarrior environment.
The JVM translates the machine language of your compiled class files into the machine language of the

Macintosh.

A Review of the Applet Viewer

With aWeb browser, the Javainterpreter isbuilt in to the browser itself. In the CodeWarrior environment (and in other
environments, as well), the Applet Viewer acts as a stand-in for the browser. The Applet Viewer uses the Javainter-
preter that’ sin Metrowerks Java. Even though you’ re not running in aWeb browser, the Applet Viewer still carrieson
the applet life-cycle dialog with the applet. That is, the Applet Viewer tells the applet when to initialize, start, stop,

and destroy itself. Thisis shownin Figure 14.2.

Launch the Javainterpreter
and Applet Viewer

Load the indicated applet

Y our applet istold to initialize,
start running, stop running, and

destroy itself

FIGURE 14. 2 The Applet Viewer carries on the life-cycle dialog with your applet so that it knows when it should

do things.

Barry Boone and Dave Mark Learn Java on the Macintosh 435

Executing a Class

When you write a stand-al one application, you don't need to extend the Applet class. In fact, you can execute any
classat al. When you run a stand-al one application, you don’t use the Applet Viewer, because you do not have an
applet. Therefore, your application never receivesthe applet life-cycle method invocations. So how does your applica
tion know what to do and whento doit? Y ou’ ve got to know what to do and when to do it yourself! The only thing the
Javainterpreter tells your program to do isto start running. (We'll get into how the Javainterpreter doesthisin just a

moment.) You've got to do the rest. Thisis depicted in Figure 14.3.

Launch the Javainterpreter

| Load the class you indicate |

| Your classistold to start running|

FIGURE 14. 3 The Javaruntime environment loads your class and tellsit to start running.

So how does the Javainterpreter tell your class to start? The Javainterpreter invokes your class smai n()

method.

The main() Method

Youmustincludeamai n() method for aclassif you want to execute that class as a stand-alone application. Thisis
different than the life-cycle methods for applets, where you could choose not to implement a particular life-cycle

method if you didn’t want to (in fact, you could ignore all the life-cycle methods and the applet would still run). How-
ever, if you do not haveanai n() method for aclass that you want to execute, the Java interpreter will halt your pro-
gram. (Only the class that you run needsto have amai n() method; any other classesthat it uses do not need to have

amai n() method.) Thisisdepicted in Figure 14.4.

Barry Boone and Dave Mark Learn Java on the Macintosh 436

Launch the Javainterpreter

Load the class you indicate |

Your classistold to start running
when the Java interpreter tries to
invoke a method called main()

method does not exist method|exists

[halt with an error messagel | execute main()|

FIGURE 14. 4 The Javainterpreter triesto start a stand-alone application at amethod calledmai n() . If this

method does not exist, the application halts.

The declaration of thermai n() method isnot nearly assimpleasthei ni t () orstart () methods for an applet—

but then, since it’s the only method that’ s invoked by the interpreter, it has more responsihilities.

First of al, your mai n() method must belong to the class. Why? Because when you run a class, the Java
interpreter does not automatically create an instance of your class, as the browser and Applet Viewer do with your
applet. You can create any objects yourself that you want to, but the interpreter does not try to guess that thisis what
you want to do. In fact, stand-alone applications never have to create objectsif they don’t want to! (We'll take alook
at an example of thisin amoment.) Asyou'll recall, to declare amethod as belonging to a class, you use the keyword

static.

Second, your nai n() method must be able to accept data as part of launching the program. This data can
be any length at all. The data that can be passed to your mai n() method isalist of words—in particular, alist of

String objects. Y ou already know how to work with alist of strings: Y ou make an array of them. Asyou learned in

Barry Boone and Dave Mark Learn Java on the Macintosh 437

Chapter 12, the way you declare an array is by using square brackets. The way that you declare an array of String

objects, then, isby writing St ri ng[] . Your mai n() method must accept an array of string objects as a parameter.

The two other keywords required by your mai n() method include publ i ¢, sothat mai n() canbe
invoked from anywhere, and voi d, which indicates that mai n() does not return avalue. Here, then, isthe mai n()

method’ s declaration:

public static void main(String[] args) {

}

By the Way

Why the name mai n() ? Where does this come from? The namenai n() isahold-over from the C language. In C,
al programs begin at ablock of code named nai n() . The keywords and parameters are different, but the name

remains the same.

Hello, Javal

So now you know enough to write a complete, stand-alone application. Let’ s write a stand-alone application that

writes the words “Hello, Javal” to the Java Output window. How do you think you should go about doing this?

First, you need to declare a class. This class does not need to be publ i ¢, though it often is declared as
publ i c. It does not need to extend any other class, though sometimesit does. The class can define the one class
method it needs, mai n() . mai n() can then do anything it wants to do, such as writing to the Java Output window.

Here' s the code for a simple stand-al one program:

public class WiteHello {

Barry Boone and Dave Mark Learn Java on the Macintosh 438

public static void main(String[] args) {
Systemout.println(“Hello, Java!”);

}

Asyou can see, this program ignores the parameter we've called ar gs. If the user executed this application
and supplied any data, that data would be ignored. Notice also that we don’t create an object at all! There’sonly one
method here, named mai n() , that belongsto the class. We run the class, the class executes its behavior, and then
that'sit! Thermai n() method comesto an end, and so does the program. There's no applet window sitting around.

There' s no other user interface. This program just writes its message to the Java Output window and halts.

Let'slook at this program in CodeWarrior and see what happens when it runs.

HelloJava.u

Gotothefolder named 14. 01 - hel | 0, j avaintheLearn Java Projectsfolder and open the project file Hel -

| oJava. p. The project window will appear (Figure 14.5).

sl=———— Hellodava.) ===——»HI=

[#] File Code Data ¥
= w Group 1 0; 0: E 4p
¥ Hellodava.java 0 0 R
w classes_zip 0 0: [¥]
o
2 file(s) 0 0 &

FIGURE 14. 5 TheHel | oJava. p project window.

Barry Boone and Dave Mark Learn Java on the Macintosh 439

Notice that this project window, unlike the project windows for applets, only contains one section, not two.
The section missing hereisfor HTML files. That’ s because we' re not intending to run this Java program as part of the

Web, so we don’t need any HTML files.

When you compile this source file by selecting Make from the Project menu, CodeWarrior will gener-

ateafilenamed Hel | oJava. out (Figure 14.6).

slI=——— 14.01 - hello, java =———— 45|
Zitems 170,23 MEB in disk 60.5 MB availal
; : =

; =
Hellodava.p Hellodava.java HelloJava.out |
& BE

FIGURE 14. 6 Thefolder 14. 01 - hel | 0, | ava after compiling the application.

ThefileHel | oJava. out isadouble-clickable icon that will launch the Javainterpreter and run your pro-
gram. Go ahead and double-click thisfile now to see your program run. The result will be that the words “Hello,

Javal” will appear in the Java Output window, asin Figure 14.7.

i
L

sSfI=———————————— Java Dutput
Executing: javai -classpath

JBlueHorse /CHEE20Go | d \LearnB20daua /14 D1E20-820he | 1o, 820 javasHe | lodaw
a.out Hel ladawva

Hello, Jaug!

Comp letadcl?

2

B[<]

] |5

Barry Boone and Dave Mark Learn Java on the Macintosh 440

FIGURE 14. 7 Hello, Java! in the Java Output window.

In addition to the Java Output window, you can also display awindow called “javai.” To do this, select File,
New, java from the Metrowerks Java menus at the top of the screen. Thiswindow can be used to interact with the

Javainterpreter and your stand-alone applications. Figure 14.8 shows what this window looks like when it first

appears.

Jauai

FIGURE 14. 8 The javai window when it first appears.

Here' s an example of how you can use this window. If you' d like to run HelloJava again, type “HelloJava’
into this window (Figure 14.9), and click the Execute button. The words “Hello, Javal” will appear again in the

Java Output window.

Warning

If you make a change to your applet and then recompile it, you'll need to quit out of Metrowerks Java and relaunch
your application to see the changes come into effect. Otherwise, Metrowerks Java will keep on running the class that

it loaded originally.

Jjauai

Barry Boone and Dave Mark Learn Java on the Macintosh 441

FIGURE 14. 9 Type the name of the application class you' d like to execute and click the Execute button. This

figure shows how you can run the HelloJava application once you' re already in the Java interpreter.

Y ou can also use the javai window to pass parameters to your application when you execute it. The next sec-

tion explains how thisis done.

By the Way

When working with CodeWarrior, you must indicate whether you would like to create an applet or a stand-alone
application when you first create your project file. There are also preferences you can set that indicate what kind of
files the CodeWarrior compiler will generate. That’s how we got the double-clickable file to be created for the stand-
alone application. For stand-alone applications, you expect it to behave like an other Mac application, and so we want

to generate a double-clickable icon.

That's also how we generated the compiled class filesin their own folder for applets. For applets, you need

compiled class files so that your applet can be downloaded over the Web.

All of the project filesin this book have aready been created for you, so you didn’t have to worry about this.
For more information on creating new projectsin the full version of CodeWarrior (that is, not the Lite version) and in

setting the preferences for a project, check out the documentation that comes with CodeWarrior.

Differences Between Applications and Applets

For the most part, everything you've learned in this book concerning appletsis the same for applications. This
includes defining classes, creating and using objects, writing and invoking methods, defining and using variables,

implementing flow control, using inheritance, creating constructors, and handling exceptions, to name just afew of

Barry Boone and Dave Mark Learn Java on the Macintosh 442

the features of Javathat carry over from appletsto applications. It' s still Java, after al, and the language is the same.
However, there are afew subtle differences between applications and appl ets; this section points out some of the more

important ones.

The Command Line

Applets are somewhat sheltered from the operating environment because they run in abrowser; applications are exe-
cuted directly in the environment itself. For example, stand-alone applications are meant to run in an operating envi-
ronment such as your Macintosh. They can aso run in Windows 95, Solaris, OS/2, and wherever else there’'sa Java

interpreter.

In graphical environments, such as the Mac, stand-alone applications can be created to run when the user
double-clicks anicon, as you saw with the HelloJava application. However, in environments that also allow for com-
mand line input, where the user types commands from the keyboard rather than using the mouse, applications can

also be launched by using typed commands.

CodeWarrior provides away into this capability by displaying the window titled javai. Thisisawindow that
allows you to execute commands by typing them in and clicking the Execute button. For example, you’ ve aready
seen how to execute your application class by typing its name. Y ou can also pass parameters to your application by
using the command line. To do that, you can type the parameters you want to passto your class smai n() method
after the name of the class you want to execute. We set up mai n(') 's parameter as an array of string objects. Thisis

exactly how the parameters you supply are passed to mai n() : as string objectsin the string array.

Here's an example. Remember our NextPrime applet back in Chapter 8? That applet found the next prime

number after an initial starting point. Here was the start of that applet:

public class NextPrine extends java. applet. Applet {
public void init() {

Barry Boone and Dave Mark Learn Java on the Macintosh 443

i nt startingPoi nt, candidate, last, i;
bool ean i sPrine;

startingPoint = 19;

How would we rewrite this so that it was a stand-alone application, and so that it accepted its value for

starti ngPoi nt asacommand line parameter? We'd start by writing the following:

public class NextPrine {
public static void main(String[] args) {

I nt startingPoi nt, candidate, last, i;
bool ean i sPrine;

Now, what should we setst ar t i ngPoi nt equal to? The wholeintent hereisto avoid “hard-coding” the
valuefor st ar t i ngPoi nt and instead use the first parameter passed to NextPrime. The first parameter passed to
NextPrime will be thefirst string in the string array. From our discussion of arrays, you know how to access this: The

first value will bein the variablear gs, and you can get at it by writing ar gs[0] .

The Sample Programs section in this chapter shows you how to make the changes to NextPrime to make this

al work.

The Top-Level Frame

The HelloJava application simply displayed some text in the Java Output window. It did not allow the user to interact
with the application. To do this, you haveto create auser interface. Y ou’ ve aready developed user interfacesin Chap-
ter 11, and everything you learned there applies to creating a user interface for a stand-alone application. However,

there is oneimportant difference between applets and applications when it comesto user interfaces, and that is where

your user interface is displayed.

Barry Boone and Dave Mark Learn Java on the Macintosh 444

For applets, thisis not really anissue. An applet displaysits user interface inside a Web browser (or inside

the Applet Viewer). Thisis shown in Figure 14.10.

Web browser

applet

FIGURE 14. 10 An applet displaysits user interface inside a Web browser, placing its user interface objects inside

the applet itself.

However, an application has no such placeto display its user interface. This means that the application must
create its own place to display its user interface. How do we go about doing this? Let’s think through how your user
interfaceisdisplayed in aWeb browser. The Web browser automatically created your applet instance for you. All you
had to do was to create the user interface objects that went inside it. For stand-al one applications, no oneis creating

this place to put your user interface objects. Y ou have to do so yourself.

Javasuppliesaclass called Frame that you can use as a place to put your user interface. Frames contain other
user interface objects, which is exactly what you want. What you can do, then, is create your own instance of class

Frame, arrange your user interface objectsinside of your frame object, and display the frame. Thisis shown in Figure

14.11.

Barry Boone and Dave Mark Learn Java on the Macintosh 445

Frame you create

applet

FIGURE 14. 11 Your application’s user interface is displayed inside a frame your application created itself.

Here are the steps you might follow when creating your own frame in which to contain your user interface.
(This assumes that you are still defining an applet class, but want to run this applet as a stand-alone application, but

thistechniqueis easily transferable to other types of classes, aswell.)

1. Inyour applet’smai n() method, create anew instance of the applet. When running your applet in a browser, the
browser (or Applet Viewer) creates anew instance of your applet classfor you. If you’ re running stand-alone, you
have to do this yourself.

2. Invoke your new applet instance’si ni t () method. Again, the browser normally does this for you; you must ini-
tialize your own applet if you are running stand-alone.

3. Create aninstance of class Frameto contain your applet. In abrowser, your applet is contained within the browser
itself. Asastand-alone application, you have to supply your own container for your applet, then add your applet to
the frame.

4. Resizetheframe. The HTML file setsthe size for the applet; without an HTML file, you' ve still got to set the size

in your code.

5. Finally, make the frame display itself on the screen.

We'll take alook at an example of al thisin the next section.

Barry Boone and Dave Mark Learn Java on the Macintosh 446

Sample Programs

In this section we'll take two programs that we' ve seen before—NextPrime and SimpleDraw—and turn both of these

applets into stand-alone applications.

NextPrime.u

Openthefile14. 02 - next pri e intheLearn Java Projectsfolder. Open Next Pri me. p and make the
project. Thistime, instead of dropping the HTML file onto the Metrowerks Javaicon, double-click the file named

Next Pri me. out . Thiswill run the stand-alone application.

The Java Output window will appear. Display the javai window by selecting File, New, javai from the
Metrowerks Java menu options at the top of the screen. At first, nothing will seem to have happened. That’ s because
the application is set up to halt gracefully if no datawas supplied for it. So, let’srun it again, thistime supplying it

with data. In the javai window, type:

Next Prime 19

and click Execute. A message will appear in the Java Output window indicating that the next primeis 23.
Change the 19 in the javai window to 153 (so that it reads Next Pri ne 153), and click Execute again. A second

message will appear in the Java Output window, indicating the next primeis 157. Thisis shown in Figure 14.12.

Barry Boone and Dave Mark Learn Java on the Macintosh 447

Si=————""—"— .ava hntput =—"——————
Executing: jawai —classpath

JBlueHorse /CHERZ0G0 | d /Learn@®20Jdawa 14 02820-820nex tEZ0pr i me MMHex tPr ime . out MexiPrime
Completed(0Ol

Executing: jawai HextPrims 19
The next prime after 19 is 23
CompletedcO?

Executing: jawai HextPrims 1332
The next prime after 153 i=s 157
CompleteddOl

=l

FIGURE 14. 12 NextPrime, when run as a stand-alone application. Thisversion is set up to take its starting point as

acommand line parameter, allowing you to easily rerun the application to find a different prime number.

Let’s see how we did this.

Stepping Through the Source

Open thefile Next Pri me. j ava. First of all, you'll notice that this class no longer inherits from Applet. In fact, it
doesn’t inherit from any other class (other than Object). We' ve also removed thei ni t () method. Inits place, we' ve

defined amai n() method.

public class NextPrine {
public static void main(String[] args) {

We then define the same variables as before.

Barry Boone and Dave Mark Learn Java on the Macintosh 448

i nt startingPoint, candidate, last, i;
bool ean i sPrine;

Thistime, however, instead of setting startingPoint to 19, we attempt to retrieve it from the command line
parameters. Before grabbing this value, we might want to check to make sure the user actually supplied a command
line parameter in thefirst place! Otherwise, imagine that the user did not supply a command line parameter. In that
case, the array would be empty—it would have alength of O. If wetried to access avalue in the array’ s first position
we would be looking beyond the end of the array, which would cause Javato throw an exception called Arraylndex-
OutOfBoundsException. So, before accessing thear gs array, we might want to check to make sure the array doesin
fact contain one element. If it doesn’t, we can return right away, which would cause the program to halt. Here’ s how

we could write this:

if (args.length == 1) {
/'l try accessing the first command | i ne paraneter
} else
return;

If ar gs. | engt h doeseqgual 1, then thereisacommand line parameter. Each command line parameter isa
string. This means, if we want to assign the first command line parameter, which isastring, tost ar t i ngPoi nt,
whichisani nt , we must first convert the string to ani nt . One way to do that is to create a new instance of class
Integer based on the value in the string and then use the integer’ sinstance methodt ol nt () toreturnani nt data
type. Since the constructor for the Integer instance might throw an exception if the string does not contain avalid inte-

ger, you have to be prepared to catch the exception. Here' s the code:

try {

Barry Boone and Dave Mark Learn Java on the Macintosh 449

I nteger integer = new Integer(args[0]);
startingPoint = integer.intValue();

} catch (Exception e) {

return,;

(Alternatively, you could also use | nt eger . par sel nt () aswe saw in aprevious example.)

SimpleDraw.u

Displaying auser interface in a stand-al one application requires providing aframe for the user interface. We can write
an applet just as usual, but instead of relying on the browser to tell us what to do, our mai n() method can do this

work itself.

Run the SimpleDraw application that’sin thefolder 14. 03 - st and al one inLearn Java Projects.

First open Si npl eDr aw. p and make the project. Y ou can run this by double-clicking the file Si npl eDr aw. out .

Y ou can interact with SimpleDraw just as you' re used to. Create new shapes by clicking in the applet;
change the type of shape and color to draw in by using the choice lists. Notice that there isno Applet Viewer. This

application is truly running separately from the Applet Viewer.

Stepping Through the Source

Open Si npl eDr aw. j ava to check out the source. The only thing that has changed since you saw this program last
istheaddition of armai n() method. We'restill creating an applet; we still haveani ni t () method; and soon. Let's

takealook at thismai n() method and see what it does.

Barry Boone and Dave Mark Learn Java on the Macintosh 450

First, mai n() creates anew instance of the applet. Remember, mai n() isaclass method. Whenmai n()

starts executing, there is no instance at al; all that existsisthe classitself.

public static void main(String[] args) {

Si npl eDraw sd = new Si npl eDraw) ;

Since there isno Web browser or Applet Viewer invokingi ni t () for us, we have to do this ourselves.

sd.init();

Since aWeb browser or Applet Viewer isnot supplying a place to display our applet, we have to create our
own place. We can create an instance of Java' s class Frame to contain our applet. One of the constructors of class

Frame allows us to supply atitle for this window; we'll use that constructor here.

Frame f = new Frane("Si npl eDraw’);

Frames use a type of layout manager called a BorderLayout. As mentioned in Chapter 11, a BorderLayout
arranges its user interface components according to directions: North, South, East, West, and Center. We'll put our

applet smack-dab in the center.

f.add("Center", sd);

Barry Boone and Dave Mark Learn Java on the Macintosh 451

For applets, the HTML file suppliesthe default size initswi dt h and hei ght keywords. For stand-alone

applications, we have to supply this size ourselves.

f.resize(200, 100);

Thelast thing to do is display the frame, which makes our applet appear aswell, since it is contained within

the frame.

f.show();

As mentioned, the rest of the program isthe same. Thisnai n() routine does everything the Applet Viewer

did, and so our application can run stand-alone.

Review

This chapter outlined how to create applicationsin Javathat do not rely on Web browsers. Y ou’ ve seen how you must
defineamai n() routine for stand-alone applications. In fact, you can execute any class at al, aslong asit hasa

mai n() routine.

mai n() isaclass method; if you want to interact with instances of your class (for example, if you want to

invoke instance methods), you must create an instance of your class and use that for invoking methods. To display a

Barry Boone and Dave Mark Learn Java on the Macintosh 452

user interface, you have to take over the responsibilities of aWeb browser inmai n() by supplying a placeto display
the applet, adding your applet to this place, sizing the window that will appear, and then displaying the window (and

so displaying your applet inside of it).

What’s Next?

At this point, you' ve learned just about all thereisto know. The next chapter highlights some concepts that are impor-

tant to Java and offers some insights into how you can continue your pursuit of Java excellence.

Barry Boone and Dave Mark Learn Java on the Macintosh 453

CHAPTER 15 Where Do You Go From
Here?

Congratulations! Y ou’ ve made it through to the end. By learning Java, you have begun to travel the road to great Web
sites, fun programming, and arewarding career as a Java programmer. Now that you’ ve started you' re journey, we're
not just going to drop you off in the middle of nowhere! This chapter provides alink between this book and the rest of
the great, wide, world of Java. In particular, you'll learn about a number of advanced concepts concerning Java and

where you can go to find out more information about them.

Y ou’ve come along way since Chapter 1. Y ou started your journey learning about a Java devel opment envi-
ronment called CodeWarrior, then waded through the concepts of Web programming and how to solve problemsin
Javausing classes, objects, and methods. Y ou started developing very simple applets at first, but then, as you learned
about variables, methods, and the applet life-cycle, you were able to start to customize your appletsto do things. Once
you learned about objects and Java s classes, you were able to put together user interfaces that allowed usersto inter-
act with your applet. That’swhen things really started getting good! By learning about different ways of working with
datayou were able to compl ete these appl ets. Finally, you learned afew advanced topics, then took alook at what you

needed to do to create applets that ran stand-alone, apart from a Web browser.

What more isthere? There are lots of details, and this chapter helps show you where to look to dig down
deeper. Having gained a strong footing in the language, you should feel confident about exploring any of these areas
and learning many of the details that are not quite appropriate for a beginning book on Java. But you're no longer a
beginner! Now’ s the time to explore. Some of the topics presented here might begin to fill up entire books on their
own, so we can't go into much more detail other than to point out that they exist and offer some links to where you

can learn more about them. This chapter suggests how you might:

¢ |earn about interfaces

Barry Boone and Dave Mark Learn Java on the Macintosh 454

* define your own packages

* |earn about threads

* learn how Javaworks on the inside

* read the HTML filesthat describe Java s packages
e explore Java s packages

* study other resources

* experiment with a multithreading applet

Appendix G also offers a path to your continuing education by listing additional resources where you can
find out more about Java as the language devel ops and finds uses all over the Web. Y ou might aso want to attempt to
create your own programs that implement the features mentioned here. One of the best ways to learn the language is

to experiment. Try them out, play around with them, and test their limits to learn what these features are all about.

Learn About Interfaces

I nterfaces define a set of behavior for classes to implement. The idea behind an interfaceis that different classes

might share the same characteristics, even if these classes are not part of the same class hierarchy.

For example, you might have a class hierarchy for a Navy application that describes awhole bunch of jets,
destroyers, aircraft carriers, tug boats, and so on. Some of the more modern of these aircraft and ships might be
nuclear powered; the rest are diesel powered. How can you give different classes of craftsthe roles and responsibility
of anuclear powered craft without building it right into aclass? Y'Y ou can create an interface. Figure 15.1 provides an

idea of how an interface can be sprinkled into your class hierarchy.

Barry Boone and Dave Mark Learn Java on the Macintosh 455

r— "
= nuclear powered
L —

vehicle
|

B

—— o [k shutie]

L————1
| |
|

S | g
destroyer tugboat

I
fighter| |{bomber|l |awac aircraft carrier
e e |

FIGURE 15. 1This class hierarchy has the characteristic of “nuclear powered” sprinkled into different parts of the
hierarchy. Only those classes that have this characteristic are nuclear powered; the rest of the classes arejust like

normal. Those vehicles that are nuclear powered must implement the specific behavior of what being nuclear

powered means for them.

Aninterface is somewhat similar to a class, except that it can be shared among different classes. Interfaces
only define method names, parameters, and return values; they do not provide any behavior. The specific behavior for

amethod defined in an interface is |eft up to the class that implements that interface. Interfaces can define variables,

but these variables must be constants.

Java provides a number of interfaces, and you’ll run across these as you continue programming in Java. For
example, one of the most common interfaces, defined by Java, is called Runnable. This interface defines a method
called r un() , but does not supply any code forr un() . Instead, if your class implements the Runnable interface,

your class must supply amethod for r un() that tellsr un() what to do.

The way you declare a class as implementing an interface isto use thei npl ermrent s keyword. For exam-

ple, to indicate that your applet implements the Runnable interface, you can declare your applet like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 456

public class M/Appl et extends Appl et inplenents Runnable {
/'l your applet code goes here

public void run() {
/'l your code for run() goes here
}

This particular interface (that is, Runnable) is used with multithreading, astouched on later in this chapter.
For more information concerning interfaces, check out Java Essentials for C and C++ Programmers, by Barry

Boone and published by Addison-Wedley.

Define Your Own Packages

All of Java's classes comein packages, and you can do the same thing with your own classes—that is, you can group
your classes into packages, as well. This can help you share classes between different applets that you write, just as

Java s classes are shared between applets.

What Are Packages?

Packages are Java s way of grouping together related classes. The advantage of packages over a bunch of individual
classesisthat packages are easy to share between applications. If you have a collection of classes you'd like to share
between two or more applications, it's very useful to place all of these classesinto a package, and then simply share

the package.

For example, you might have two applications that could make use of the Square and the Rectangle classes

discussed in this chapter. One of these applications might be used for drawing, and the other might be used in an

Barry Boone and Dave Mark Learn Java on the Macintosh 457

application that teaches geometry to students. Figure 15.2 shows how each application might be organized without

packages.

| Drawing class

Square class

Rectangle class

drawing application

Learn Geometry on the Mac

Teacher class

Square class

Rectangle class

FIGURE 15. 2 Duplicating classes for different applications.

Rather than duplicating the classes between the applications, you could split out the classes for the square

and rectangle (as well as any other shape classes you' ve defined), place these classes into a package called shapes,

and then share this package between the two applications. Thiswould allow you to use the same classes in both appli-

cations, without duplicating any work, in away that’s very easy to manage. Figure 15.3 shows this organization.

drawing application

Drawing cla$|

-«

-

— -

AT

shape package

Square class

Learn Geometry on the Mac

Teacher class

-

Rectangle cl a&f—»

FIGURE 15. 3 Sharing classes between applications.

Barry Boone and Dave Mark Learn Java on the Macintosh

458

Creating Packages

To indicate that the classes in a particular file belong to a particular package, you must use thepackage keyword.
For example, the following line at the top of afile indicates that all of the classesin that file should belong to a pack-

age named shapes.

package shapes;

When you want to use a class in another package, you must import it, just as you import Java’s classes, by

writing:

i nport shapes. *;

Learn About Threads

All of the programsin this book work by asking the computer to do one thing at atime. Thisis how most programsin
other languages work, and you can write many great Java programs like this, as well. But Java contains an advanced
feature that makes it easy to ask the computer to do two or more things at the same time, and this makes Java much
different from other languages (Figure 15.4). This section will introduce you to this concept and to Java' s capabilities.
We won't go into too much code here, but by the time you finish this section, you'll at least understand what Java

means by multithreading.

Barry Boone and Dave Mark Learn Java on the Macintosh 459

do this
now do this at the same time!
/
and don't forget about this!

FIGURE 15. 4 In Java, you can ask the computer to do more than one thing at atime.

When Do You Want to Do More than One Thing at a Time?

Many programs are perfectly content to do one thing at atime. The SimpleDraw applet is happy enough responding
to user input and displaying squares and circles. The Triangle applet is content to calculate the area of the triangle

when the use clicks the “area” button.

What would happen if we changed SimpleDraw to be called SimpleDrawBlink? Perhaps such an appl et
would “blink” the squares and circlesin the applet. For example, you click in the applet, and a red square appears.
Every second, it changesto yellow for aquarter of asecond, and then redrawsitself inred. You click again, and ablue
circle appears. Every second, it changesto yellow for a quarter of a second, and then redraws itself in blue. Soon,

your applet isfilled up with blinking shapes, all blinking to yellow at different times.

Other than becoming hypnotized by such an applet, we'd run into some trouble if we really wanted all the
shapes to start blinking independently of each other. If the applet managed each shape's blink, we' d have to enter
some kind of loop, draw each shape in yellow, then loop back, redraw the shape in its original color, and so on, for-
ever—and still we would probably end up with them all blinking in unison, which is not what we want. In addition to
this, when would we respond to user input if all we did was draw and redraw these shapes? Would we be using system

resources correctly?

Difficult questionsindeed, and a problem tailor made for threads.

Barry Boone and Dave Mark Learn Java on the Macintosh 460

What Is a Thread?

A thread iskind of like amini-program. A thread maintains its ownthread of execution or thread of control. Your
program can use as many threads as it wants to; each thread will do its own thing, independently of the others. For

example, you could have athread that controls how to draw each shape. Each thread would decide when to blink each
shape. Y ou could create athread and assign it to the first red square you create; you could create a second thread and

assign it to the blue circle you create next. Each time anew shape is created, you create a new thread for it, aswell.

In this scenario, we' ve assigned each shape its own mini-program, and each program executes independently
of each other and at the sametime. SimpleDraw itself does not have to go around blinking each shape; the threads and

shapes working together make this happen. Thisis depicted in Figure 15.5.

SimpleDraw creates
the shapes and threads

¥ v\
u-.

blink circle

blink square

FIGURE 15. 5 Each thread works with a particular shape to make that shape blink; all the threads run at the same

time. The applet does not have to worry about anything other than creating a shape and a corresponding thread.

Creating and Starting a Thread

Javasupplies aclass called Thread. One way to work with threadsis to create your own subclass of the Thread class.

By creating your own subclass, you can provide behavior for the thread that will make it do what you want.

Barry Boone and Dave Mark Learn Java on the Macintosh 461

All you have to do to create anew thread is to create an instance of your thread subclass. To start athread

going, you need to giveit alittle nudge. You tell it to start by invokingitsst art () method.

Telling a Thread What to Do

How does a thread know what to do? Y ou have to tell it! Y ou can tell your thread, for example, to redraw a particular
shape. You can tell your thread to perform some animation. Y ou can tell your thread to access a Web page while the
user is busy interacting with the application. Remember, threads are mini-programs. They can do whatever you tell

them to do.

Theway you tell athread what to do is by supplying a method called r un() . Once you start your thread by

invoking itsst art () method, Javawill invokeitsr un() method for you, as shown in Figure 15.6.

Y ou can also create a thread without subclassing it and indicate to Java that you want another class, such as
your applet, to providear un() method for thethread. Y ou would thenimplement ar un() method in your applet to

provide the behavior for the thread and declare your applet as implementing the Runnable interface.

Oncether un() method begins, it will continue to execute until one of two things happens:

1. Javareachesthe end of the code in the thread’sr un() method. If r un() exits, your thread will no longer be
doing anything. Many times, threads enter an infinite loop, so that they run forever (that is, until the thread is

destroyed, usually because the user quit the applet).

2. Someone puts your thread to sleep. Who might do this to your thread? Any object can put athread to sleep—
including the thread itself! If your thread goesto sleep, you can alwayswakeit up again, and it will continue along
its merry way. There are afew different methods to make your thread sleep, and afew corresponding methods to

make your thread wake up.

Barry Boone and Dave Mark Learn Java on the Macintosh 462

thread
start() - run() {

}

FIGURE 15. 6 Starting athread invokesthe thread’sr un() method.

One way to make athread go to sleep isfor the thread to invoke itsown sl eep() method, which waits the
indicated number of milliseconds before reawakening. The sample program in this chapter uses this technique. For
other techniques for putting a thread to sleep and reawakening athread, check out the different methods associated

with class Thread in the Java Application Programmer’ s Interface (API) documentation.

Synchronizing Threads

Traditionally, with other languages, threads can be a nightmare. Having all these threads running around doing things
isalittle like having dozens of ants running around, each one doing its own task. How do you control all these little
critters? How do you stop one ant (I mean, thread) from doing something that another thread is doing at the same

time?

Thisisadifficult problem in other languages, because other languages were not developed with the idea of
threads in mind. In Java, however, thisideais built right into the language. Java supplies two keywords (the primary
one being the keyword synchr oni zed) that asks Javato take on the responsibility of making sure that threads
don't step on each other’ stoes. If you ever see amethod declared assynchr oni zed, this means the author of the
code wanted to make sure that only one thread could invoke that method at atime. If another thread comes along and

also wants to invoke that method, it must wait patiently until the first thread is done and the method exits.

Detail

Barry Boone and Dave Mark Learn Java on the Macintosh 463

To be complete about this, there' salso akeyword that israrely used, calledvol at i | e. Thiskeyword ensuresthat if

athread changes a variable that another thread is using, that other thread will see the change.

The Thread Life-Cycle

There' saso athread life-cycle, which appliesto the Thread class; in particular, threads can start and stop. Very often,
you will put your thread' s life-cycle in synch with your applet’slife cycle: When your applet starts, you should start

your applet’ s threads; when your applet stops, you should stop your applet’s threads.

There are some good explanations of multithreading on the Web at JavaSoft’ s site, aswell as appletsyou can
run at this site to see examples of multithreading in action. Also, Barry Boone' s Java Essentials for C and C++ Pro-
grammers, from Addison-Wesley, describes multithreading, including thesynchr oni zed andvol at i | e key-

words, in much more detail.

Learn How Java Works on the Inside

Garbage Collection

The appletsin this book all created anumber of objects. We kept track of almost al of these, from shapes to employ-
ees. Sometimes, however, you'll create objects only temporarily, and then you won't have need or use for them again.
Aswe mentioned earlier, objects take up memory in your computer. If you create an object and then don’t use it

again, does the object continue to sit in memory, using up space unnecessarily?

Not in Java. Java provides a mechanism called gar bage collection. When your program can no longer
access a particular object, Java has ways of finding out. If it discovers an object that you won't be using any more

(because you no longer can access it from your program), it frees up the memory used by that object.

Barry Boone and Dave Mark Learn Java on the Macintosh 464

It's not strictly necessary to know about garbage collection to use Java, but it does enhance your understand-
ing of what’s happening behind the scenes. Check out the specifications for the Java Virtual Machine and the docu-

mentation for the Object class for more information concerning what Java s garbage collection is all about.

The Java Virtual Machine

Y ou know what the Java Virtual Machine (JVM) does; one advanced area of study islearning how the VM works.
For example, the VM does not allow any code to execute that contains a virus. How does it know? What do the

machine language instructions for the VM look like? What can you learn about Java by knowing these details?

The answers to these and many more questions can be found in the specifications for the Java Virtual
Machine. If you really want to try to figure out what’ s going on behind the scenes, you might want to gain an over-

view of the VM.

Explore Java’'s Packages

You've now at |least seen all there isto know about the Java language. But Javais much more than alanguage. Java
comes with lots and lots of predefined classes for you to use in your own programs. We' ve already seen lots of these,
from Strings to Appletsto Vectors to the Math class. This section provides an overview of some of the classes you
might want to investigate first as you continue learning what Java has to offer. For more information on the classes

mentioned here, check out the HTML files containing the Java package information.

Barry Boone and Dave Mark Learn Java on the Macintosh 465

Understand the HTML Files

First off, let’s look at the structure of the HTML files that contain Java' s class documentation. These files can be
found on your CD; you can use a Web browser to view them. (Check with your development environment for more
information about what' s available on the CD.) Y ou can also go to the JavaSoft Web site containing the most up-to-

date documentation (see Appendix G).

The documentation files are arranged in a hierarchy. Thefirst level isalisting of al of Java s packages that

are available to you to use in your own Java programs. Thisis shown in Figure 15.7.

Java Packages

jasra. lans
Package that contains essential Jasra claszes, ncluding numerics, stingz, objects,
compiler, muntime, security and threads. TTnlike other packages, java. lang is antonuatically
impoited into every Java prograi.

jasma. utl
Package containing mizcellaneons utility classes, including zeneric data stiuctures , settable
hits clasz, time, date, sting manipulation, random ounber generation, svstern properties
notification, snd enumeration of data stuctores,

Package that provides a set of input and output streanis 1o read and write data 1o files,
strings, and other souices.

jasra. net
Package for network support, including TRL:, TCF sockets, UDP sockets, [P addreszes
and a binary-to-text converter.

jawra. applet
Package that enables constiuction of applets. It also prowides information about an applet's
parent document, about other applets in that document, and enables an applet to plaw
andio.

jasra. et
Package that provides vser interface featires such as windowes, dialog boxes, buttons,
checkboxes, lists, menns, scoollbars and text fields. (Abstact Windowr Toolkit)

jasra. awt image
Package for managing image data, such as the setting the color model, cropping , color
filtering , setling pixel walues and grabbing snapshots.

jasra. A%t peET
Package that connects AT components to their platfonn-specific implementation {such as
Motif widzets or Microsoft Windowrs controls).

Barry Boone and Dave Mark Learn Java on the Macintosh 466

FIGURE 15. 7 Theindex of Java's packages as found at the JavaSoft Web site.

By clicking on one of these hypertext links (say j ava. | ang, for example), you'll go to alisting of the

classes that are found within this package. The lang package contains lots of classesthat are at the heart of Java. The

beginning of the listing of classesin the lang package is shown in Figure 15.8.

package java.lang

Interface Index

Cloneahle
Funnahle

Clasg [Hdex

Eoolean
Character
lazs

FIGURE 15. 8 A listing of the classes within a package (in this case, these are the classes within the lang package).

Thetop part of thislisting presentsthe interfacesthat are defined in this package. Theinterfaces are followed

by the classes. To learn more about an interface or aclass, click on it to view a page describing all the variables and

methods for that class.

The top part of the class's detailed information shows where this class fitsinto Java s class hierarchy. For

example, clicking on Integer displays the information shown in Figure 15.9.

Barry Boone and Dave Mark

Learn Java on the Macintosh

467

Class java.lang. Integer

java.lang. Object
I

+————7java . lang. Hunber

I
+-——=7ava . lang. Integer

public final clazz Integer
extends Humber

The Integer clazs is a wrapper Ior integer walues. In Jawa, integers are not objects and most of the

Jarra utility clazzes require the vze of objects, Thus, if won needed 10 store an integer in a hashtable,
o1, would hasee 10 "wrrap” an Integer instance amound it

FIGURE 15. 9 The definition for the Integer class, including a simple diagram of where the Integer classfitsinto

Java s class hierarchy.

If you'd like to navigate to an ancestor class, simply click it. For example, you can click
j ava. |l ang. Nunber orj ava. | ang. Obj ect inthedisplay shown in Figure 15.9 to go to information about the

Number or Object class.

Beneath this hierarchy information, you'll find the complete definition for the class, as well as documenta-
tion concerning what this classis al about. (Y ou can see from this HTML file that the Integer classis defined as

fi nal , which meansit cannot be subclassed.)

The next part of the HTML file is divided into two broad sections. The first section provides indexes for the
variables, constructors, and methods. Each entry in thisfirst section jumps to the appropriate spot in the second sec-
tion, where you' Il find the detailed information for a variable, constructor, or method. For example, Figure 15.10

shows the Variable Index for aclass.

Barry Boone and Dave Mark Learn Java on the Macintosh 468

Variable [Hdex

e MAY YALUE

The maximum walue an Integer can have.
e MIHN YALUE

The mindmum walue an Integer can have.

FIGURE 15. 10 The Variable Index for the Integer class.

If you click one of these hyperlinked variable names, you' Il jump to the part of this same HTML document

that defines these variables. Thisis shown in Figure 15.11.

Variables

@ MIN_YALUE

public fimal static int [TTH TALTE

The mindrm walue an Integer can hasre, The lowrest mindmomn wadue an Integer can have is
Dxa0000000,

@ MAY VALUE

public final =static int D&YX TALTE

The maximm walue an Toteger can hasre. The greatest masinnm walue an Integer can hase
is Ox"PEFEEFfE

FIGURE 15. 11 You can tell by looking at the definition for the variables named M N_VALUE and MAX_VALUE
that they cannot be changed—that is, they are constants by virtue of being defined asf i nal . Sincethey are

defined asst at i ¢ they are class variables, and you can access these variables by writing

Barry Boone and Dave Mark Learn Java on the Macintosh 469

I nt eger. M N_VALUE and | nt eger . MAX_VALUE. (Thevaluesfor these constants are given as hexadecimal

valuesin the documentation. In base 10, these values are 2,147,483,647 and -2,147,483,648.)

After the Variable Index comes the Constructor Index. The Constructor Index lists the constructors defined
by the class. And finally, following the Constructor Index is the Method Index. Aswith al of the HTML documenta-
tion, click any link to find out more about a variable, constructor, method, or parameter. Figure 15.12 shows an exam-

ple of what atypical method definition looks like:

o equals
public boolean egquals(0bject abj)

Compares thiz object 10 the specified object.
Parameters:
obj - the object 1o compare with
Retorns:
e if the objects are the zame; falze otherwise.
Owverrides:
eQuals in class Ohject

FIGURE 15. 12 Theequal s() instance method for the Integer class.

This definition shows the method declaration, including all its keywords and parameters. The details for the

method indicate the meaning of the parameters and return values, and indicates which method it is overriding, if any.

Another convenient aspect to the documentation is an index. If you need to find a particular method and are
not sure what classto go to, you can use the index to look up variables and method names al phabetically. Y ou can

access the index by clicking on the word Index at the top right of the documentation (Figure 15.13).

Barry Boone and Dave Mark Learn Java on the Macintosh 470

FIGURE 15. 13 The Index link takes you to an alphabetical index for the documentation.

That brings you to alarge document listing everything in alphabetical order. The top part of thisis shownin

Figure 15.14. Simply click on avariable or method name to jump right to its definition.

Index of all Fields and Methods
A

ABORT. Static wariable in interface jasra. awrt. image. Inage haerver
Ao image which was being racked azvnchrononsly wras aborted before production wras
complete.
ABORTED, Ztafic srariable in clazz jasra, awdt. MediaTracker
Flag indicating the download of some media was aborted.
abzidouble), Btatic method in clazz jasra. lang . Math
Returns the absolute donble sralue of a.
abzfloat). Static method in class java.lang Math
Returns the absolute float walue of a.
abs(int). Static method in clazz jasra, lang . Math
Retumne the abzolute integer swalue of &,
abslong). Static method in class java. lang Math
Eetumns the abzolute long walue of a.
AbstractMethod Ermorn). Constoctor for clazs jasra. lang . Abstractethod Exor
Constcts an Abstracttlethod Exror with no defadl mezzage.

FIGURE 15. 14 Thetop part of the Index, listing al fields (that is, variables) and methods.

By the Way

The original Sun JDK had a feature that automatically produced nicely formatted HTML files containing documenta-
tion for your source code. When the tool that generated these HTML files read your source files, they sought out com-

ments that started with / ** and added these to the HTML documentation files. For example, you could write:

Barry Boone and Dave Mark Learn Java on the Macintosh 471

/| ** Shapes provide a common ancestor for the circle and square. */
abstract class Shape {

/1l definition for the Shape class here
}

and these comments would be added to the HTML file automatically generated for you that contained your

class's documentation.

It'slikely that other development environments will implement this documentation tool as well. Check the

documentation with your development environment for details.

Spend some time looking around these class documentation files. They’ll provide lots of insightsinto how
Javais put together and you' Il learn about lots of classes you can usein your own applets. The next few sections pro-

vide an introduction to what you' Il find in these packages.

The awt Package

With the awt package, you can create very sophisticated graphical user interfaces that run on any platform. The

classes and methodsin this package will allow your applet to interact with the user and will make your applet sparkle.

You've aready created some user interfaces in this book, and what you’ ve learned so far has taken you far.
Y ou can al so generate much more complex user interfaceswith Javathan you' ve created up to this point. And as more
graphical development environments emerge, you'll be able to create user interfaces simply by arranging objects on
the screen. Soon, you may not even realize what classes you're using, and creating an interface will be a matter of
“drawing.” But it's aways helpful to know what you' re doing; learning how to work with Java's awt classes directly

can be very educationa when learning what makes Java tick.

Some of Java's classes that will help you develop more complex user interfaces include:

¢ Panels, which contain other user interface elements inside of them

Barry Boone and Dave Mark Learn Java on the Macintosh 472

* Frames, which are top-level windows with atitle

* Dialogs, which are windows that take input from the user

These are all types of Containers. The Container class defines user interface elements that contain other user
interface elements. In addition to all the other user interface classes we' ve already covered (such as TextFields,

Labels, and Buttons), the awt package also defines:

e Scrollbars, which allow the user to scroll the contents of awindow
e TextAreas, which display multiple lines of text and can be used to display or edit text
¢ Menus, which are choicesin MenuBars

¢ Canvases, which you can subclass to create your own custom components

These are all types of Components. The Component class defines things with which the user can interact.
The JavaSoft Web site has anumber of examples of appletsthat create user interfaces. Y ou'll aso find some examples

on the CD that comes with CodeWarrior.

The net Package

The net package contains classes for communicating over networks, including the Internet and the Web. Y ou can use

all sorts of great networking classes by using the net package, including:

* URLSs, which encapsulate Universal Resource Locators and alow you to get afile or open a connection to the
URL simply by creating this object and specifying an Internet address

* Sockets, which handle low-level connections between a computer and a network

e ContentHandlers, which construct an object based on data read over the Internet

Barry Boone and Dave Mark Learn Java on the Macintosh 473

The io Package

This package contains classes that support reading and writing datato files (“io” stands for “Input/Output”). These

classes include:

* Files, which represent afile stored in a computer
* InputStreams, which help you to read incoming data

¢ OutputStreams, which help you to write outgoing data

The lang Package

The lang package (which stands for “language”) defines many classes that are at the core of Java. Many of these
classes support keywords that are part of the language itself. For example, Exceptions are used with thet ry, cat ch,
andt hr owkeywords. Threads are used withthesynchr oni zed andvol at i | e keywords. Objects are used with

the new operator. Some of the key classes in this package include:

¢ Exceptions, which are used to signal and handle error conditions arising when your code executes

* Integers, Longs, Floats, and Doubles, which provide behavior for their corresponding data types

¢ Objects, which support all base-level object capabilities, such as the ability to create and destroy objects

e Strings, which maintain character data and provide methods for searching and manipulating the text they contain

* Systems, which allow access to the functionality of the operating environment

Barry Boone and Dave Mark Learn Java on the Macintosh 474

Study Other Resources

Other than the HTML files, what else is there? Where to start? There are lots and lots of educational resources out
there, many of them on the Web. There are news groups, mailing lists, corporate Web sites from Java licensees, “ offi-
cia” JavaWeb sites from JavaSoft (Sun’s spin-off company now responsible for the Java language), home-grown
Web sites by Java fans, and many other sites that use Java without calling attention to the fact that they are using

Java—their Java applets are just part of the Web page.

There are magazines devoted to Java. Some of these are Web-based; some of these are available at your

newsstand.

There are also books, books, books. Many of the books available are quite good, and you'll find, asyou
probably have already, that you have lots of choices as you peruse the bookstore shelves. Y ou' re now ready for an
intermediate book (or perhaps even an advanced book, if you’ ve gone through the exercises in the appendices), and

definitely pick up areference to the Javalanguage if you plan to continue on.

All of these resources, and more, are listed in Appendix G.

Sample Programs

Even though we just scratched the surface of multithreading, we' ve included a sample program that implements the

SimpleDraw applet so that each shape actually does blink, just as we described in this chapter.

SimpleDrawBlink

Openthefolder 15. 01 - t hreads intheLearn Java Project folder. Open Si npl eDr aw. p and make the

project. Run the applet by dropping the Si npl eDr aw. ht i file onto the Metrowerks Javaicon.

Barry Boone and Dave Mark Learn Java on the Macintosh 475

Interact with the SimpleDraw applet in the usual way. You'll soon notice that all the shapes start blinking,
and generally not at the same time! When you' re done playing with this applet, quit out of the Applet Viewer. Let's

take a peek at the source.

Peeking at the Source
Open Si npl eDr aw. j ava. Here are the changes we' ve made from the version you’' ve come to know and love:

1. We renamed the vector object fromdr awnShapes tot hr eads. Instead of keeping track of the shapes, we'll

create threads and keep track of them instead. Each thread, in turn, will keep track of and control its own shape.

t hreads = new Vector();

2. Wecreated anew class, asubclass of Thread called BlinkThread. Here’ show we defined this subclass (ther un()
method is coming up).

cl ass Bl inkThread extends Thread {
static Graphics g;
Shape s;

Bl i nkThr ead(Shape s) {
this.s = s;

}
public void run() {

/'l we’'ll supply the code in just a nonent
}

3. Ininit(),wefind the graphics object that is used by the applet. We'll keep track of this object in a class vari-

ablein BlinkThread.

Barry Boone and Dave Mark Learn Java on the Macintosh 476

Bl i nkThread. g = get G aphi cs();

4. Weremovedthepai nt () method from the applet. Now, each thread invokes a shape's draw method itself when

it finds the shape should be redrawn. You'll seethisinther un() method for the thread.

5. When the user clicks the mouse, the applet creates anew instance of BlinkThread and assigns it the shape just cre-
ated. It does this by supplying the shape as a parameter to a custom constructor we' ve created for thisBlinkThread

class. The applet then starts the thread by invoking itsst art () method.

t = new BlinkThread(s);
t.start();

6. Theapplet suppliesstart (),stop(),anddest r oy() methods. When the browser stops or starts the applet,
the appl et suspends or resumes each thread, as appropriate. The applet also stops each thread for good when the

applet itself goes away.

/** Resune all the threads when the applet starts. */
public void start() {

Bl i nkThread t;

I nt nunrhr eads;

numrhr eads
for (int i

t hreads. si ze();
0; i < nunThreads; i++) {

t = (BlinkThread)threads. el enent At (i);
t.resune();

Barry Boone and Dave Mark Learn Java on the Macintosh 477

/** Suspend all the threads when the applet stops. */
public void stop() {

Bl i nkThread t;

I nt numrhr eads;

numrhr eads
for (int i

t hr eads. si ze();
0; i < nunThreads; i++) {

t = (BlinkThread)threads. el enent At (i);
t.suspend();

}

/** Stop all the threads when the appl et goes away. */
public void destroy() {

Bl i nkThread t;

i nt nunirhr eads;

numrhr eads
for (int i

t hreads. si ze();
0; i < nunThreads; i++) {

t = (BlinkThread)threads. el enent At (i);
t.stop();

7. Each shape defines an additional draw method that draws the shape in yellow, called dr awBl i nk() . For exam-

ple, here’'sthedr awBl i nk() method for the circle (the square’sdr awBl i nk() method is similar):

voi d drawBl i nk(G aphics g) {
g. set Col or (Col or.yel | ow);
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);
}

Barry Boone and Dave Mark Learn Java on the Macintosh 478

8. Andfinaly, the moment you' ve been waiting for: ther un(’) method for the BlinkThread instances. This method
loops forever. It draws the shape in yellow, then goesto sleep for a quarter of a second (250 milliseconds). When
it wakes up, it draws the shape in the shape’ s defined color, then goes to sleep for afull second (1000 millisec-

onds). This sequence, repeating endlessly, makes it appear that the shape is blinking.

public void run() {

// don't ever exit the thread
whil e(true) {

try {
s.drawBl i nk(Qg);

sl eep(250);

s.draw g);
sl eep(1000);

} catch (Exception e) {
}

Each time the user clicks the mouse, the appl et creates a new shape and a new thread, assigning the new
shape to the new thread. Each thread, then, keeps track of one shape object. Since threads are al running at the same
time, independently of each other, each thread’sr un() method is executing simultaneously with all the other
threads. Each thread is telling the shape for which it’ s responsible to draw in yellow, and then to draw inits original
color. This makes it appear that each shape is marching to the beat of its own drummer—which is exactly what each

shape is doing, blinking in time with the beat of its own thread.

Y ou can investigate this applet and the source code further to get a sense for what’ s going on. Try altering the

times each thread goes to sleep; try writing messages to the Java Output window in athread’sr un() method. Again,

Barry Boone and Dave Mark Learn Java on the Macintosh 479

threads are a complex topic, but we felt that since they’ re used quite frequently in Java applets, you should at least be
introduced to them. Now that are, you can start to find your way around what they’re all about by reading over the

available documentation and by studying other applets on the Web that also use threads.

Review

This chapter provided some ideas of where you can go next to learn more about Java. There are afew additional fea-
tures of the language, and many, many classes provided by Javathat you can use in your own applications. Also, be
sure to check out Appendix G, with itslisting of books and Web resources that point the way to even more informa-

tion on Java.

What's Next?

Y our next step is to become a Java master. Y ou started this book as a white belt, but you' ve come along way. At this
moment, you' re somewhere in the middle of your studies towards gaining a black belt. (You're already aforce to be

reckoned with.)

Asyou continue to learn more about Java and improve your skills, remember to have fun and develop some
exciting applets and applications. We hereby graduate you into the community of Java programmers! Thanks for

reading this book and good luck in al your future Java endeavors.

Barry Boone and Dave Mark Learn Java on the Macintosh 480

APPENDIX A GI O%ry

abstract class (see also concr ete class)

An abstract class cannot be instantiated.

allocate

To allocate a variable means to set aside enough memory to contain the type of data that this variable will refer to.

ancestor

An ancestor is a class from which another class inherits.

applet

An applet isa Java application that is meant to run over the World Wide Web in a\Web browser.

array

An array isacollection, or list, of dataall of the same type that is allocated in one contiguous block of memory.

assignment oper ator

The assignment operator, which isan equals sign (=), tells the computer to compute the value to the right of the = and

to assign that value to the variable on the left of the=.

binary operator

A binary operator takes two variables.

block

Barry Boone and Dave Mark Learn Java on the Macintosh 481

A block of code combines any number of statementsinto asingle “superstatement.” A block isdelimited by a pair of

curly braces.

Boolean expression

A Boolean expression evaluates to either true or false.

Boolean values

A Boolean value can either be true or false; there are no other possibilities.

bytecode

Bytecodes refer to the compiled class instructions, which are the machine language instructions contained in the com-

piled classfiles (thefilesthat end in. cl ass) . Bytecodes are ready to run on the Java Virtual Machine.

casting

Casting data types means to make one type of data become a different type of data (for example, you might cast a

floating point number into an integer).

catch an exception (see also throw an exception)

Catching an exception means handling an error condition.

character-based user interface (see also graphical user interface)

A character-based user interface relies on simple text to interact with the user

class

A classisatemplate or recipe for instantiating objects of the sametype. A class defines behavior and data for objects
(aswell asfor the classitself). Classes can inherit the behavior and variables of other classes, which alowsthem to be

arranged in hierarchies.

Barry Boone and Dave Mark Learn Java on the Macintosh 482

classvariable or method (see also instance variable or method)

A class variable or method is a variable or method belonging to aclass.

compar ative oper ator

A comparative operator is an operator that compares two expressions and evaluatestot r ue or f al se

compile

Compiling a program means converting source code into machine language.

compiled classfile

A compiled class file contains the definition for a class that’ s ready to run.

compiled language

A compiled language is a programming language whose references to variables, memory, method invocations, and

the flow through the program are determined at compile time.

compiler

Compilers convert an application’ s source code into machine language.

component (see also container)

A component is a user interface object which the user interacts with directly (such as a button or atext field).

concr ete class (see also abstract class)

A concrete class can be instantiated.

constant

A constant is a variable whose value never changes.

Barry Boone and Dave Mark Learn Java on the Macintosh 483

constructor

A constructor is a special method that initializes an object

container (see also component)

A container is a user interface object that groups together components and other containers.

current object

The object responding to a method invocation is known as the current object. (Java automatically sets the variable

named t hi s to the current object.)

data types

Variablesin Java must be declared as representing a certain data type, which includes numbers such as integers or

floating point values, characters, Boolean values, or objects.

descendent

A classis said to be a descendent of another class when it inherits from that class.

development cycle

The development cycle consists of the steps that programmers follow when devel oping a software application.

debugging

Debugging is the process of finding and fixing “bugs,” or problems, in a program.

event

Java signals an event has occurred every time the user interacts with your applet’s user interface.

exception

An exception is Java sway of reporting errors.

Barry Boone and Dave Mark Learn Java on the Macintosh 484

expression

An expression is any snippet of code that has avalue.

floating-point numbers

Floating-point numbers are numbers containing fractional values, such as numbers like 3.14159, 2.5, and .0001.

(Floating-point data types in Java can hold integer numbers as well.)

flow control

Flow control definesthe order in which the statementsin your program are executed. Controlling your program’ s flow

means determining when to branch around code, under which conditions to execute code, and when to perform loops.

fractional numbers (see floating point number s)

framework

A framework consists of classes that you use to build your application.

garbage collection

Garbage collection is Java s way of reclaiming memory that your program has allocated at some point during its exe-

cution but which your program no longer needs.

Graphical User Interface (GUI)

A GUI isauser interface that takes advantage of graphical elements, such aswindows, buttons, check boxes, and text
fields. GUIs take advantage of the mouse and are different from character-based user interfaces, which rely solely on
characters.

Hypertext Markup Language (HTML)

HTML isastandard that defines formatting commands for laying out documents.

Barry Boone and Dave Mark Learn Java on the Macintosh 485

i/o

Thisisan abbreviation for “input/output.” Input refers to ways to get information into the computer, such as through
the keyboard or mouse. Output refersto ways for the program to get information back to the user, such as displaying
information using a monitor or a printer.

infinite loop

Aninfinite loop is aloop that never terminates and instead repeats a sequence of statements forever.

inheritance

Classes can be set up in relationships. Subclasses build on and extend their superclasses. Subclasses inherit all of the

variables and methods in their superclasses.

initialization

Initialization is any code that affects aloop but occurs before the loop is entered.

instance (see object)

instance variable or method (see also class variable or method)

An instance variable or method belongs to an object (as opposed to belonging to a class).

instantiate

To instantiate an object is to create an instance (an object) based on a class.

integers

Integers are whole numberslike -37, 0, and 22. Variables declared in Java as integers cannot hold floating-point or

fractional values.

interface

Barry Boone and Dave Mark Learn Java on the Macintosh 486

Aninterfaceislike aclass, except that it only defines a set of behavior for classes to implement. Interfaces can also

define class constants.

interpreted language

Aninterpreted language is a programming language whose references to variables, memory, method invocations, and

the flow through the program is determined at run-time. Thisis as opposed to compiled languages.

invoke

Invoking a method means executing its instructions.

Java

An object-oriented programming language that’ s especially appropriate to use for devel oping applications for the

Internet and the World-Wide Web.

Java-enabled Web browsers

Web browsers that are capable of running software applications written in Java are said to be Java-enabled.

Javainterpreter

A Javainterpreter implements the Java Virtual Machine. There is adifferent Javainterpreter for each hardware/soft-
ware environment, that allows the same Java program you write to be run in these different environments without
modification.

Java Virtual Machine (JVM)

The JVM isatheoretical machine, at the moment only implemented in software, that all Java programs are compiled
to run on.

layout manager

A layout manager is an object that controls how a container arranges its user interface components.

Barry Boone and Dave Mark Learn Java on the Macintosh 487

literals

Literals are values not stored in a variable, such the number 123 or the character ‘a’.

loading a class

When Metrowerks Javafirst reads a compiled classfile, it loads the class into the interpreter.

local variable

A local variable is only accessible to the method in which it is defined

logical operator

A logical operator is an operator that evaluatesto eithert r ue or f al se.

loop (see dsoinitialization, modification, and ter mination)

To loop means to repeat a sequence of statements (usually for a set number of times).

machine language (see also compiler)

If you want to tell acomputer what to do, you need to tell it what to do in machine language. Machine language is

written using only 1sand Os.

method

A method is a chunk of code that defines behavior for an object or a class.

method signature

A method signature is defined by a method’ s name and parameter types.

modification

When used in reference to aloop, this refersto any code that changes the value of the loop’ s expression.

Barry Boone and Dave Mark Learn Java on the Macintosh 488

multithreading (see aso thread)

Multithreading is the ability to run multiple threads at once (that is, to do more than one thing at the same time).

numeric expression

A numeric expression is an expression that evaluates to a number.

object

An object is a specific instance of a class. Objects maintain data and provide access to behavior. All objects that
belong to the same class store the same types of data and have access to the same types of behavior. Each object main-
tains data that makes it unique from other objects.

oper ator

An operator is a specia character (or set of characters) representing a specific computer operation.

override a method

Overriding a method involves changing the default behavior for a method that a class inherits from one of its ances-

tors.

par ameter

A parameter isalocal variable that isinitialized as part of invoking a method.

porting

Porting is the process of getting source code created with a specific environment in mind to run in a different environ-

ment.

postfix notation

Barry Boone and Dave Mark Learn Java on the Macintosh 489

Writing in postfix notation means placing the operator to the right of avariable or an expression. (Only certain opera-

tors are appropriate to use with postfix notation.)

proj ect

In CodeWarrior, aproject isaway to organize the different files that make up an application or applet.

proj ect window

In CodeWarrior, a project window displays information about the files used to build a Java application or applet.

project file

In CodeWarrior, a project file contains information about the files used to build a Java application or applet.

scope

A variable' s scope defines where in the program you have access to the variable.

signatur e (see method signature)

sour ce code

Y our source codeis aset of instructions that determines what your application or applet will do and when it will do it.

sour cefile

A source file contains source code for an application or applet.

stand-alone applications

Java applications that do not run as part of the World Wide Web or in aWeb browser are said to be stand-alone appli-

cations (as opposed to applets).

standard input

Barry Boone and Dave Mark Learn Java on the Macintosh 490

Standard input is a place where new input from the user first arrives to the program. This concept comes from atime
when the user only communicated with a computer using a keyboard (and not also with a mouse). Hence, standard
input almost always refers to the keyboard.

standard output

Standard output is the place where information displayed by the program appears. This concept comes from atime

when the computer almost always displayed characters on the screen (without graphics). In agraphical environment

such asthe Mac, Java environments often supply a place for standard output. In CodeWarrior, this place is the Java

Output window.

statement

A statement isaline of Java code that actually does something. All statementsin Javaend in asemicolon ().

static initializer

When your class loads, Javalooksto seeif the class has defined a static initializer. If it has, then this code is executed.

string

Text isstored in stringsin Java.

subclass

A subclassis the immediate descendent of a particular class, aclassthat directly inherits from that class.

superclass

A superclass is the immediate ancestor of a particular class, a class from which aclass directly inherits.

syntax

A language' s syntax involves the rules for writing in that language.

Barry Boone and Dave Mark Learn Java on the Macintosh 491

syntax error

Syntax errors occur when your program does not follow the rules of the language (such as by leaving off a semicolon

accidentally, or forgetting to use curly braces where they should appear).

termination

When used in conjunction with aloop, termination refers to any condition that causes the loop to end.

thread (see aso multithreading)

A thread of control, or thread of execution, defines a specific sequence of tasks that a program should perform. Many
programs only need one thread to do their thing, but some programs need to do more than one thing at the same time;
these programs need multiple threads.

throw an exception (see also catch an exception)

throwing an exception signals an error in Java.

types (see data types)

unary operator

A unary operator is an operator that takes only one variable.

user interface (Ul)

A user interface defines the “look and feel” of your application, which includes the way in which the user interacts

with your application.

variable

A variableisacontainer for your program’ sdata. V ariablesrefer to specific locationsin memory where aprogram can

store numbers, characters, t r ue/f al se values, or any other type of data.

Barry Boone and Dave Mark Learn Java on the Macintosh 492

whole number s (see integers)
zip files

A zipfileisacomputer standard for combining files so that they take up less room on the computer’ s hard drive. Sun

Microsystems picked this standard as an easy way to organize and manage many different compiled classfiles.

Barry Boone and Dave Mark Learn Java on the Macintosh 493

APPENDIX B S)UrceCOde

02.01 - hello, world

/2
This displays "Hello, world!"™ when it repaints.
Java's cl asses: Appl et (appl et)

G aphics (awt) used for draw ng

Custom cl asses: Hell oWrl d

public class Hell oWwrld extends java. appl et. Appl et {

public void paint(java.aw .G aphics g) {
g.drawString("Hello, world!", 100 , 25);
}

04.01 - simple draw

See 12.03 - SimpleDraw.

05.02 - static init

/o
Thi s appl et displays a nessage when it | oads.

Barry Boone and Dave Mark Learn Java on the Macintosh 494

Java's cl asses: Appl et (appl et)
System (1 ang)

Custom cl asses: Staticlnit

public class Staticlnit extends java. appl et. Appl et {

static {
Systemout.println("l Iike Java in the springtinme");
}

06.01 - operator

/o
Thi s appl et perforns sonme arithnetic operations when it | oads.

Java's cl asses: Appl et (appl et)
System (1 ang)

Cust om cl asses: QOper at or

public class Operator extends java. applet. Applet {
static {
int nmylnt;

nmylnt = 3 * 2;
Systemout.printIn("nylnt --->" + nylnt);

nylnt += 1;
Systemout.printIn("nylnt --->" + nylnt);

nylnt -=5;
Systemout.printIn("nylnt --->" + nylnt);

Barry Boone and Dave Mark Learn Java on the Macintosh 495

nmylnt *= 10;

Systemout.println("nmylnt --->" + nylnt);
nylnt /= 4;
Systemout.println("nmylnt --->" + nylnt);
nylnt /= 2;
Systemout.println("nmylnt --->" + nylnt);

06.02 - postfix

/2
This applet illustrates prefix and postfix notation.
Java's cl asses: Appl et (appl et)

System (1 ang)

Custom cl asses: Postfix

___ *
public class Postfix extends java. appl et. Applet { /
static {
i nt nmyl nt;
mylnt = 5;
Systemout.printIn("nylnt --->" + nylnt++);
Systemout.println("nylnt --->" + ++nylnt);
}
}
Barry Boone and Dave Mark Learn Java on the Macintosh 496

07.01 - life cycle

/o
Thi s appl et displays a nessage at each phase in its life-cycle.

Java's cl asses: Appl et (appl et)
System (1 ang)

Custom cl asses: LifeCycle

public class LifeCycle extends java. applet. Appl et {
public void init() {
Systemout.printin("init()");
}

public void start() {
Systemout.println("start()");
}

public void stop() {
Systemout. println("stop()");
}

public void destroy() {
System out. println("destroy()");
}

07.02 - init

2
Thi s appl et i nvokes nethods when it initializes.

Java's cl asses: Appl et (appl et)

Barry Boone and Dave Mark Learn Java on the Macintosh 497

System (1 ang)

Custom cl asses: | nitMethod

___ * [
public class InitMthod extends java. appl et. Appl et {
public void init() {
Systemout.println("init()");
set UpGUI () ;
}
voi d set UpGUI () {
Systemout.println("setUpGUJ ()");
makeW ndowl () ;
makeW ndow2() ;
}
voi d makeW ndowl() {
System out . printl n(" makeW ndowl()");
}
voi d makeW ndow2() {
System out . printl n(" mkeW ndow2()");
}
}
07.03 - average
/o
This applet finds the average for three sets of nunbers.
Java's cl asses: Appl et (appl et)
System (1 ang)
Cust om cl asses: Aver age
___ *

public class Average extends java. appl et. Applet {

Barry Boone and Dave Mark Learn Java on the Macintosh 498

public void start() {
i nt aver age,

average = findAverage(10, 20, 30);
System out. printl n(average);

average = findAverage(-400, 182, 213);
System out. printl n(average);

average = findAverage(9901, 20201, 41);
System out. printl n(average);

}

int findAverage(int numl, int nunR, int nunB) {
return (numl + nunm2 + nunB)/3;
}

08.01 - truth tester

/o
This applet illustrates if-else statenments.
Java's cl asses: Appl et (appl et)

System (1 ang)

Custom cl asses: Trut hTester

public class TruthTester extends java.applet. Applet {
public void init() {

bool ean hasCar, hasTi neToG veR de;
bool ean not hi ngEl seOn, newEpi sode, itsARerun;

hasCar = true;

Barry Boone and Dave Mark Learn Java on the Macintosh 499

hasTi nreToG veR de = true;

I f (hasCar && hasTi mneToG veRi de)
Systemout.println("Hop in - 1'Il give you a ride!");
el se
System out . printl n(
"I"ve either got no car, no tine, or both!");

not hi ngEl seOn = true;
newkpi sode = true;

I f (newkpi sode || nothi ngEl seOn)
Systemout.println("Let's watch Star Trek!");
el se
System out . printl n(
"Sonething else is on or I've seen this one.");

not hi ngEl seOn = true;
i tsARerun = true;

I f (nothingEl seOn || (!itsARerun))
Systemout.println("Let's watch Star Trek!");
el se
System out . printl n(
"Sonething else is on or |I've seen this one.");

08.02 - loop tester

2
This applet perforns a few | oops.

Java's cl asses: Appl et (appl et)
System (1 ang)

Custom cl asses: LoopTester

public class LoopTester extends java. applet. Appl et {

Barry Boone and Dave Mark Learn Java on the Macintosh 500

public void init() {
int i;
i = 0;
while (i++ < 4)
Systemout.println("while: i=" +1i);

Systemout.println("After while loop, i=" +1i);
Systemout.println(" ");

for (i =0; i <4; i++)
Systemout.println("first for: i=" +1i);

Systemout.println("After first for loop, Ii=" +1i);
Systemout.println(" ");

for (i =1; i <=4; i++)
Systemout.println("second for: i=" +1i);
Systemout.println("After second for loop, i=" +1i);
}
}
08.03 - is odd
)/
This applet illustrates sinple flow control.
Java's cl asses: Appl et (appl et)

System (1 ang)
Custom cl asses: |1sCdd
public class I1sOdd extends java. appl et. Appl et {
public void init() {

i nt i

Barry Boone and Dave Mark Learn Java on the Macintosh 501

for (i =1; i <=20; i++) {
Systemout.print("The nunber " + 1 + " is ");

if ((i %2) ==0)
Systemout.print("even");
el se
Systemout.print("odd");

if ((i %3) ==0)
Systemout.print(" and is a nultiple of 3");

Systemout.printIn("");

08.04 - next prime

[X e m
This applet finds the next prime nunber after a starting point.
Java's cl asses: Appl et (appl et)

System (1 ang)

Mat h (1 ang)

Custom cl asses: NextPrine

public class NextPrine extends java. appl et. Applet {
public void init() {

i nt startingPoint, candidate, last, i;
bool ean i sPrine;

startingPoint = 19;

If (startingPoint < 2) {

Barry Boone and Dave Mark Learn Java on the Macintosh 502

candi date = 2;

} else if (startingPoint == 2) {
candi date = 3;
} else {

candi date = startingPoint;
if (candidate %2 == 0) /* Test only odd nunbers */
candi dat e- -;
do {

i sPrime = true; /* Assume gl orious success */
candi date += 2; /* Bunp to the next nunber */
last = (int)Math.sqrt(candidate);

/* We'll check to see if candidate */

/* has any factors, from2 to last */

/* Loop through odd nunbers only */
for (i =3; (i <=last) & isPrine; i += 2) {
if ((candidate %i) == 0)
isPrinme = fal se;
}
} while (! isPrine);
}

System out . printl n(
"The next prime after " +
startingPoint + " is " + candidate);

08.05 - next prime 2

| X e e e e e e e e e e e e e e ieeieao -
This applet finds the prinme nunbers from1l to 100.
Java's cl asses: Appl et (appl et)

System (1 ang)

Vat h (1 ang)

Barry Boone and Dave Mark Learn Java on the Macintosh 503

Custom cl asses: NextPrine2

public class NextPrine2 extends java. appl et. Appl et {
public void init() {

i nt candi date, i, |ast;
bool ean i sPri ne;

Systemout.println("Primes from1l to 100: 2, ");
for (candidate = 3; candidate <= 100; candidate += 2){

I sPrime = true;
last = (int)Math.sqrt(candidate);

for (i =3; (i <=last) & isPrine; i += 2) {

if ((candidate %i) == 0)
isPrime = fal se;

}

if (isPrime)
Systemout.println(candidate);

08.06 - next prime 3

2
This applet finds the prines between 1 and 100.

Java's cl asses: Appl et (appl et)
System (1 ang)

Custom cl asses: |sCdd

Barry Boone and Dave Mark Learn Java on the Macintosh 504

public class NextPrine3 extends java. appl et. Appl et {
public void init() {

I nt pri mel ndex, candidate, i, |ast;
bool ean i sPri ne;

Systemout.println("Prime #1 is 2.");

candi date = 3;
prinmel ndex = 2;

while (prinelndex <= 100) {

isPrime = true;
last = (int)Math.sqrt(candi date);

for (i =3; (i <=last) & isPrinme; i += 2) {
if ((candidate %i) == 0)
isPrime = fal se;
}

if (isPrime) {
Systemout.println("Prinme " + prinelndex +
" is " + candidate);
pri mel ndex++;

}

candi date += 2;

09.01 - employee 1

/2
This applet illustrates using instance variables and instance
met hods.

Barry Boone and Dave Mark Learn Java on the Macintosh 505

Java's cl asses: Appl et (appl et)
System (1 ang)

Cust om cl asses: Enpl oyeel

___ * |
public class Enpl oyeel extends java. appl et. Appl et {
i nt hourl yWage;
i nt hour sWr ked,;
i nt earnedl nconme() {
return hourl yWage * hour sWrked;
}
public void init() {
hour | yWage = 10;
hour s\Wor ked = 20;
}
public void start() {
i nt earnedl ncone;
Systemout.println("hourly wage = " + hourl yWage);
Systemout. println("hours worked = " + hour sWr ked) ;
ear nedl ncone = ear nedl ncone();
Systemout.println("earned i ncome = " + earnedl ncone);
}
}
09.02 - employee 2
/2
This applet illustrates working with instance vari abl es
and i nstance nethods in different objects.
Java's cl asses: Appl et (appl et)
System (1 ang)
Barry Boone and Dave Mark Learn Java on the Macintosh 506

Cust om cl asses: Enpl oyee?2

Enpl oyee
___ */
public class Enpl oyee2 extends java. appl et. Applet {

Enpl oyee el
Enpl oyee e2;
Enpl oyee e3;

public void init() {
el = new Enpl oyee();
el. hour| yWage = 10;
el. hour swrked = 20;

e2 = new Enpl oyee();
e2. hour | yWage = 18;
e2. hour sWwr ked = 38;

e3 = new Enpl oyee();

e3. hour | yWage = 12;

e3. hour sWwr ked = 52;
}

public void start() {
Systemout.println("");
System out. println("Enpl oyee 1:");
el. di splaylnfo();

Systemout.printIn("");
System out . println("Enpl oyee 2:");
e2.di splayl nfo();

Systemout.println("");
System out. println("Enpl oyee 3:");
e3. di splayl nfo();

}

cl ass Enpl oyee {
i nt hourl yWage;
i nt hour sWr ked,;

Barry Boone and Dave Mark Learn Java on the Macintosh 507

i nt earnedl nconme() {
return hourl yWage * hour sWrked;
}

voi d displaylnfo() {
i nt earnedl ncone;

Systemout.println("hourly wage = " + hourl yWage);
Systemout.println("hours worked = " + hour s\Wor ked) ;

ear nedl nconme = ear nedl ncone();

Systemout. println("earned incone = " + earnedl ncone);

09.03 - employee 3

| % e e e e e e e e

Thi s appl et shows when you m ght want to use the variable "this".

Java's cl asses: Appl et (appl et)
System (1 ang)

Cust om cl asses: Enpl oyee3
Enpl oyee

public class Enpl oyee3 extends java. appl et. Applet {

Enpl oyee el
Enpl oyee e2;
Enpl oyee e3;

public void init() {
el = new Enpl oyee();
el.initialize(10, 20);

e2 = new Enpl oyee();
e2.initialize(18, 38);

Barry Boone and Dave Mark Learn Java on the Macintosh

508

}

e3 = new Enpl oyee();
ed.initialize(12, 52);

public void start() {

}

Systemout.println("");
System out. println("Enpl oyee 1:");
el. di splaylnfo();

Systemout.printIn("");
System out . println("Enpl oyee 2:");
e2.di splayl nfo();

Systemout.println("");
System out. println("Enpl oyee 3:");
e3. di splayl nfo();

cl ass Enpl oyee {
I nt hourl yWage;
i nt hour sWr ked,;

i nt earnedlncone() {

}

return hourl yWage * hour sWrked;

voi d displaylnfo() {

}

i nt earnedl ncone;

Systemout.println("hourly wage = " + hourl yWage);
Systemout. println("hours worked = " + hour sWr ked) ;

ear nedl ncone = ear nedl ncone();
Systemout.println("earned income = " + earnedl ncone);

void initialize(int hourlyWge, int hoursWrked) ({

t hi s. hourl ywage = hourl yWage;
t hi s. hour swr ked = hour sWr ked;

Barry Boone and Dave Mark Learn Java on the Macintosh

509

09.04 - variable

/o
Thi s appl et shows a sinple exanple of accessing a class variable.

Java's cl asses: Appl et (appl et)
System (1 ang)

Custom cl asses: C assVar

public class O assVar extends java. appl et. Appl et {
static int test = 20;

public void init() {
Systemout.println("test " + test);

int test = 30;

Systemout. println("test " + test);

Systemout.println("ClassvVar.test =" + ClassVar.test);

09.05 - method

| % o o e o e mem e meaa e
Thi s appl et shows an exanple of accessing a class variable and
a cl ass net hod.

Java' s cl asses: Appl et (appl et)
System (1 ang)

Custom cl asses: C assiMet hod
Circle

Barry Boone and Dave Mark Learn Java on the Macintosh 510

public class C assMethod extends java. appl et. Applet {

public void init() {
Circle cl, c2, c3;

cl = new Crcle();
Crcle.nunCircl es++;

c2 = new Circle();
Crcle.nunCircl es++;

c3 = new Circle();
Crcle.nunCrcl es++;

Circle.displayNunCircles();
}
class Circle {
static int nunGircles;
static void displayNunCircles() {

Systemout.println(nunCircles +
circles were created.");

10.01 - triangle

/2
Thi s appl et shows how overriding a nmethod can change its
behavior. It also shows how to i nvoke the behavior that's defined
in the superclass for an object.

Java's cl asses: Appl et (appl et)
System (1 ang)

Barry Boone and Dave Mark Learn Java on the Macintosh 511

Cust om cl asses:

Tri angl eAppl et

Triangl e
___ * |
public class Triangl eAppl et extends java. appl et. Appl et {

public void init() {
Triangle t1 = new Triangle();
t1l. base = 10;
t 1. hei ght = 20;
Triangle t2 = new Triangl e();
t 2. base = 10;
t 2. hei ght = 20;
Triangle t3 = new Triangle();
t 3. base = 12;
t 3. hei ght = 52;
Systemout.println("The triangles say:");
Systemout.println("tl ==1t2? " + tl.equals(t2));
Systemout.println("tl ==t3? " + tl.equals(t3));
Systemout. println("The objects say:");
Systemout.println("tl ==1t2? " + t1.objectEqual s(t2));
Systemout.println("tl ==t3? " + t1.objectEqual s(t3));
}
}
class Triangle {
I nt base;
i nt hei ght;
publ i c bool ean equal s(Obj ect obj) {
Triangle t;
if (obj instanceof Triangle) {
t = (Triangle)obj;
Barry Boone and Dave Mark Learn Java on the Macintosh 512

if (t.base == base && t. hei ght == height)
return true;
}

return fal se;

}

bool ean obj ect Equal s(Obj ect obj) {
return super.equal s(obj);
}

10.02 - access

| X e e e e f e e e e e e e e e eieeeao
This applet uses a small class hierarchy to illustrate how to
defi ne abstract classes, superclasses, subclasses, and private
and protected vari abl es.

Java's cl asses: Appl et (appl et)
System (1 ang)
Col or (awt)
Custom cl asses: AccessAppl et
Shape
Crcle
Squar e

i nport java.awt . Col or;
public class AccessAppl et extends java. appl et. Appl et {
public void init() {

Crcle c
Square s

new Circle();
new Square();

c. set Col or (Col or. bl ue);

Barry Boone and Dave Mark Learn Java on the Macintosh 513

s. set Col or (Col or. bl ack) ;

c.x = 50;
c.y = 60;
s.x = 100;
s.y = 200;
c.draw);
s.draw);

}

/| ** Shapes provi de conmon characteristics for the circle and

square. */

abstract class Shape {
static protected final int radius = 20;

private Col or color;
i nt X

i nt Y

abstract void draw);

voi d set Col or (Col or color) {
if (color == Col or. bl ack)

this.color = Color.white;
el se
this.color = color;

}

Col or getCol or() {
return col or;
}

}

/** Draws and maintains circle information. */
class Circle extends Shape {
void draw) {
Systemout.println("Crcle: radius = " + radius);

Barry Boone and Dave Mark Learn Java on the Macintosh

514

Systemout.println("Crcle: color =" +
getColor().toString());

}

/** Draws and mai ntains square information. */
cl ass Square extends Shape{

voi d draw() {
Systemout.println("Square: radius =" + radius);
Systemout.println("Square: color =" +

get Col or ().toString());

11.01 - components

/2
This applet creates a few different user interface conponents
and detects when the user interacted with them

Java's cl asses: Appl et (appl et)
System (1 ang)
But t on (awt)
Choi ce (awm)
Text Fi el d (awt)
Checkbox (awt)
CheckboxG oup (awt)
Label (awt)
Event (awt)

Custom cl asses: Ul Appl et

I mport java.awt.*;

public class U Appl et extends java. appl et. Appl et {

But t on butt on;
Choi ce choi ce;
TextField text Fi el d;

Barry Boone and Dave Mark Learn Java on the Macintosh 515

/** Create a user interface. */
public void init() {

Checkbox checkbox;
CheckboxG oup checkboxG oup;
Label | abel ;

/'l create a choice |ist
choi ce = new Choi ce();
choi ce. addl t em(" Appl ") ;
choi ce. addl t en{ " Banana") ;
choi ce. addl tem(" Cherry");
add(choi ce);

/'l create a text field
textField = new TextField(10); // 10 col unms w de
add(textField);

/] create a button
button = new Button("dick ne");
add(button);

/'l create a | abel
| abel = new Label ("I ama | abel");
add(| abel) ;

/'l create 3 exlusive-choice checkboxes
checkboxG oup = new CheckboxG oup();

checkbox = new Checkbox("Yes", checkboxG oup, false);

add(checkbox) ;

checkbox = new Checkbox("No", checkboxG oup, false);
add(checkbox) ;

checkbox = new Checkbox("Maybe", checkboxG oup, true);
add(checkbox) ;

}

/** Respond to user input events. */
publ i ¢ bool ean acti on(Event e, Object arg) {

if (e.target == textField)
System out . printl n(

Barry Boone and Dave Mark Learn Java on the Macintosh 516

"User entered text into the text field");

else if (e.target == button)
Systemout.println("User clicked the button");

else if (e.target == choice)
Systemout.println("User selected a new choice");

else if (e.target instanceof Checkbox)
Systemout.println("User clicked a check box");

el se
System out. println("Unrecogni zed event");

return super.action(e, arg);

11.02 - paint hello

/2
This applet displays a friendly greeting.

Java's cl asses: Appl et (appl et)
Graphics (aw)

Custom cl asses: PaintHello

i nport java.awt. G aphi cs;
public class PaintHell o extends java. appl et. Appl et {

public void paint(Gaphics g) {
g.drawsString("Hello, applet!", 80, 50);
}

Barry Boone and Dave Mark Learn Java on the Macintosh 517

11.03 - paint circle

[X e m
This applet paints a red circle.
Java's cl asses: Appl et (appl et)

G aphics (awt) used for draw ng

Col or (awt) defines colors

Custom cl asses: Si npl eDr aw

i mport j ava. appl et. Appl et ;
I nport java.awt.*;

public class SinpleDraw extends Applet {

/** Draw a red circle when the applet paints itself. */
public void paint(Gaphics g) {

g. set Col or (Col or. red);

g.fill Oval (115, 55, 40, 40);

11.04 - circle at click

| % o e oo
This applet paints a red circle wherever you click.
Java's cl asses: Appl et (appl et)
Event (awt) user-generated action
Graphics (aw) used for draw ng
Col or (awt) defines colors

Custom cl asses: Si npl eDr aw
Circle defines and draws circles

Barry Boone and Dave Mark Learn Java on the Macintosh 518

i mport java. appl et. Appl et ;
i mport java.awt.*;

public class SinpleDraw extends Applet {
Crcle C;

/** Create a circle to start with. */
public void init() {

c =new Grcle();

c.initialize(50, 50);
}

[** Create a newred circle when the user clicks the nouse. */
publ i c bool ean nouseUp(Event e, int x, int y) {

c =new Grcle();

c.initialize(x, y);

repaint();

return true;

}

/** Repaint the newest circle. */

public void paint(Gaphics g) {
c.draw g);

}

}

/** Maintain circle informati on and provide drawi ng capabilities.
*/

class Circle {
Col or col or;
int Xx;
int vy,

/** Draw a circle that is 20 pixels in radius. */
voi d draw(Graphics g) {

g.setCol or(this.color);

g.fillOval (this.x - 20, this.y - 20, 40, 40);

Barry Boone and Dave Mark Learn Java on the Macintosh 519

}

/** Initialize a red circle at the given pixel |ocation. */
void initialize(int x, int y) {
color = Col or.red;
this.x
this.y

X,
y;

11.05 - simple draw

This applet paints a circle or square of the color you' ve chosen
wher ever you click

Java's cl asses: Appl et (appl et)
Event (awt) user-generated action
Graphics (aw) used for draw ng
Col or (awt) defi nes colors
Choi ce (awt) shape and col or sel ection
choi ces

Custom cl asses: Si npl eDr aw
Crcle defines and draws circles
Squar e defines and draws squares

i mport j ava. appl et. Appl et ;
I nport java.awt.*;

public class SinpleDraw extends Applet {
Shape current Shape = null;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

[** Create the GQJ . */

Barry Boone and Dave Mark Learn Java on the Macintosh 520

public void init() {

shapeChoi ce = new Choice();
shapeChoi ce. addltem("Circle");
shapeChoi ce. addl t em(" Squar e") ;
add(shapeChoi ce) ;

col or Choi ce = new Choi ce();
col or Choi ce. addl ten(" Red") ;
col or Choi ce. addl ten{" G een");
col or Choi ce. addl t en(" Bl ue");
add(col or Choi ce) ;

}

/** Draw the current shape. */
public void paint(Gaphics g) {
if (currentShape != null)

current Shape. draw g) ;

}

/** Create a new shape. */

publ i c bool ean nouseUp(Event e, int x, int y) {
Col or col or;
String shapeString = shapeChoi ce. get Sel ectedltem();
String colorString = col or Choi ce. get Sel ectedlten();

i f (colorString.equal s("Red"))
col or = Col or.red;

else if (colorString.equal s("Geen"))
col or = Col or. green;

el se
col or = Col or. bl ue;

/'l Create a new shape of the appropriate type.
/1 Wthout inheritance, we have to wite duplicate
/'l code for each of the shape types.

if (shapeString.equals("Crcle"))
current Shape = new Circle();
el se
current Shape = new Square();

current Shape. col or = col or;
current Shape. X = X;

Barry Boone and Dave Mark Learn Java on the Macintosh 521

current Shape.y = vy;
repaint();

return true;

}

/| ** Shapes provi de conmon characteristics for the circle and
square. */

abstract class Shape {
static public final int shapeRadius = 20;

Col or col or;
i nt X;
I nt Y;

abstract void drawm G aphics g);
}

/** Draws and maintains circle information. */
class Circle extends Shape {
voi d draw Graphics g) {
g.setCol or(this.color);
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

}

/** Draws and mmi ntains square information. */
cl ass Square extends Shape{
voi d draw Graphics g) {
g.setCol or(this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

Barry Boone and Dave Mark Learn Java on the Macintosh 522

11.06 - payroll

This illustrates the beginning of an applet to keep track
of enpl oyees in a database. This version defines an

Enpl oyee class but only adds the text fields to the appl et
for use once nore of the applet is devel oped.

Java's cl asses: Appl et (appl et)
TextField (awt) for entering new enpl oyee data
Label (awt) read-only text

GidLayout (awt) aligns by columms and rows

Custom cl asses: Payrol |
Enpl oyee payrol | information

i nport java. appl et. Appl et;
I mport java.awt.*;

public class Payroll extends Applet {
TextField textFiel dEnpl oyee;
Text Field textFiel dWage;
TextField textFieldHours;
Label | abel Ear ned;

/* Create user interface needed by this applet. */
public void init() {

/1 Arrange the user interface in a grid.
set Layout (new Gi dLayout (4,2)); // 4 rows, 2 colums

/'l 1st row

add(new Label (" Enpl oyee nunber:"));

t ext Fi el dEnpl oyee = new TextFiel d(20); // 20 colums wi de
add(t ext Fi el dEnpl oyee);

/1 2nd row

add(new Label ("Hourly wage:"));

t ext Fi el dWwage = new TextFiel d(20); // 20 colums w de
add(t ext Fi el dWage) ;

Barry Boone and Dave Mark Learn Java on the Macintosh 523

/1 3rd row

add(new Label ("Hours worked:"));

text Fi el dHours = new TextFiel d(20); // 20 colums w de
add(t ext Fi el dHour s) ;

/'l 4th row

add(new Label ("Earned i ncomne:"));

| abel Ear ned = new Label ();
add(| abel Ear ned) ;

}

/** Detect keyboard entry. */
publ i c bool ean acti on(Event e, Object arg) {

if (e.target == textFiel dEnpl oyee) {
System out . printl n("Enpl oyee nunber");

} else if (e.target == textFi el dWage) {
Systemout. println("Hourly wage");

} else if (e.target == textFieldHours) {

System out. println("Hours worked");

}
return super.action(e, arg);
}
}
/** Maintain payroll information for an enpl oyee. */
cl ass Enpl oyee {
i nt i dNunber;
i nt hourl yWage;
I nt hour sWor ked,;
i nt earnedl ncome() {
return hourl yWage * hour sWrked;
}
}

Barry Boone and Dave Mark Learn Java on the Macintosh 524

12.01 - floating pt

[% oo

Thi s appl et uses floating point nunbers as instance vari abl es.

Java's cl asses:

Cust om cl asses:

Appl et (appl et)
System (1 ang)

Fl oat i ngPt
Triangl e

public class FloatingPt extends java. appl et. Appl et {

public void i

Triangle t
t 1. base
t 1. hei ght

Triangle t
t 2. base
t 2. hei ght

Syst em out
Syst em out

}

class Triangle {
doubl e base;
doubl e hei ght

doubl e area()

nit() {

.println("area of t1lis " + tl.area());
.println("area of t2 is " + t2.area());

{

return base * height / 2.0;

}

Barry Boone and Dave Mark Learn Java on the Macintosh 525

12.02 - arrays

[X e m
Thi s appl et displays your fortune whenever you resize the applet.
Java's cl asses: Appl et (appl et)
G aphics (awt) used for draw ng
Mat h (1 ang) to find the absol uate val ue
Dat e (util) gets the current date
Random (util) finds a random nunber

Cust om cl asses: ArrayAppl et

I nport java.awt. G aphi cs;
I mport java.util.Date;
i mport java.util.Random

public class ArrayAppl et extends java. appl et. Applet {

i nt

nunStrings = 5;

String[] paintStrings;
Random r;

public void init() {
Date d = new Date(); /'l today's date

}

r =

pai
pai
pai
pai
pai
pai

new Randon{d.getTine()); // mlliseconds since 1970

ntStrings = new String[nunttrings];

nt Strings| 0] new String("Look for opportunities");
nt Strings| 1] new String("Take chances");

nt Stri ngs| 2] new String("Beware of tricks");

nt Strings| 3] new String("Take the day off");

nt Strings| 4] new String("Snell the roses");

public void paint(Gaphics g) {

i nt

index = r.nextInt() % nunttrings;

I ndex = Mat h. abs(i ndex);
g.drawStri ng(pai ntStrings[index], 50, 25);

Barry Boone and Dave Mark Learn Java on the Macintosh 526

12.03 - SimpleDraw

/2
This applet paints a circle or square of the color you' ve chosen
wherever you click. This applet keeps a list of the shapes you' ve
dr awn

and paints all the shapes in the list when it repaints.

Java's cl asses: Appl et (appl et)

Event (awm) user-generated action

G aphics (awt) used for draw ng

Col or (awt) defines colors

Choi ce (awm) shape and col or sel ection
choi ces

Vect or (util) list of shapes

Custom cl asses: Si npl eDr aw
Crcle defines and draws circles
Square defines and draws squares
Shape a common ancestor for circles and squares

i mport j ava. appl et. Appl et ;
i nport java.util.*;
I mport java.awt.*;

public class SinpleDraw extends Applet {
Vect or drawnShapes;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

/** Create the GQUI. */
public void init() {
dr awnShapes = new Vector();

shapeChoi ce = new Choice();
shapeChoi ce. addltem("Circle");

Barry Boone and Dave Mark Learn Java on the Macintosh 527

shapeChoi ce. addl t em(" Squar e") ;
add(shapeChoi ce) ;

col or Choi ce = new Choi ce();
col or Choi ce. addl t en{ " Red") ;
col or Choi ce. addl tem(" G een");
col or Choi ce. addl t en(" Bl ue");
add(col or Choi ce) ;

}

/** Create a new shape. */
publ i c bool ean nouseUp(Event e, int x, int y) {

Shape s; // This shape will be either a circle or a square.

String shapeString
String colorString

= shapeChoi ce. get Sel ectedl ten();
= col or Choi ce. get Sel ectedltem) ;
if (shapeString.equals("Crcle"))

s = new Circle();
el se

S = new Square();

i f (colorString.equal s("Red"))
s.color = Color.red;

else if (colorString.equal s("Geen"))
s.color = Col or.green;

el se
s.color = Col or. bl ue;

X,

S.
s. y;

X
y
dr awnShapes. addEl enent (s) ;
repaint ();

return true;

}

/** Draw all the shapes. */
public void paint(Gaphics g) {
Shape s;
i nt nunBhapes;

Barry Boone and Dave Mark Learn Java on the Macintosh 528

nunShapes = drawnShapes. si ze();
for (int i = 0; i < nunBhapes; i++) {

s = (Shape) drawnShapes. el enent At (i) ;

/'l When the shape draws, circles and squares each
/'l invoke their own draw nmethod, dependi ng on
/'l which shape this is.

s.draw g);

}

/| ** Shapes provi de conmon characteristics for the circle and
square. */
abstract cl ass Shape {

static public final int shapeRadius = 20;

Col or col or;
int Xx;
int y;

abstract void drawm G aphics g);
}

/** Draws and maintains circle information. */
class Circle extends Shape {
void draw(Graphics g) {
g.setColor(this.color);
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

}

/** Draws and mai ntains square information. */
cl ass Square extends Shape{
void draw(Graphics g) {
g.setCol or(this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

Barry Boone and Dave Mark Learn Java on the Macintosh 529

12.04 - Payroll

This illustrates a few standard cl asses and basi c appl et
behavi or. Enter an enpl oyee nunber for an enployee into a text
field. If this enployee exists, the applet will find the enpl oyee

and di splay the enpl oyee's payroll information. O herw se, the

applet will create a new enpl oyee and add t he enpl oyee to the

dat abase.

Java's cl asses: Appl et (appl et)

TextField (awt) to enter new enpl oyee data
Label (awt) read-only text
GridLayout (aw) aligns by columms and rows
Event (awm) user-generated action
Hashtable (util) dat abase
String (1 ang) t ext
| nt eger (1 ang) nunber

Custom cl asses: Payrol |
Enpl oyee payrol | information

i nport java. appl et. Appl et;
I mport java.awt.*;
i mport java.util.*;

public class Payroll extends Applet {
Hasht abl e db;
TextField textFiel dEnpl oyee;
TextFiel d textFiel dWage;
TextField textFieldHours;
Label | abel Ear ned,;
Enpl oyee current;

/* Create user interface needed by this applet. */
public void init() {

/'l Create the enpl oyee dat abase.
db = new Hasht abl e();

/1 Arrange the user interface in a grid.

Barry Boone and Dave Mark Learn Java on the Macintosh 530

set Layout (new Gi dLayout (4,2)); // 4 rows, 2 colums

/'l 1st row.

add(new Label (" Enpl oyee nunber:"));

t ext Fi el dEnpl oyee = new TextFiel d(20); // 20 colums wi de
add(t ext Fi el dEnpl oyee);

/'l 2nd row.

add(new Label ("Hourly wage:"));

t ext Fi el dWage = new TextFiel d(20); // 20 colums w de
add(t ext Fi el dWage) ;

/1 3rd row.

add(new Label ("Hours worked:"));

text Fi el dHours = new TextFiel d(20); // 20 colums w de
add(t ext Fi el dHour s) ;

/'l 4th row.

add(new Label ("Earned i ncome:"));
| abel Ear ned = new Label ();

add(| abel Ear ned) ;

setCurrent(null);

/** Handl e events that propogate to the applet. This w |
i nclude new text field data. */

publ i c bool ean action(Event e, (bject arg) {
Enpl oyee enpl oyee;
i nt nunber ;

Il Createl/retrieve the enpl oyee.
if (e.target == textFiel denpl oyee) {

nunber = int FroniText Fi el d(t ext Fi el dEnpl oyee) ;
enpl oyee = findEnpl oyee(nunber);

/'l Create a new enployee if not already there.
if (enployee == null)
enpl oyee = addNew(nunber);

/'l Display this enployee's payroll information.

Barry Boone and Dave Mark Learn Java on the Macintosh 531

set Current (enpl oyee) ;

/'l Set the hourly wage for the current enployee.
} else if (e.target == textFiel dWage) {

if (current !'= null) {
current. hourl yWwage = int FroniText Fi el d(t ext Fi el dWage) ;
recal cearned();

}
/'l Set the nunber of hours worked for the current enployee.
} else if (e.target == textFieldHours) {
if (current !'= null) {
current. hoursWrked =
i nt Fr omlext Fi el d(t ext Fi el dHour s) ;
recal cearned();
}

}

return super.action(e, arg);

}

[** This is a utility routine to retrieve an integer froma
text field. */

int intFromlextField(TextField tf) {
String s;
i nt val ue;

s = tf.getText();

try {

val ue = Integer.parselnt(s);
} catch (Exception e) {

val ue = 0;

setCurrent (null);

}

return val ue;

}

/** Do a dat abase | ookup using the enpl oyee's nunber as the
key. */

Barry Boone and Dave Mark Learn Java on the Macintosh 532

Enpl oyee fi ndEnpl oyee(int nunber) {
return (Enpl oyee)db. get (new I nt eger (nunber));

}

/** Set the text fields to display the correct information for
the current enpl oyee. */

voi d set Current (Enpl oyee e) {
current = e;

/1 1f there isn't a current enployee, initialize the fields.
if (e == null) {

t ext Fi el dEnpl oyee. set Text ("0");

t ext Fi el dWage. set Text ("0");

t ext Fi el dHour s. set Text ("0");
} else {

t ext Fi el dWage. set Text (

Integer.toString(current. hourl yWage));

t ext Fi el dHour s. set Text (
Integer.toString(current. hours\Wrked));

}

recal cEarned();

}

/** Create a new enployee and add it to the database */
Enpl oyee addNew(i nt nunber) {

Enpl oyee e = new Enpl oyee();

e. i dNunber = nunber;

e. hour |l yWage = 0;

e. hour s\Wor ked = 0;

db. put (new I nt eger (nunber), e); [// Add to the database
setCurrent (e);

return e;

}

/** Recal culate the text to display in the "Earned incone:"
| abel . */

Barry Boone and Dave Mark Learn Java on the Macintosh 533

voi d recal cEarned() {

i nt earned;
if (current !'= null)

earned = current. earnedl ncone();
el se

earned = O;

| abel Ear ned. set Text (I nteger.toString(earned));

}
}
/** Maintain payroll information for an enpl oyee. */
cl ass Enpl oyee {
i nt i dNunber;
i nt hourl yWage;
I nt hour sWr ked,;
i nt earnedl ncome() {
return hourl yWage * hour sWrked;
}
}

13.01 - applet params

/o
This applet paints a circle or square of the color you' ve chosen
wherever you click. This applet keeps a list of the shapes you' ve
drawn and paints all the shapes in the list when it repaints. It
allows the HTML file to supply a list of colors for the shapes.

Java's cl asses: Appl et (appl et)
Event (awt) user-generated action
Graphics (awt) used for draw ng
Col or (awm) defines col ors
Choi ce (awt) shape and col or choi ces
Vect or (util) list of shapes

Custom cl asses: Si npl eDr aw

Barry Boone and Dave Mark Learn Java on the Macintosh 534

Circle defines and draws circles
Square defines and draws squares
Shape a common ancestor for circles and squares

i mport j ava. appl et. Appl et ;
i mport java.util.*;
I nport java.awt.*;

public class SinpleDraw extends Applet {
Vector drawnShapes;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

/** Create the GQUJ . */
public void init() {
dr awmnShapes = new Vector();

shapeChoi ce = new Choi ce();
shapeChoi ce. addl ten("Circl e");
shapeChoi ce. addl t em(" Squar e") ;

add(shapeChoi ce) ;

col or Choi ce = new Choi ce();

col or Choi ce. addl t en(get Paraneter ("col or1"));
col or Choi ce. addl t en{ get Par anet er (" col or2"));
col or Choi ce. addl t en{ get Paraneter("color3")); t

add(col or Choi ce) ;

}
[** Draw all the shapes. */
public void paint(Gaphics g) {
Shape s;
i nt nunBShapes;

nunShapes = drawnShapes. si ze();
for (int i = 0; i < nunBhapes; i++) {

s = (Shape) drawnShapes. el enent At (i) ;

/1 When the shape draws, circles and squares each

Barry Boone and Dave Mark Learn Java on the Macintosh 535

/'l invoke their own draw net hod, dependi ng on
/'l which shape this is.

s.draw g);

}

/** Create a new shape. */
publ i ¢ bool ean nouseUp(Event e, int x, int y) {

Shape s; // This shape will be either a circle or a square.

String shapeString = shapeChoi ce. get Sel ectedltem();
String colorString = col or Choi ce. get Sel ectedl ten();

i f (shapeString.equals("Crcle"))
s =new Circle();

el se
s = new Square();

if (colorString. equal s("Red"))
s.color = Color.red;

else if (colorString.equals("Geen"))
s.color = Col or.green;

else if (colorString.equal s("Black"))
s.color = Col or. bl ack;

else if (colorString.equal s("Blue"))
s.color = Col or. bl ue;

else if (colorString.equal s("Pink"))
s.col or = Col or. pi nk;

else if (colorString. equal s("Cyan"))
s.color = Col or.cyan;

else if (colorString.equal s("Orange"))
s.col or = Col or. orange;

el se
s.color = Color.white; // default color

X,
Yy;

S. X
S.y
dr awnShapes. addEl enent (s) ;

repaint();

return true;

Barry Boone and Dave Mark Learn Java on the Macintosh 536

}

/| ** Shapes provide conmon characteristics for the circle and
square. */
abstract class Shape {

static public final int shapeRadius = 20;

Col or col or;
int Xx;
int vy,

abstract void drawm G aphics g);
}

/** Draws and maintains circle information. */
class Circle extends Shape {
voi d draw Graphics g) {
g.setCol or(this.color);
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

}

/** Draws and mmi ntains square information. */
cl ass Square extends Shape{
voi d draw Graphics g) {
g.setCol or(this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

13.02 - constructor

2
This applet creates circles using different constructors.

Java's cl asses: Appl et (appl et)

Barry Boone and Dave Mark Learn Java on the Macintosh 537

System (1 ang)

Custom cl asses: Constructor
Circle

i mport j ava. appl et. Appl et ;

public class Constructor extends Applet {
public void init() {
Crcle cl, c2, c3;

cl = new Circle();
c2 = new Circle(20);
c3 = new Crcle(c2);

cl.di splaylnfo();
c2.di splaylnfo();
c3.di splaylnfo();

}

class Circle {
static int defaultRadius = 10;
i nt radi us;

Crcle() {
radi us = def aul t Radi us;
}

Circle(int radius) {
this.radius = radi us;
}

Circle(Crcle referenceCrcle) {
this.radius = referenceCrcle.radi us;
}

voi d displaylnfo() {
Systemout.println("This circle's radius is
}

+ radius);

Barry Boone and Dave Mark Learn Java on the Macintosh 538

13.03 - exception

/o
This applet creates circles using different constructors. One
of these constructors throws an excepti on.

Java's cl asses: Appl et (appl et)
System (1 ang)
Exception (I ang)

Custom cl asses: Constructor
Crcle
| magi naryGircl eExcepti on

i mport j ava. appl et. Appl et ;

public class ExceptionAppl et extends Applet {
public void init() {
Crcle cl, c2, c3, c4,

cl = new Crcle();

try {
c2 = new Circle(20);

} catch (lmagi naryCG rcl eException e) {
Systemout. println("Exception with radius 20");
c2 = new Circle();

}

try {
c3 = new Circle(-20);

} catch (I magi naryGircl eException e) {
Systemout.println("Exception with radius -20");
c3 = new Crcle();

}
c4 = new Crcle(c2);

cl. displaylnfo();
c2.displaylnfo();

Barry Boone and Dave Mark Learn Java on the Macintosh 539

c3.di splaylnfo();
c4. di spl ayl nfo();

}

class Circle {
static int defaultRadius = 10;
i nt radi us;

Crcle() {
radi us = def aul t Radi us;
}

Circle(int radius) throws |InaginaryC rcleException {
if (radius < 0)
t hrow new I magi naryGi rcl eException();
el se
this.radius = radi us;

}

Circle(Crcle referenceCrcle) {
this.radius = referenceCrcle.radi us;
}

voi d displaylnfo() {
Systemout.println("This circle's radius is
}

+ radius);

}

cl ass I magi naryC rcl eExcepti on extends Exception {

}

14.01 - hello, java

/2
Thi s stand-al one application wites the words "Hello, Java!" to
t he standard out put.

Java's classes: System (1 ang)
String (1 ang)

Barry Boone and Dave Mark Learn Java on the Macintosh 540

Custom cl asses: HelloJdava (inherits from Cbject)

public class HelloJdava {
public static void main(String[] args) {
Systemout.println("Hello, Javal");
}

14.02 - next prime

| X e e e e f e e e e e e e e e eieeeao
Thi s stand-al one application finds the next prine after the
I nteger passed to it as a command |ine paraneter.

Java's cl asses: Appl et (appl et)
Exception (I ang)
String (1 ang)
I nt eger (1 ang)
Vat h (1 ang) to find the square root

Custom cl asses: NextPrine

public class NextPrine {
public static void main(String[] args) {

I nt startingPoint, candidate, |ast, i;
bool ean i sPrine;

if (args.length == 1) {

try {
I nteger integer = new Integer(args[0]);
startingPoint = integer.intValue();
} catch (Exception e) {
return;
}
} else

Barry Boone and Dave Mark Learn Java on the Macintosh 541

return,;

if (startingPoint < 2) {
candi date = 2;

} else if (startingPoint == 2) {
candi date = 3;
} else {

candi date = startingPoint;

if (candidate %2 == 0) /* Test only odd nunbers */
candi dat e- - ;

do {

isPrime = true; [* Assune glorious success */
candidate += 2; /* Bunp to the next nunber to test */
last = (int)Math.sqrt(candi date);

/* We'll check to see if candidate */

/* has any factors, from2 to last */

/* Loop through odd nunbers only */
for (i =3; (i <=last) & isPrine; i += 2) {
if ((candidate %i) == 0)
isPrinme = fal se;
}
} while (! isPrine);
}

Systemout.println("The next prinme after " +
startingPoint + " is " + candidate);

14.03 - stand alone

/o
Thi s stand-al one application paints a circle or square of the
col or you've chosen wherever you click. This application keeps a
list of the shapes you' ve drawn and paints all the shapes in the
list when it repaints.

Barry Boone and Dave Mark Learn Java on the Macintosh 542

Java's cl asses: Appl et (appl et)

Event (awt) user-generated action

Graphics (awt) used for draw ng

Col or (awt) defines colors

Choi ce (awm) shape and col or sel ection
choi ces

Vect or (util) list of shapes

Custom cl asses: Si npl eDr aw
Crcle defines and draws circles
Square defines and draws squares
Shape a common ancestor for circles and squares

i mport j ava. appl et. Appl et ;
I mport java.util.*;
i mport java.awt.*;

public class SinpleDraw extends Applet {
Vect or drawnShapes;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

/** Be able to run as a stand-al one application. */
public static void main(String[] args) {

/'l create a new i nstance of this appl et
Si npl eDraw sd = new Si npl eDraw() ;

/1 initialize the applet
sd.init();

/'l create a frane to hold this appl et
Frame f = new Franme("Si npl eDraw');

/1l put the applet into the frane
f.add("Center", sd);

/'l give the frane a default size
f.resize(200, 100);

/'l make the frane appear

Barry Boone and Dave Mark Learn Java on the Macintosh 543

f.show();
}

/** Create the GQUJ . */
public void init() {
dr awmnShapes = new Vector();

shapeChoi ce = new Choi ce();
shapeChoi ce. addltenm("Circle");
shapeChoi ce. addl t em(" Squar e") ;
add(shapeChoi ce) ;

col or Choi ce = new Choi ce();
col or Choi ce. addl t en{ " Red") ;
col or Choi ce. addl tenm(" G een");
col or Choi ce. addl t en(" Bl ue");
add(col or Choi ce) ;

}

/** Repaint all the shapes. */
public void paint(Gaphics g) {
Shape s;
i nt nunBhapes;

nunShapes = drawnShapes. si ze();
for (int i = 0; i < nunBhapes; i++) {

= (Shape) dr awnShapes. el ement At (i) ;
/1 When the shape draws, circles and squares each

/'l invoke their own draw net hod, dependi ng on
/'l which shape this is.

s.draw g);

}

/** Create a new shape. */
publ i ¢ bool ean nouseUp(Event e, int x, int y) {

Shape s; // This shape will be either a circle or a square.

String shapeString = shapeChoi ce. get Sel ectedltem();
String colorString = col or Choi ce. get Sel ectedl ten();

Barry Boone and Dave Mark Learn Java on the Macintosh 544

if (shapeString.equals("Crcle"))
s = new Circle();

el se
S = new Square();

i f (colorString.equal s("Red"))
s.color = Color.red;

else if (colorString.equals("Geen"))
s.color = Col or.green;

el se
s.color = Col or. bl ue;

X,

S.
s. y;

X
y
dr awnShapes. addEl enent (s) ;
repaint();

return true;

}

/| ** Shapes provi de conmon characteristics for the circle and
square. */
abstract cl ass Shape {

static public final int shapeRadius = 20;

Col or col or;
int Xx;
int y;

abstract void drawm G aphics g);
}

/** Draws and maintains circle information. */
class Circle extends Shape {
void draw(Graphics g) {
g.setCol or(this.color);
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

Barry Boone and Dave Mark Learn Java on the Macintosh

545

/** Draws and mmi ntains square information. */
cl ass Square extends Shape{
voi d draw Graphics g) {
g.setCol or(this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

15.01 - threads

| X e e e e f e e e e e e e e e eieeeao
This applet paints a circle or square of the color you' ve chosen
wherever you click. Every second, it blinks the shape to yell ow.
Al'l shapes blink independently of each other.

This applet keeps a |ist of the shapes you' ve drawn
and paints all the shapes in the list when it repaints.

Java's cl asses: Appl et (appl et)
Event (awt) user-generated action
Graphics (awt) used for draw ng
Col or (awm) defi nes col ors
Choi ce (awt) shape and col or sel ection
choi ces
Vect or (util) list of shapes

Thr ead (1 ang)

Cust om cl asses: Si npl eDr aw
Crcle defines and draws circles
Square defines and draws squares
Shape a common ancestor for circles and squares
Bl i nkThread controls drawing for a shape

i mport j ava. appl et. Appl et ;
i nport java.util.*;
I mport java.awt.*;

Barry Boone and Dave Mark Learn Java on the Macintosh 546

public class SinpleDraw extends Applet {
Vector threads;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

[** Create the GQJ . */
public void init() {
t hreads = new Vector();

shapeChoi ce = new Choi ce();
shapeChoi ce. addltenm("Circle");
shapeChoi ce. addl t em(" Squar e") ;
add(shapeChoi ce) ;

col or Choi ce = new Choi ce();
col or Choi ce. addl t en{ " Red") ;
col or Choi ce. addl tenm(" G een");
col or Choi ce. addl t en(" Bl ue");
add(col or Choi ce) ;

Bl i nkThread. g = getGraphics(); // Get the graphics object
}

/** Create a new shape. */
publ i ¢ bool ean nouseUp(Event e, int x, int y) {

Bl i nkThread t;
Shape s; // This shape will be either a circle or a square.

String shapeString
String colorString

= shapeChoi ce. get Sel ectedl ten();
= col or Choi ce. get Sel ectedltem) ;
if (shapeString.equals("Crcle"))

s = new Circle();
el se

S = new Square();

i f (colorString.equal s("Red"))
s.color = Color.red;

else if (colorString.equals("Geen"))
s.color = Col or.green;

el se
s.color = Col or. bl ue;

Barry Boone and Dave Mark Learn Java on the Macintosh 547

X,
Y,

S. X
s.y
t = new BlinkThread(s);
t.start();

return true;

/** Resune all the threads when the applet starts. */
public void start() {

Bl i nkThread t;

i nt nunrhr eads;

nunirhr eads = t hr eads. si ze();
for (int i = 0; i < nunThreads; i++) {

t = (BlinkThread)threads. el enent At (i);
t.resune();

}

/** Suspend all the threads when the applet stops. */
public void stop() {

Bl i nkThread t;

i nt nunirhr eads;

numrhr eads = threads. si ze();
for (int i = 0; i < nunThreads; i++) {

t = (BlinkThread)threads. el enent At (i);
t.suspend();

}

/** Stop all the threads when the appl et goes away. */
public void destroy() {

Bl i nkThread t;

i nt nunirhr eads;

numrhr eads
for (int i

t hreads. si ze();
0; i < nunThreads; i++) {

Barry Boone and Dave Mark Learn Java on the Macintosh

t = (BlinkThread)threads. el enent At (i);
t.stop();

}

/| ** Shapes provide conmon characteristics for the circle and
square. */
abstract class Shape {

static public final int shapeRadius = 20;

Col or col or;
int Xx;
int vy,

abstract void drawm G aphics g);
abstract void drawBlink(G aphics g);

}

/** Draws and maintains circle information. */
class Circle extends Shape {
voi d drawBl i nk(Graphics g) {
g. set Col or (Col or.yel | ow);
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);
}

voi d draw Graphics g) {
g.setColor(this.color);
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

}

/** Draws and mai ntains square information. */
cl ass Square extends Shape{
voi d drawBl i nk(Graphics g) {
g. set Col or (Col or.yel | ow);
g.fillRect(this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);
}

voi d draw(Graphics g) {

Barry Boone and Dave Mark Learn Java on the Macintosh 549

g.set Col or (this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

}

/** Thread to control when to blink a shape. */
cl ass BlinkThread extends Thread {

static Graphics g;

Shape s;

Bl i nkThr ead(Shape s) {

this.s = s;
}

public void run() {

// don't ever exit the thread
whil e(true) {

try {
s.drawBl i nk(g);

sl eep(250); // Go to sleep for a 1/4 of a second

s.draw g);
sl eep(1000); // Go to sleep for 1 second

} catch (Exception e) {
}

Barry Boone and Dave Mark Learn Java on the Macintosh 550

APPENDIX C Java Smtax ummary

The if Statement

syntax

i f (expression)
st at ement

example

I f (nunEnpl oyees > 20)
buyNewBui | di ng();

alternate syntax

i f (expression)
st at enent

el se
st at enent

example

if (tenperature < 60)
wear AJacket () ;

el se
buyASweat er () ;

Barry Boone and Dave Mark Learn Java on the Macintosh

551

The while Statement

syntax

whi | e (expression)
st at ement

example

while (fireTooLow))
addAnot her Log() ;

The for Statement

syntax

for (expressionl; expression2; expression3d)

st at enent
example
int[] myArray = new nyArray[100];
i nt i
for (i =0; I < 100; i++)
nyArray[i] = i;

Barry Boone and Dave Mark Learn Java on the Macintosh 552

The do Statement

syntax

do
st at enent
whi |l e (expression)

example

do
i nvokeThi sMet hod() ;
whil e (keepGoing());

The switch statement

syntax

swi tch (expression){
case constant:
statenents
case constant:
statenments
defaul t:
statements

example

switch (di sneyNunber) {
case 7:
System out. println(“dwarves”);
br eak;
case 101:

Barry Boone and Dave Mark Learn Java on the Macintosh

553

Systemout. println(“dal mations”);
br eak;

defaul t:
Systemout.println(“not used yet”);

The break Statement

syntax

br eak:

example
int i =1;

while (i <= 9) {
pl ayAnl nni ng(i);

if (itsRaining())
br eak;

i ++;

The return Statement

syntax

return;

Barry Boone and Dave Mark Learn Java on the Macintosh

example

if (allDone())
return;

syntax
return expression,
example

i nt addThese (int nunl, int nunR)
return nunil + nung;

The new Operator

syntax
new Cl assNane();
example

Button b = new Button();

The instanceof Operator

syntax

vari abl e i nstanceof C assNane

Barry Boone and Dave Mark Learn Java on the Macintosh

555

example

if (myQbject instanceof Button)

Systemout.println(“this is a button”);

The throw Statement

syntax

t hrow excepti on;

example

if (seriousProblen())
t hrow new Exception();

The try, catch, and finally Statements

syntax without finally

try
st at enent

catch (ExceptionNane vari able) {
st at enent

example

try {
doSonet hi ngDanger ous() ;

} catch (Exception e) {
handl eTheExcepti on()
}

Barry Boone and Dave Mark Learn Java on the Macintosh

556

syntax with finally

try
st at enment

catch (ExceptionNane vari able) {
st at enent

finally
st at enent

example

try {
doSonet hi ngDanger ous() ;

} catch (Exception e) {
handl eTheExcepti on()

} finally {
al waysDoThi s();
}

Barry Boone and Dave Mark Learn Java on the Macintosh 557

APPENDIX D About Code\\arrior...

This section of the book describes the newest version of CodeWarrior. However, we thought the document s on this
CD do abetter job of explaining CodeWarrior than ashort appendix could. So...for a description of CodeWarrior, see
the CodeWarrior Quick Start. And, for adescription of al the available documentation, see the Documentation Apple

Guide in the Metrowerks CodeWarrior folder.

Barry Boone and Dave Mark Learn Java on the Macintosh

APPENDIX E E)(G‘CI%

Chapter 5: The Development Cycle

1. Open the project Si npl est Appl et . p. Double-click Si mpl est Appl et . j ava, erase anything else that’s

there, and type in the following program:

public class SyntaxAppl et extends java.applet. Applet {
static {
Systemout.println("static initializer");
}

Select Make from the Project menu, then run this applet in the way you learned about, by dropping the HTML

filenamed Si npl est Appl et . ht m onto the Metrowerks Javaicon.

Once you' ve verified this applet works and that it displays the words “static initializer” in the Java Output
window, make the following changes to experiment with syntax errors. For each of these three examples, make the
suggested change and try to remake the project. Describe the syntax error messages that result.

a. Changetheline:

static {
to say:

static (

b. Change things back. Now change the line:

Barry Boone and Dave Mark Learn Java on the Macintosh 558

public class SyntaxAppl et extends java.appl et. Appl et {
to say:

public class SyntaxAppl et java.applet. Applet {

c¢. Change things back. Now change the line:

Systemout.println("static initializer");
to say:

Systemout.println(static initializer);

Chapter 6: Variables and Operators

1. Find the error in each of the following code fragments:

a. Systemout.println(Hello, world);
b. int nylnt nyQherlnt;
C. nylnt =+ 3;

d. nylnt + 3 = nylnt;

2. Compute the value of ny | nt after each code fragment is executed:

a. nylnt = 5;
nylnt *= (3 + 4) * 2;

b. nylnt = 2;

Barry Boone and Dave Mark Learn Java on the Macintosh 559

nylnt *= ((3 * 4) [/ 2) - 9;

C. mylnt = 2;
nylnt /= 5;
nyl nt - -;

d. mylnt = 25;
nylnt /=3 * 2;

e. mylnt = 5;
Systemout.println("nmylnt =" + nylnt = 2);

f. mylnt = 1;
nylnt /= 10;

Chapter 7: Introduction to Methods

1. What'swrong with each of the following methods?

a. voi d nyMet hod {
return 3;
}

b. voi d anot her Met hod(i nt numl) {
return numl * 2;
}

C. i nt addThese(int numl, int nunR) {
int sum = nunl + nung;
}

2. What isthe result of executingmy Met hod()) in the example below?

voi d nyMet hod() {

int i = 3;

Systemout.println("result =" + anot herMethod(i));
}

i nt anot her Met hod(i nt nunber) {

Barry Boone and Dave Mark Learn Java on the Macintosh 560

return nunber * nunber;

3. Write an applet that, initsi ni t () method, invokes another method that writes your name to the Java Output win-

dow.

Chapter 8: Controlling Your Program’s Flow

1. What's wrong with each of the following code fragments:

a. i foi
i ++;

b. for (i =0; i < 20; i++)

C. while ()
i ++;

d. do (i++)
until (i == 20);

e. swtch (i) {
case firstChoice:
case secondChoi ce:
Systemout.println("first

br eak;
defaul t:
System out. printl n("ot her
}
f. if (i < 20)

if (i == 20)

Systemout. println("never...

or second choice");

choi ce");

Barry Boone and Dave Mark Learn Java on the Macintosh

561

g. whil e (done = true)
done = !done;

h. for (i =0; i <20; i*2)
Systemout.println("nodification...");

2. What is the output from each of the following code fragments?

a. for (i =4, i >0; i--)
Systemout.println(i);

b. while (true)
Systemout.println("hello");

C. int i;
do {
Systemout.println(i++);
} while (i < 5);

d. int i 5;
int j = 10;
if (i <j &&j > 10)
Systemout.println("first option");
el se
Systemout. println("second option");

e. int i 5;
int j = 10;
if (i <j || j > 10)
Systemout.println("first option");
el se
Systemout. println("second option");

3. Modify next Pri nme. j ava to compute the prime numbers from 1 to 100.

4. Modify next Pri me. j ava to compute the first 100 prime numbers.

Barry Boone and Dave Mark Learn Java on the Macintosh

562

Chapter 9: Objects

1. Given aclass defined like this:

cl ass El ephant {
static int popul ation;
i nt age;

int tuskLength() {
return age * 2;
}

int pop() {
return popul ati on;
}

and given code that creates two elephants, like this:

El ephant el = new El ephant ();
el. age = 3;
e2. age 5;

what do expect the output to be for each of the following two code snippets:

a. Systemout. println(el.tuskLength());
System out. println(e2.tuskLength());

b. El ephant . popul ati on = 3000;
Systemout. println(el. pop());
El ephant . popul ati on = 4000;
Systemout. println(e2.pop());

2. What iswrong with each of the following class definitions:

Barry Boone and Dave Mark Learn Java on the Macintosh

563

a. cl ass {

int | ength;
int width;
}
b. class Car {
i nt speed();
}
C. cl ass Boat {
int | ength;
int init(int length) {
| ength = | engt h;
}
}
d. cl ass Fl ower {
i nt petals;

static int nunPetal s() {
return petals;
}

3. Write an applet that uses a class called Student. The class should define a method that can determine whether a stu-
dent has passed (with a score of 60 and above) or failed (with a score below 60). Each student object will keep track
of atest score. The applet should create four students, assign different student objects the test scores 94, 72, 52, and

90, and write out whether each one has passed or failed.

Chapter 10: Java’s Classes and Inheritance

1. Given two classes defined like this:

class Plant {
bool ean i sAlive;
bool ean beautiful () {
return i sAlive;

Barry Boone and Dave Mark Learn Java on the Macintosh 564

}

cl ass Fl ower extends Plant {
i nt nunPet al s;
bool ean beautiful () {
if (nunPetals > 4 && i sAlive)
return true;
el se
return fal se;

These definitions say, basically, that if aplant isaliveit’s beautiful, but if we' re dealing with a flower, we

have alittle more restrictive definition of beautiful. Now let’s create three flowers:

Fl ower f1 = new Fl ower();
fl.isAlive = true;
f1l. nunPetals = 4,
Fl oner f2 = new Fl ower();
f2.isAlive = true;
f2.nunPetal s = 5;
Fl oner f3 = new Fl ower();

f3.isAlive = fal se;
f2.nunmPetals = 100;

What are the results of each of the following code snippets:

a. Systemout. println(fl. beautiful());
b. Systemout. println(f2. beautiful());

C. Systemout. println(f3.beautiful ());

Barry Boone and Dave Mark Learn Java on the Macintosh

565

2. What if the flower did not provide it'sown beaut i f ul () method? What do you think the results would be for

f1,f2,andf 3 if weusedthe plant'sbeaut i f ul () method instead of the flower’s?

3. 1fi sAl'i ve wasturned into apri vat e variable, how could you rewritethe flower’sbeaut i f ul () method so

that it would still work?

4. Imaginemakingi sAl i ve pr ot ect ed instead of pri vat e.
a Would theflower'sbeaut i f ul () method need to be changed at all to determine whether it was alive?
b. Could aclass defined like this:

cl ass Fl ower Pot {
i nt di aneter;

}

determine whether a flower it contained was alive or not by directly accessingi sAl i ve?

5. What' s wrong with each of the following class definitions:

a. cl ass Computer {
i nt processor Speed();
}

b. cl ass Tree {
abstract String genus();
}

C. abstract class Bird {
abstract int flightSpeed();
}

cl ass Seagull extends Bird {

}

Barry Boone and Dave Mark Learn Java on the Macintosh 566

d. cl ass Animal {
private int nuniives;
}

cl ass Cat extends Aninal;
Cat () {
numlLi ves = 9;
}

Chapter 11: Creating a User Interface

1. Given an empty pai nt () method for an applet defined like this:

public void paint(Gaphics g) {
}

How would you:

a. Draw a solid, green circlewho’ stop left edge is 30 pixels from the | eft, 30 pixels from the top, and that is 20 pixels

in diameter?

b. Display the text “Who's zomming who?’ who's bottom, |eft edge is 40 pixels from the left and 20 pixels from the

top?

2. Create an applet that displays two mutually exclusive check boxes labelled “male” and “female.” If you are using

CodeWarrior Lite, modify the empty Java source file located in the folder 05. 01 - enpty appl et.

Barry Boone and Dave Mark Learn Java on the Macintosh 567

3. Adapt the program you developed in question 2 and write a message to the Java Output window that identifies

which check box the user selected whenever the user clicks one of the check boxes.

4. Create an applet that contains a single button. Each time you click the button, alternate between drawing ared and

ablue square who' s left edge is located 10 pixels from the | eft, 10 pixels from the top, and is 40 pixels on each side.

Chapter 12: Working with Data

1. What iswrong with each of the following code snippets:

a.

50. 1;
nmyDoubl e;

doubl e nyDoubl e
i nt nyl nt

I nt nunttudents;
int total Scores = 891;
i nt average = total Scores/ nuntt udents;

String school Mascot = new String();
I nt nunttudents = 409;
school Mascot = "tiger";

int nylntArray = new nylntArray[10];

try {
| nt eger nunber = new I nteger(4);
}

i f (nunber !'= null)
Systemout.println("we have a nunber");

try {
doAConver sion();

} catch {

Barry Boone and Dave Mark Learn Java on the Macintosh

568

handl eExcepti on();

}
g. bool ean[] toggles = new bool ean[3];
for (int i =0; i <= 3; i++)
toggles[i] = true;
h. int[] mylntArray;

Systemout. println(nylntArray.|ength);

2. What do you expect the output to be for each of the following lines of code:

a. try {
I nteger nunber = new Integer('1");

Systemout.println("created a new I nteger instance");
} catch (Exception e) {

Systemout.println("trouble in River Gty");
}

b. fl oat nyFl oat (fl oat)50. 75;
i nt nyl nt = (int) nyFl oat;
Systemout.println(nylnt);

C. int[] nylntArray = new nylntArray[3];
for (int i =0; i < 3; i++4)
nylntArray[i] =1;
Systemout. println(nmylntArray. | ength);
Systemout. println(nylntArray[2]);

3. Change the program contained in Next Pr i me3. j ava, located in thefolder 08. 06 - next prine 3.
Instead of writing out the prime number as soon as it is found, save the prime number in the next unused element in

an array of 100 integers. At the very end of theinit() method, loop through the array and write out each entry.

Barry Boone and Dave Mark Learn Java on the Macintosh 569

Chapter 13: Advanced Topics

1. What iswrong with each of the following class definitions:

a. cl ass Rocket {
void liftoff(int speed, bool ean successful) {
}
double liftoff(int velocity, boolean reachObit) {
}
}
b. cl ass Mountain {
i nt hei ght;

int Mountain(int height) {
t hi s. hei ght = hei ght;
return height;

}
}
C. cl ass Sun {
final Color color = Color.yellow,
i nt age;
int setAge(int years) {
age = years;
if (years > 10000000)
col or = Col or. or ange;
}
}
d. class Troubl e {
void rightHere() {
throws new Exception();
}
}

2. What do you expect the output to be for each of the following code snippets:

a. try {
| nteger nylnteger = new Integer("$");
} catch (Exception x) {

Barry Boone and Dave Mark Learn Java on the Macintosh 570

Systemout.printlin("error");

} finally {
Systemout . println("clean up");
}

3. Write an applet that displays the number of check boxes indicated by a parameter in the HTML file that launches
the applet. Y ou can leave off the names of the check boxesif you'd like. Asbefore, you can use the empty Java source

filelocated in05. 01 - enpty project.

Barry Boone and Dave Mark Learn Java on the Macintosh 571

APPENDIX F Solutionsto the Exercises

Chapter 6: Variables and Operators

1a. There should be quotes around the words to be displayed, asin:

Systemout.println("Hello, world");

1b. There should be a comma separating variables declared on the sameling, asin:

int nylnt, nmyQherlnt;

1c. To add 3 to anumber, use the operator +=, like this:

mylnt += 3;

1d. Theleft side of the equation must be a variable, not an expression, like this:

nmylnt = nylnt + 3;

2c. -1
2d. 4.
2e. “mylnt = 2" will appear in the Java Output window.

2f. 0.

Barry Boone and Dave Mark Learn Java on the Macintosh

572

Chapter 7: Introduction to Methods

la. A method declared as void cannot return avalue. To return avalue such as an int, declare the method using int

instead of void, like this:

i nt nyMet hod {
return 3;
}

1b. Again, the method must be declared as an int to return an int:

I nt anot her Met hod(i nt numl) {
return numl * 2;

}

1c. A method declared as returning a value must return avalue:

i nt addThese(int numl, int nunR) {
int sum = nunl + nung;
return sum

2. “result = 9” will appear in the Java Output window.

public class WiteNaneAppl et extends java. appl et. Appl et {
public void init() {
writeYour Nane();
}

void witeYourName() {
Systemout. println("Henry Hi ggens");
}

Barry Boone and Dave Mark Learn Java on the Macintosh 573

Chapter 8: Controlling Your Program’s Flow

la. Parentheses are needed around the expression in the if test, and the expression must yield a Boolean result, asin:;
if (i '= 0)
i ++;
1b. Since we decrement i by 1 in the body of the for loop, and since we increment i by 1 in the modification of the

loop counter, thiswill result in an infinite loop!
1c. We need some expression in the parentheses for awhile loop; these parentheses cannot be empty.
1d. The syntax is not do-until but do-while. This might be updated to read:
do (i ++)
while (i < 20);
le. case statements require constants and will not take variables. If firstChoice was equal to 1 and secondChoice was
equal to 2, this could be rewritten as:
switch (i) {
case 1:
case 2:
Systemout.println("first or second choice");
br eak;

def aul t:
System out. println("other choice");

}

1f. Since thefirst if test passes only if i isless than 20, the second if test will never execute, and hence the line that

reads “never...” will never appear in the Java Output window.

1g. Sincethe result of the assignment operator isthe value that was assigned, the expression done = true resultsin the

value of true. This means the while loop will never end, and we'll be caught in an infinite loop.

1h. Theloop counter, i, is never actually modified. If theintent wasto multiply i by 2, the loop should have been writ-

ten:

Barry Boone and Dave Mark Learn Java on the Macintosh 574

for (i =0; i <20; i *=2)

Systemout.println("nodification...");

2a. 4

3

2

1
2b. hel | o

hel |l o

hel |l o

Theword “hello” will be written to the Java Output window forever.

2c. 0

1

2

3

4

5
2d. second operation
2e. first option

3. The solution can be found in the folder 08. 05 - next prime 2.

4. The solution can be found in the folder 08. 06 - next prime 3.

Chapter 9: Objects

la. 6

Barry Boone and Dave Mark Learn Java on the Macintosh

575

10

1b. 3000
4000

2a. Y ou must supply the name of the class when defining aclass. Y ou could fix this snippet by writing:

class Myd ass {
i nt | ength;
int w dth;

2b. Y ou must supply a method body when defining a method (the part between the curly brackets). It is possible to
define a method without a body; you'll learn about that in the Chapter 10. To fix this snippet, you could simply pro-

vide an empty body (though it must return ani nt , asindicated in the method declaration):

class Car {
int speed() {
return O;
}

2c. Theintent of thisinit() method seemsto be to set the instance variable, but parameters and local variables take
precedence over instance and class variables. Therefore, the instance variable would never be set, and the parameter

would be set back to itself! This snippet needs to prefix the instance variable with the special variable namedt hi s.

cl ass Boat {
i nt | ength;
int init(int length) {
this.length = | ength;

Barry Boone and Dave Mark Learn Java on the Macintosh 576

2d. The variable petalsis defined as an instance variable, but the method named nunPet al s() isdefined asaclass
(thatis, ast at i ¢) method. Methods defined asst at i ¢ cannot access an instance variable without referencing a

particular object. If nunPet al s() was an instance method, then this would be legal.

cl ass Fl ower {
int petals;
i nt nunPetal s() {
return petals;
}

public class ScoreAppl et extends java. applet. Applet {
public void init() {
Student sl = new Student();
sl.score = 94,
Student s2 = new Student();
s2.score = 72;
St udent s3 = new Student();
s3.score = 52;
St udent s4 = new Student();
s4.score = 90;

Systemout.println("sl passed?
Systemout.println("s2 passed?
Systemout.println("s3 passed? "
Systemout.println("s4 passed?

sl. passed());
s2. passed());
));
))

s3. passed(
s4. passed(

+ + + +

}

cl ass Student {
i nt score;
bool ean passed() {
if (score >=60)
return true;
el se
return fal se;

Barry Boone and Dave Mark Learn Java on the Macintosh 577

Chapter 10: Java’s Classes and Inheritance

1. Given two classes defined like this:

class Pl ant {
bool ean al i ve;
bool ean beautiful () {
return alive;
}

}

cl ass Fl ower extends Plant {
i nt nunPet al s;
bool ean beautiful () {
I f (nunPetals > 4 && i sAlive)
return true;
el se
return fal se;

These definitions say, basically, that if aplant isaliveit’s beautiful, but if we're dealing with a flower, we

have alittle more restrictive definition of beautiful. Now |et’s create three flowers:

Flower f1 = new Flower();
fl.isAlive = true;
f1l. nunPetals = 4;

Fl oner f2 = new Fl ower();
f2.1isAlive = true;
f2. nunPetal s = 5;

Fl ower f3 = new Fl ower();
f3.isAlive = fal se;
f2.nunmPetal s = 100;

Barry Boone and Dave Mark Learn Java on the Macintosh

578

What are the results of each of the following code snippets:

1la. fal se
1b. true
1c. fal se

2. Theresultswould bet rue,t rue andf al se forf 1, f 2, and f 3, respectively.

3. First of all, to set thevaluefori sAl i ve, you could write amethod that took abool ean value and set thisvalue,

asin:

voi d setlsAlive(bool ean newal ue) {
i sAlive = newval ue;

}

Then, when creating the flowers, instead of setting isAlive directly, you could invoke its setl sAlive() method,

like this:

fl.setlsAlive(true);

and so on. Instead of accessingi sAl i ve directly, methodsin the flower class could invoke their superclass sheau-

tiful () method, which would return the value of thepri vat ei sAl i ve variable.

4a. If i sAl i ve wasdefined aspr ot ect ed, theflower’sbeaut i f ul () method not need to be changed.

Barry Boone and Dave Mark Learn Java on the Macintosh 579

4b. Other classes that were not descendents of Plant, such as FlowerPot, could not accessi sAl i ve.

5a. Thereis no body defined for the method pr ocessor Speed() . In this case, the method and the class must both

be declared asabst r act :

abstract class Conputer {
abstract int processorSpeed();

}

5b. If aclass containsanabst r act method, the class itself must also be declared asabst r act :

abstract class Tree {
abstract String genus();

}

5c. Descendents of abst r act must definetheabst r act methods or they must be declared abst r act them-

selves, asin:

abstract class Bird {
abstract int flightSpeed();

}

abstract class Seagull extends Bird {

}

5d. Subclasses cannot access their superclass'spr i vat e variables. To alow this, the variable must be made pr o-
t ect ed (or you can use the default access restrictions, which is defined by not using any keywords. This allows all

methods defined in the same package to access that variable).

class Animal {
protected int nuniives;

Barry Boone and Dave Mark Learn Java on the Macintosh 580

cl ass Cat extends Aninal ;
Cat () {
numli ves = 9;
}

Chapter 11: Creating a User Interface

la

g. set Col or (Col or. green);
g.fillOval (30, 30, 20, 20);

1b.

g.drawsStri ng("Wo's zoom ng who?", 40, 20);

public class CheckboxAppl et extends java. appl et. Appl et {
public void init() {
checkboxG oup = new CheckboxG oup();

checkbox = new Checkbox("nal e", checkboxG oup, false);
add(checkbox) ;

checkbox = new Checkbox("fenmal e", checkboxG oup, false);
add(checkbox) ;

3. Oneway to do thisisto keep track of the two checkboxes and identify which object the user selected in the action()

method for your applet, like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 581

public class CheckboxAppl et extends java. appl et. Appl et {
Checkbox nal e, female;

public void init() {
checkboxG oup = new CheckboxG oup();

mal e = new Checkbox("mal e", checkboxG oup, false);
add(mal e) ;

femal e = new Checkbox("femal e", checkboxG oup, false);

add(fenal e);

}
publ i c bool ean acti on(Event e, Object arg) {
if (e.target == nale)
Systemout.println("male");
else if (e.target == fenual e)
Systemout.println("female");
return super.action(e, arg);
}
}
4,

i mport java. appl et. Appl et ;
i mport java.awt.*;

public class Test Appl et extends Applet {
Button toggle;
Col or col or = Col or. bl ue;

public void init() {
toggle = new Button("toggle");
add(toggl e);

}

publ i c bool ean action (Event e, Object arg) {

If (e.target == toggle) {
if (color == Color.red)
col or = Col or. bl ue;
el se

Barry Boone and Dave Mark Learn Java on the Macintosh

582

color = Color.red;

}

repaint();
return true;

}

public void paint(Gaphics g) {
g. set Col or (col or);
g.fillOval (10, 10, 40, 40);

}

Chapter 12: Working with Data

la. You cannot assign adoubl e toani nt without casting:

50. 1;
(i nt) nmyDoubl e;

doubl e nyDoubl e
I nt myl nt

1b. Dividing by O with int valuesis not legal.

1c. A string cannot be assigned a value after it is created. Instead, set the string’svalue at the time it is created. (To

work with strings that you can write to aswell as read from, use instances of StringBuffer instead.)

String school Mascot = new String(“tiger”);
i nt nuntStudents = 4009;

1d. Make sure all arrays are declared with brackets after the data type, like this:

d. int[] nmylntArray = new nylntArray[10];

Barry Boone and Dave Mark Learn Java on the Macintosh 583

(Alternatively, arrays can be declared by placing the square brackets after the variable name.)
le. At ry block should have a matching cat ch block immediately following it.

1f. Thecat ch block needsto declare a variable that will be assigned the exception object:

try {
doAConver sion();

} catch (Exception exception) {
handl eException();
}

1g. Theonly legal elementsin an array declared to be 3 in length are the elements 0, 1, and 2. Therefore, the loop

must end before it getsto 3.

bool ean[] toggl es = new bool ean[3];
for (int i =0; i < 3; i++)
toggles[i] = true;

1h. Y ou cannot access the length of an array beforeit is alocated using the new operator.

2a. Since the character 1 isbeing passed to the Integer constructor (because of the single quotes rather than double

quotes surrounding the 1), Javawill throw an exception. The output will be simply:

trouble in River Cty

2b. The floating point value will be truncated, and the value 50 will appear in the Java Output window.

2c. Thetwo lines in the Java Output window will be:

Barry Boone and Dave Mark Learn Java on the Macintosh 584

N W

3. One possible version of the new program is:

public class NextPrine3 extends java. appl et. Appl et {

public void init() {

I nt pri nel ndex, candidate, i, |ast;
bool ean i sPrine;
int[] pri meNunbers = new i nt[100];

pri meNunbers[0] = 2;

candi date = 3;
prinmel ndex = 1;

while (prinelndex < 100) {

isPrime = true;
last = (int)Math.sqrt(candi date);

for (i =3; (i <=last) &% isPrine;
if ((candidate %i) == 0)
isPrime = fal se;
}

if (isPrime) {

+=2) |

pri meNunber s[pri nel ndex] = candi dat e;

pri mel ndex++;

}

candi date += 2;

}
for (i =0; i < 100; i++) {

Systemout.printIn("Prinme #" + (i+1) +

" is " + prinmeNunbers[i]);

Barry Boone and Dave Mark Learn Java on the Macintosh

585

Chapter 13: Advanced Topics

la. Methods with the same name must have unique signatures. Signatures include the method name and the data types

of its parameters (not the return values).

1b. Constructors cannot return avalue, such asi nt . (They don’t even returnvoi d.) Here's how the Mountain class

could be rewritten:

cl ass Mountain {
i nt height;
Mount ai n(i nt height) {
t hi s. hei ght = hei ght;
return height;

1c. Contants (that is, variables declared asf i nal) cannot be changed. To be able to change avariable, leave off the

final keyword.

cl ass Sun {
Col or color = Col or.yell ow,
i nt age;
int setAge(int years) {
age = years;
if (years > 10000000)
col or = Col or. or ange;

1d. Methods that throw an exception must include thet hr ows keyword, followed by the type of exception they

throw, in the method declaration, like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 586

class Troubl e throws Exception {
void rightHere() {
t hrows new Exception();
}

2a. The following two lines will appear in the Java Output window:

error
cl ean up

i mport j ava. awt. Checkbox;

public class CheckboxAppl et extends java. appl et. Appl et {
public void init() {
I nt numn
Checkbox checkbox;
String s = get Paraneter("checks");

try {
num = | nteger. parselnt(s);

} catch (Exception e) {
num = 0; // default

}

for (int i =0; i < nun i++) {
checkbox = new Checkbox();
add(checkbox) ;

}

Here'sapossible HTML file for this code:

Barry Boone and Dave Mark Learn Java on the Macintosh 587

<appl et codebase="Checkbox" code="CheckboxAppl et.class" w dt h=250
hei ght =100>

<par am nane=checks val ue="25">

</ appl et >

Barry Boone and Dave Mark Learn Java on the Macintosh 588

APPENDIX G Additional Resources

This section provides a number of links to additional resources for learning more about Java.

Web Resources

Sites Supporting This Book

There are two places where you can go on the Web to learn more about Learn Java on the Macintosh. Thefirst siteis

maintained by Metrowerks and can be found at:

http://ww. net rower ks. conf product s/ di scover/j aval

The second site is maintained by Addison-Wesley and can be found by starting at the Addison-Wesley home

page, located at:

http://ww. aw. com devpress/

Try looking under the What’ s New and Recently Published links, or look up the book intheindex you'll find

Barry Boone and Dave Mark Learn Java on the Macintosh 589

http://ww. aw. com devpress/|library. htm

Documentation

JavaSoft, Sun Microsystem’s spin-off company that develops and supports Java, has posted lots of great documenta-

tion on their site. For the latest Application Programmer Interface documentation, look under:

http://java. sun. coni JDK- 1. 0/ api / packages. ht m

For the directory of other documentation sources maintained by JavaSoft, check out:

http://java. sun. conij ava. sun. coni doc/ programer . ht m

The documentation here includes the Java language specification, The Java Virtual Machine, and additional,

introductory material to learn more about Java programming.

Java Applets on the Web

There are lots of examples of great Java applets on the Web, and more are being added everyday. Lots of these sam-

plesinclude the source code. Y ou can find a great many of these at the Gamelan site, at:

http://ww. ganel an. com nof r ame/ Ganel an. pr ogr amm ng. ht ni

Barry Boone and Dave Mark Learn Java on the Macintosh 590

Internet Resources

One of the best Internet resources are the newsgroups. In particular, you should check out

conp. | ang. j ava

for lively discussions on programming in Java and the latest directions in Java software.

There are also ftp sites where you can download the latest software samples and documentation. Start at:

http://java. sun. conij ava. sun. coni devcor ner. ht m

and follow the links to the latest and greatest that JavaSoft has to offer.

Books

Java Essentials for C and C++ Programmers, by Barry Boone

This book, published by Addison-Wedley, will help you find out more about Java s advanced features, such as excep-
tions, multitasking, interfaces, and constructors. Though this book is written for programmers, once you are up to

speed on Java programming, this book is a great resource for learning about these advanced topics.

Barry Boone and Dave Mark Learn Java on the Macintosh 591

Learn C on the Macintosh, by Dave Mark

Javaisvery similar to C in some fundamental ways. This book, published by Addison-Wesley, can help you learn the
basics of variables, operators, data types, and flow control. Most of the information in Learn C on the Macintosh
that' srelevant to Javais aso included in the chapters in this book. However, if you want to learn more about alan-

guage that is a predecessor to Java, thisis a great place to start.

Barry Boone and Dave Mark Learn Java on the Macintosh 592

	Chapter 1 - Welcome Aboard
	What's in This Package?
	Why Learn Java?
	What Should You Know to Get Started?
	What Equipment Will You Need?
	The Lay of the Land
	Conventions Used in this Book
	Review
	What's Next?

	Chapter 2 - Installing and Testing CodeWarrior Lite
	Installing CodeWarrior Lite
	Testing CodeWarrior Lite
	Review
	What's Next?

	Chapter 3 - Web Programming Basics
	Web Content
	Interactivity
	Jazzing Up Your Web Page
	Reasons for Programming
	What is a Program?
	How is Java Different from HTML?
	Other Programming Languages
	Developing Software Using These Languages
	Why Java is Perfect for the Web
	Runtime Environments
	Review
	What's Next?

	Chapter 4 - Problem Solving in Java
	What It's Like to Be a Programmer
	The Programming Process
	Designing Your Program
	Review
	What's Next?

	Chpter 5 - The Development Cycle
	An Overview
	Organizing Your Files
	An Example: The Simplest Applet
	Editing the Source File
	Syntax Errors
	Displaying Messages
	Review
	What's Next?

	Chapter 6 - Variables and Operators
	An Introduction to Variables
	Working with Variables
	Variable Names
	The Size of a Type
	Operators
	Arithmetic Operators
	Operator Order
	Sample Programs
	Programming With Style
	Review
	What's Next?

	Chapter 7 - Introduction to Methods
	Creating a Method
	Invoking a Method
	Defining a Method
	Designing with Methods
	Taking Part in Your Applet's Life-Cycle
	Sample Programs
	Review
	What's Next?

	Chapter 8 - Controlling Your Program's Flow
	Boolean Values
	Flow Control
	Expressions
	Comparative Operators
	Logical Operators
	Compound Expressions
	Statements
	Curly Braces Revisited
	Where to Place the Semicolon
	The Loneliest Statement
	The while Statement
	The for Statement
	The do Statement
	The switch Statement
	break Statements in Other Loops
	Sample Programs
	Review
	What's Next?

	Chapter 9 - Objects
	The Purpose of Objects
	How to Create Objects
	Instance Variables
	Instance Methods
	Sample Programs
	Class Variables and Methods
	Sample Programs
	Review
	What's Next?

	Chapter 10 - Java's Classes and Inheritance
	What is Inheritance?
	When to Use Inheritance
	Advanced Inheritance Topics
	Packages
	Sample Programs
	Review
	What's Next?

	Chapter 11 - Creating a User Interface
	Drawing
	Java's User Interface Elements
	Arranging User Interface Elements
	Events
	Sample Programs
	Review
	What's Next?

	Chapter 12 - Working With Data
	Integer Data
	Floating Point Data
	Character Data
	Objects
	Strings
	The Integer and Floating Point Classes
	Handling Exceptions
	Arrays
	Vectors
	Sample Programs
	Review
	What's Next?

	Chapter 13 - Advanced Topics
	Applet Parameters
	Method Overloading
	Constructors
	Constants
	Throwing Exceptions
	Sample Programs
	Review
	What's Next?

	Chapter 14 - Stand-Alone Applications
	What Is a Stand-Alone Application?
	Differences Between Applications and Applets
	Sample Programs
	Review
	What's Next?

	Chapter 15 - Where Do You Go From Here?
	Learn About Interfaces
	Define Your Own Packages
	Learn About Threads
	Learn How Java Works on the Inside
	Explore Java's Packages
	Study Other Resources
	Sample Programs
	Review
	What's Next?

	Appendix A - Glossary
	Appendix B - Source Code
	Appendix C - Java Syntax Summary
	Appendix D - About CodeWarrior...
	Appendix E - Exercises
	Appendix F - Solutions to the Exercises
	Appendix G - Additional Resources
	Web Resources
	Internet Resources
	Books

