
Barry Boone and Dave Mark Learn Java on the Macintosh 2

CHAPTER 1 Welcome Aboard

Welcome to Learn Java on the Macintosh. By picking up this book, you have taken the first step toward learning the

Java programming language. You're about to learn the most powerful and exciting computer language in wide use

today.

What's in This Package?

Learn Java on the Macintosh is a book/CD-ROM package. The book is filled with diagrams, explanations, examples,

and exercises designed to teach people new to programming the basics of how to program in Java. This book is tailor-

made for people who do not have a programming background but want to learn Java as their first programming lan-

guage. We’ll start at the very beginning by explaining what programming is all about before moving into the specifics

of Java and Java applets (an applet is a Java program that runs over the Web). By working through the examples and

exercises found in this book, you can use this book as a self-study guide to build a solid foundation for your explora-

tions of the Java language.

In the back of the book you'll find a compact disc (CD-ROM) that includes a customized version of

Metrowerks CodeWarrior, one of the most popular development environments for the Macintosh. The CD-ROM

also contains all of the sample code explored in this book, as well as the answers to all the exercises. You'll use the

CodeWarrior development environment to work with the example Java programs shown in this book and to write

your own Java programs.

Barry Boone and Dave Mark Learn Java on the Macintosh 3

Why Learn Java?

Java is fast becoming the standard in software development, primarily because it is transforming the World Wide

Web. While Java is a relatively new language in the evolution of programming, Java is already talked about and used

everywhere. There are many good reasons for this, and you’ll gain strong insights into these reasons as you progress

through this book. By the time you’ve reached the last chapter, you'll be ready to take part in the community of

knowledgeable Java programmers, and you’ll be able to make the Web come alive by writing applets of your own.

What Should You Know to Get Started?

First of all, you do not already need to know how to program in some other language to learn Java. Java is a simpler

language than other programming languages in use today, including C and C++. However, though the language itself

is simpler, there are a few concepts to get straight first before you dive in and start writing code. Chapters 3 and 4 ease

you into the Java mind set before you begin learning the language itself starting in Chapter 5. So hang through the

introductory chapters; we’ll get to the good stuff soon.

To use the CD-ROM effectively, you do need to know how to use a Macintosh and how to use the mouse

to make selections and open and close windows. Do you know how to double-click an application to start it up?

Does the scrolling list in Figure 1.1 look familiar? If you use the Macintosh to run programs and edit documents,

you have all the skills you need to get started learning Java. And if you have a desire to learn a programming

language, you have the only prerequisite you need!

Barry Boone and Dave Mark Learn Java on the Macintosh 4

Figure 1.1 Scrolling through a list of documents.

It’s helpful to be familiar with the various kinds of applications available for your Mac. The more familiar

you are with what modern, graphical applications look like—such as word processors, drawing programs, games,

personal finance software, and so on—the better sense you'll have for what your own applets should look like, as

well.

It’s also important to have had experience with using the Web. This book assumes you already have used

browsers to tour the Web and are up-to-date on the latest browsers that incorporate Java.

Figure 1.1

Barry Boone and Dave Mark Learn Java on the Macintosh 5

What Equipment Will You Need?

Although you can learn the basic concepts of Java just by reading this book, you’ll get the most out of Learn Java on

the Macintosh if you run each example program as you read how it works. To do this, you’ll need a Macintosh with a

68020, 68030, 68040, or PowerPC processor; at least 8 megabytes of memory; System 7.1 or a newer version (for

68K-based Macintosh computers) or System 7.1.2 or a newer version (for Power Macintosh computers); and, of

course, a CD-ROM drive so you can install your new programming environment. If you already have Metrowerks

CodeWarrior, you’ll still want a CD-ROM drive to install the sample code and exercises contained on the CD-ROM.

(If you are using a version of the Mac OS before System 7.5, you must also obtain and install Apple’s Thread Man-

ager extension into your extensions folder. Appendix G contains references for where to look for this software and

how to find other information relating to Java and CodeWarrior.)

The Lay of the Land

There are fifteen chapters in this book, plus seven appendices.

Chapter 1 (this chapter) provides an introduction to what you'll find in this book and what this book is all

about.

Chapter 2 introduces you to the CD-ROM portion of this book/CD-ROM package. You’ll learn about

CodeWarrior, the Java programming environment that you’ll use to run all of the programs in this book. This

chapter explains how to install the software that's on the CD-ROM (you'll use this software to develop your own

Java applets and to learn the Java language) and how to test CodeWarrior to ensure it’s working properly.

Barry Boone and Dave Mark Learn Java on the Macintosh 6

Chapter 3 offers an overview of programming for the World Wide Web and shows you how Java fits into

the Web picture. Just how does a Web browser arrange a Web page? And what does the browser do when it

encounters a Java applet in a Web page?

Chapter 4 begins the exploration of concepts central to Java programming. It’s always a good idea to

design a program as thoroughly as you can before you begin writing code; this chapter suggests four questions you

should try to answer before you turn to writing your software. This chapter also introduces three terms you may

have already heard people mention in relation to Java: class, object, and method. You’ll explore these terms by

working through a detailed example, without yet writing any code, that illustrates how to design Java applets.

Chapter 5 introduces the steps you’ll follow when you develop a Java applet. By creating the simplest

possible Java applet, you’ll learn how to work with CodeWarrior to create a new program, edit a file to write your

own Java program, get your Java program ready to run, and then execute your program.

Chapters 6 explores the basics of most programming languages, including Java: Variables and operators.

When you finish this chapter, you’ll have tasted your first morsels of real programming. You’ll know how to

declare a variable and how to use operators to store data in your variables. In particular, you’ll learn about ways to

refer to numbers inside your program. You’ll even learn a little bit about programming with style!

Chapter 7 provides an introduction to defining and invoking chunks of code called methods. You’ll also

learn how to hook into the communication that takes place between the browser and your own Java applet to start to

customize your applet.

Chapter 8 moves into the true potential of programming languages by discussing flow control. You’ll learn

how to use Java programming constructs, such as if, while, and for loops, to control the direction of your

program and indicate when to execute certain sets of instructions instead of others.

Barry Boone and Dave Mark Learn Java on the Macintosh 7

Chapter 9 explores how to create and use objects that are based on your classes. You’ll keep track of data

by using objects, and you’ll provide behavior for your objects by writing methods. Once you’ve completed this

chapter, you’ll know many of the concepts central to Java.

Chapter 10 introduces you to lots of classes provided for you by Java that you can use in your own applets.

You’ll learn how to extend Java’s classes to add your own data and behavior to what Java provides by default.

Chapter 11 discusses what it means to create a graphical user interface in Java. You’ll learn the necessary

steps for creating your own windows, buttons, and text input fields, and you’ll learn how to paint pictures in your

applet’s window. Creating a graphical user interface will enable your Java applets to become part of the World

Wide Web. You’ll also learn how to respond to mouse clicks and keyboard entry to create truly interactive applets.

Chapter 12 returns to variables and data types to cover some more ways to store data in your classes,

objects, and methods. These include floating point values, characters, strings, collections of data called arrays, and

mini-databases called vectors and hashtables.

Chapter 13 dives into a few advanced topics that can help you write even more powerful programs. For

example, you’ll learn how you can get into the act of creating new objects from your own classes by defining

constructors, how to signal error conditions using exceptions, and you’ll gain an introduction to other concepts in

Java. You’ll also learn how your HTML pages can pass data to your applets.

Chapter 14 provides an overview of how you can create stand-alone Java applications in addition to the

applets you’ve developed to run on the Web. Stand-alone applications offer all of the features of applets without

requiring your computer to be connected to the Internet at all.

Chapter 15 offers a path for further exploration. Now that you’ve surveyed the basics of the Java language

and have achieved a solid grasp of how to program in Java, what more is there? This chapter shows you where to

look to learn more about Java’s more advanced topics, such as using threads to make more than one thing occur at

the same time.

Barry Boone and Dave Mark Learn Java on the Macintosh 8

Appendix A is a glossary of the technical terms used in this book.

Appendix B contains a listing of all of the programs discussed in this book. You might find this appendix

particularly useful if you’re looking for an example of some Java code in action, such as how to define a method,

how to create a new object, or how to write a for loop.

Appendix C provides a summary for the syntax of each of the Java statements and keywords introduced in

this book. Need an exact specification of a switch statement? It’s right here in Appendix C.

Appendix D provides some more details about the version of Metrowerks CodeWarrior included on the

CD-ROM. It also describes the differences between the version of CodeWarrior provided here and the commercial

version.

Appendix E presents exercises for each chapter that you can use to turn this book into a self-study guide.

Appendix F provides answers to the exercises.

Appendix G points the way to other books and resources on the Internet for learning more about

programming in Java.

Conventions Used in this Book

As you read this book, you'll encounter a few standard conventions that make this book easier to read. For example,

technical terms appearing for the first time are in boldface. You'll find most of these terms in the glossary in Appendix

A.

Barry Boone and Dave Mark Learn Java on the Macintosh 9

All of the source code examples in this book are presented using a special font, known as the code

font. This includes source code fragments that appear in the middle of running text. Menu items, or items you'll

click on, appear in Chicago font.

Occasionally, you'll come across a block of text set off in a box, like this. These blocks are called tech blocks and are

intended to add technical detail to the subject currently being discussed. Each tech block will fit into one of five cate-

gories: “By the Way,” “Style,” “Detail,” “Definition,” and “Warning.” Each category has its own special icon, which

will appear to the left of the tech block. As the names imply, “By the Way” tech blocks are intended to be informative

but not crucial. “Style” tech blocks contain information relating to your Java programming style. “Detail” tech blocks

offer more detailed information about the current topic. “Definition” tech blocks contain the definition of an impor-

tant Java term. “Warning” tech blocks are usually trying to caution you about some potential programming problem,

so pay attention!

Review

This book provides an introduction to Java for new programmers. By using the Java development environment avail-

able on the CD-ROM included with this book, you’ll be able to work through all of the syntax, grammar, and con-

cepts required to begin mastering the Java language.

What's Next?

You’re ready to roll! In Chapter 2, you'll install the software that’s on the CD-ROM and explore the CodeWarrior

environment so that you can begin running the samples in this book and writing your own Java programs.

Barry Boone and Dave Mark Learn Java on the Macintosh 10

CHAPTER 2 Installing and Testing
CodeWarrior Lite

Tucked into the back of this book is a CD containing a special version of CodeWarrior, one of the leading Macintosh

programming environments. This special version is CodeWarrior Lite, and it provides you with all the tools you’ll

need to work with the programming examples presented in this book.

This chapter will guide you through installing and testing CodeWarrior Lite. We’ll run an applet here that

writes “Hello, World!” in its window, but we’ll skim over the specifics concerning how the applet actually makes this

occur. The rest of this book covers this kind of thing in detail. But before we dive into the deep ocean of Java pro-

gramming, let’s get you up and running with CodeWarrior Lite.

Installing CodeWarrior Lite

When you insert the Learn Java CD into your CD-ROM drive, the main Learn Java CD window will appear on your

desktop. (If this window does not appear automatically, double-click the CD icon that appears on your desktop.) In

the center of that window is the CodeWarrior Lite Installer icon (Figure 2.1). Double-click that icon to launch the

installer.

Barry Boone and Dave Mark Learn Java on the Macintosh 11

FIGURE 2. 1 The CodeWarrior Lite Installer.

By the Way

If you already own version 9.0 or higher of CodeWarrior, you may want to skip the installation of CodeWarrior Lite.

If that is the case, just drag the Learn Java Projects folder from the top level of the CD onto your hard drive. If you do

run into problems, try removing the full CodeWarrior from your hard drive (only do this if you have a backup or the

original installation CD around, however!) and install CodeWarrior Lite instead.

When you start the installer, the first thing you’ll see is the CodeWarrior Lite information screen. Click the

Continue button. Next, a license agreement will appear in a scrolling window. Read the license agreement (you’ll

love it); then click the Continue button. This time, you’ll be presented with a list of possible installation configura-

tions (Figure 2.2). In this version of CodeWarrior, there’s only one configuration, named “Standard Install,” which

will require about 18 megs of free hard drive space. If you’ve got the space, click the Install button. Otherwise,

click Quit and go make some room.

Barry Boone and Dave Mark Learn Java on the Macintosh 12

FIGURE 2. 2 The CodeWarrior Lite installer. Do you have enough free space on your hard drive?

After the installation is complete you will still need to do one thing: At the top level of the Learn Java CD is

a folder named Learn Java Projects that contains all of the book’s programs. Drag this folder from the CD onto your

hard drive. Once you have done this you will no longer need the CD (though you might want to keep it around as a

backup). Also, if the installer suggests that you restart your Mac, make sure you do so before proceeding with the rest

of this chapter.

Barry Boone and Dave Mark Learn Java on the Macintosh 13

Testing CodeWarrior Lite

Now that CodeWarrior Lite is installed, let’s take it for a spin. Open the Learn Java Projects folder on your hard drive;

then open the subfolder named 02.01 - hello, world. You should see a window similar to the one shown in

Figure 2.3.

FIGURE 2. 3 The 02.01 - hello, world folder.

The three files in this window contain the ingredients you’ll use to build your very first Java applet.

Double-click the file HelloWorld.µ. A window just like the one shown in Figure 2.4 should appear.

Barry Boone and Dave Mark Learn Java on the Macintosh 14

FIGURE 2. 4 The HelloWorld.µ project window.

This window is called the project window. It contains information about the files used to build a Java applet.

Since this information is stored in the file HelloWorld.µ, this file is also known as a project file. A file that ends in

the characters .µ is likely to be a project file. (By the way, you can type a ‘µ’ on the Mac, which is a Greek letter pro-

nounced “mu”, by holding down the option key and typing the letter ‘m’.)

Warning

If you got a message telling you that the document HelloWorld.µ could not be opened, restart your Mac and try

again. If this still doesn’t work, try rebuilding your desktop. To do this, restart your Mac and then press the command

and option keys simultaneously. Keep holding both keys down until the Mac asks you if you’d like to rebuild your

desktop. Click OK and go watch MTV for a few minutes until it’s done.

If some other window appears instead of the one shown in Figure 2.4, you double clicked the wrong file.

That’s no problem; quit CodeWarrior and try double-clicking the file HelloWorld.µ again.

The project window shown in Figure 2.4 is split into two sections. The first section, titled “Java Source,” lists

the files that contain the Java source code for your application. Source code is a set of instructions that determine

what your application will do and when it will do it. The HelloWorld project contains two Java source files. The first,

named HelloWorld.java, contains the specific Java instructions that define the applet that will make the words

“Hello, World!” appear in the applet. The second file, classes.zip, identifies a file containing code supplied by

Java that gets combined into all your applets.

The second section, titled “HTML files,” contains a single Hypertext Markup Language (HTML) file called

HelloWorld.html. Let’s take a look at this HTML file before looking at the Java source code. Double-click this

file name in the project window. This will open a window displaying the contents of the HTML file and will look like

Figure 2.5.

Barry Boone and Dave Mark Learn Java on the Macintosh 15

FIGURE 2. 5 The contents of the HelloWorld.html file.

This simple HTML file specifies two things. First, it specifies the name of a file containing the applet to run

and where to find it. This file name is given as HelloWorld.class (as specified by code=), and its location is

given as the folder named HelloWorld (as specified by codebase=). Second, it specifies the width and height of

the window in which the applet will appear. This size is given as 250 pixels wide by 50 pixels high.

Even though the HTML file specifies that the applet is contained in a file named HelloWorld.class, if

you did a search of your Mac hard drive right now you would not find a file named HelloWorld.class. But don’t

worry: Creating .class files is what CodeWarrior is all about! We’ll create this file in just a moment.

You can display this HTML file using a Web browser that supports Java to run your applet. Another way to

run an applet in CodeWarrior is to drop an HTML file that references your applet onto an application supplied with

CodeWarrior called Metrowerks Java. Doing this launches Metrowerks Java, which then runs the applet referenced by

the HTML file.

Before we run the applet, we have to create the file named HelloWorld.class. Let’s start by taking a

look at the source code in HelloWorld.java. Double-click the label HelloWorld.java. A source code win-

dow will appear containing the source code in the file HelloWorld.java (Figure 2.6). This is your first Java pro-

gram.

Barry Boone and Dave Mark Learn Java on the Macintosh 16

FIGURE 2. 6 The source code window with the source code from the file HelloWorld.java.

The HelloWorld program tells the computer to display the text “Hello, world!” inside the applet’s window.

Don’t worry about the how this works right now. We’ll get into all that later on. For now, let’s create the applet and

crank it up.

Go to the Project menu and select Make (alternatively, you can hold down the command key and typed

the letter ‘m’). CodeWarrior now does two things. First, it creates the folder named HelloWorld. Second, it creates

the file named HelloWorld.class and places this file into the HelloWorld folder. These will show up in the

same folder that contains your source code and are shown in Figure 2.7.

Barry Boone and Dave Mark Learn Java on the Macintosh 17

FIGURE 2. 7 The folder 02.01 - hello, world with the addition of the HelloWorld folder. Inside the

HelloWorld folder is the file HelloWorld.class.

HelloWorld.class is the file referenced from HelloWorld.html. This file known is a compiled

class file. The compiled class file contains the definition for your applet that’s ready to run as part of the Web. This is

what CodeWarrior does: It turns your Java source files into files that can be run as part of the Web.

Open the folder named HelloWorld to take a look at the icon for the file HelloWorld.class. This file

will appear as in Figure 2.8.

FIGURE 2. 8 The compiled class file generated by CodeWarrior, called HelloWorld.class.

By the Way

Barry Boone and Dave Mark Learn Java on the Macintosh 18

Who’s this funny-looking cartoon character that appears on the Java class file icon and in other places relating to

Java? This guy’s name is Duke, and he’s the unofficial mascot of the Java language. (Most programming languages do

not have mascots, but you’re in luck with Java.) You’ll run across him in various places as you pursue your investiga-

tions into Java.

You can close the HelloWorld folder once you’ve seen the compiled class file. Now for the good part: Run

the applet by dragging and dropping the icon for the HTML file that’s in your HelloWorld project folder (that is, the

one named HelloWorld.html) onto the Metrowerks Java application icon. You’ll find the Metrowerks Java appli-

cation icon in your Metrowerks CodeWarrior folder. (Figure 2.9 shows what these folders and application icons look

like. Also check out Figure 2.11 for pictures of what’s happening here.)

FIGURE 2. 9 The Metrowerks CodeWarrior folder contains the Metrowerks Java folder, which contains the

Metrowerks Java application.

Barry Boone and Dave Mark Learn Java on the Macintosh 19

The very first time you try to run an applet using Metrowerks Java, a window may appear that informs you

that you are about to run a Java applet. Metrowerks Java presents this message mainly because Java makes an incred-

ible effort to ensure that no applets do damage to your Mac (or to any other computer on which you run the applet).

This message is perfectly normal. To acknowledge that you wish to run Java applets, which is what you’ll do through-

out this book, click the Accept button at the bottom of the information window.

Once you drop the HTML file onto the Metrowerks Java application and you indicate you wish to run the

applet, two windows will appear.

By the Way

We’ll use the drag-and-drop method in this book to run applets, but there might be other ways to run applets by the

time the CodeWarrior development environment is complete for Java. (Of course, you can always run the applet in a

Java-enabled Web browser.) Check the documentation with your development environment for more information on

other ways to run your applets.

The first window is titled Java Output. The Java Output window will look like the one shown in Figure 2.10.

This window provides a place for the Metrowerks Java application as well as for applets themselves to display infor-

mation to the developer.

Barry Boone and Dave Mark Learn Java on the Macintosh 20

FIGURE 2. 10 The Java Output window contains messages from the Metrowerks Java application and from the

applet itself.

By the Way

You may notice the words BlueHorse at the start of the path that indicates where the .html file is located on the

Mac. These screen shots reflect the particular Mac on which they were made (that is, on this Mac, the hard disk was

named BlueHorse). This name will vary, of course, from Mac to Mac. When run on your particular computer, the

Java Output window will display the name of your hard disk instead.

Looking at this Java Output window, you can see that Metrowerks Java provides some information so you

can tell what’s happening behind the scenes. Metrowerks Java finds and reads the class file referenced by the HTML

file. This is known as loading the class.

By the Way

These messages appear in the Java Output window when the default for the Applet Viewer is “verbose.” Check the

documentation that comes with your environment to see how you might be able to adjust this setting in CodeWarrior.

After the class is loaded, Metrowerks Java starts up the applet using the Applet Viewer. The Applet Viewer is

the second window that appears when your drop the HTML file onto Metrowerks Java. The Applet Viewer is

CodeWarrior’s way of simulating a Web browser so that you can work with your applets from within the CodeWarrior

environment (that is, without turning away from CodeWarrior and starting up a different browser application). The

Applet Viewer knows how to display the applet referenced by the HTML file, though it will not display any other

information defined by the HTML file.Metrowerks Java runs the applet in the Applet Viewer. As you can see from

Figure 2.11, the applet simply displays the words “Hello, world!” in the center of the window.

Barry Boone and Dave Mark Learn Java on the Macintosh 21

FIGURE 2. 11 What happens when you run an applet.

Once you are done admiring this amazing applet, select Quit from the File menu. This will quit Metrow-

erks Java and the Applet Viewer, and you’ll be back in CodeWarrior Lite.

Before we leave, check out at the project window again (you can reopen it by double-clicking the file Hel-

loWorld.µ if you’ve already closed the project window). If you look closely, you’ll see numbers appear in each

HTML file icon Metrowerks Java application icon

load the applet class file

find the applet class file referenced by the HTML file

run the applet in the Applet Viewer
start the Applet Viewer

display the Java Output window

drag and drop

Barry Boone and Dave Mark Learn Java on the Macintosh 22

row of the project window, where before there were only 0s. This is shown in Figure 2.12. These numbers indicate the

size of the resulting application code in bytes.

FIGURE 2. 12 The project window reveals the size of the application in bytes once the application has been created.

We’re all done for now. You can quit CodeWarrior Lite if you’d like to. If you’re asked if you want to save

the results of your program, select Don’t Save and let’s move on. (If you click the Save button, the results pro-

duced by your program are saved as a text file, which you can then open by using CodeWarrior or your favorite word

processor.)

Congratulations! You’ve just built and run your first Java applet!

Review

You’ve installed the CodeWarrior Lite development environment and even created and run your first Java applet.

You’ve poked around the CodeWarrior environment a little, exploring the project file, the HTML file, and the Java

source file. You may have some questions relating to what you’ve seen. Rest assured, these will all be answered soon

enough. For now, with CodeWarrior up and running, you’re all set to forge ahead!

Barry Boone and Dave Mark Learn Java on the Macintosh 23

What's Next?

The next two chapters provide a context for understanding Java. Chapter 3 looks at Java in relation to the Web. You'll

learn the important concepts behind Web programming and why Java is a great language to use for writing programs

that run over the Web. We’ll also touch on some concepts that will help you understand the files you created when you

compiled the HelloWorld Java applet in this chapter. Chapter 4 introduces programming concepts you should know

before you begin writing Java programs. Once you understand these core concepts, we’ll ease into Java programming

in Chapter 5.

Barry Boone and Dave Mark Learn Java on the Macintosh 24

CHAPTER 3 Web Programming Basics

Before we dive into Java programming, let's put this endeavor into context. You know that Java programs can be run

over the Web, but what does this mean, exactly? How do Web browsers arrange elements on a Web page, and what

does it mean to add a software application to a Web page? What does it even mean to write a computer program in the

first place? This chapter will answer these questions and more. You’ll also learn how Java meshes with HTML and

why Java is a perfect programming language for writing software applications that run over the Web.

With these concepts under your belt, you’ll be able to turn to the specifics of Java in Chapter 4 and learn how

to design your own Java applets.

Web Content

Web pages can contain almost anything: Pictures, text, links to other Web pages, tables, charts, sound, animation, and

more. These diverse, multimedia elements allow people to create very sophisticated Web pages. However, until

recently, Web pages were limited in that they could not incorporate software applications. With Java, this is no longer

a limitation. Java allows complete applications—such as drawing programs, spreadsheets, word processors, games,

and in fact any kind of application at all—to be included as part of a Web page.

Definition

We’ll often use the terms application and applet interchangeably. Throughout this book, you will be writing applica-

tions in the traditional software sense. But the “official” Java term invented by Sun Microsystems (the company that

developed the Java language) for a Java application that runs over the Web is an applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 25

Before we look at how to add a software application to a Web page, let’s review how Web browsers work in

the first place. This will allow us to understand how a Web browser displays a traditional document containing text

and formatting instructions in HTML, and what a Web browser does when it encounters a software application.

Traditional Web Browsers

Web browsers do three things very well. First, they download files from other computers connected to the Internet.

FIGURE 3. 1 Downloading a file found on the Internet.

Typically, these files contain instructions written in HTML that tell the Web browser what the Web page

should look like. For example, one such HTML file might look like this:

Listing 3.1: A simple HTML file.

<bold>
Enjoy a cup of java!
</bold>

Internet

file
file

file

Web browser on your computer

find file

download file

Barry Boone and Dave Mark Learn Java on the Macintosh 26

After downloading the file, the Web browser arranges the text in this file and downloads and arranges any

images referenced by this file so that these elements are positioned according to formatting instructions also found in

the file.

FIGURE 3. 2 Positioning text and images according to formatting instructions found in an HTML file.

The third thing browsers do is display connections to other Web pages. These other Web pages can be

located anywhere on the Internet—that is to say, anywhere in the world. Usually, these connections—or links—

instruction:
 start using a bold font

text:
 Enjoy a cup of java!

instruction:
 return to a normal, non-bold font

HTML document

instruction:
 put a picture here

browser arranges elements

Enjoy a cup of java!

picture

instruction:
 go to the next line

final document as it
appears in the browser

Barry Boone and Dave Mark Learn Java on the Macintosh 27

between Web pages are displayed in blue and are underlined. The HTML document itself indicates where these links

to other pages should appear. The browser’s job is to know when the user has clicked on a link and to then return to

step 1, retrieve the document (the file) on the Internet, and then progress to step 2 to format and display the elements

in the document so that they appear in the Web browser.

If you've ever looked at the source document for a Web page or have created Web pages yourself, you know

that Web pages are defined using HTML. These HTML documents contain the text to display in a Web page. Sprin-

kled in with this text are special formatting instructions written in HTML. These formatting instructions are placed

between left and right angled brackets, like this:

<a formatting instruction would go here>

For example, in the file shown in Listing 3.1, we placed HTML formatting statements around the text “Enjoy

a cup of java!” so that this text appeared in bold.

Images are kept in separate files from the HTML document. To indicate that a picture should appear in a

Web page, the Web page creator can indicate where the Web browser should look to find the computer on the Web that

contains the image, and what file this image is in. In the example above, the image was on the same computer and in

the same directory as the HTML document itself. That allowed us to simply name the file containing the picture. The

Web browser then knew where to look. If we wanted to indicate that the picture existed on a different computer, we

would need to supply the address for that computer, such as:

Barry Boone and Dave Mark Learn Java on the Macintosh 28

By the Way

Knowing how to write HTML documents is not strictly necessary for programming in Java. In fact, a thorough dis-

cussion of using HTML to design Web pages is beyond the scope of this book. However, if you are unfamiliar with

HTML and would like to know more, there are lots of books available to help you get started with HTML. We humbly

recommend Learn HTML on the Macintosh, by Dave Mark and David Lawrence. There are also a number of sites on

the Web that explain what HTML is all about. Check out Appendix G for a listing of these sites.

As the Web browser reads through the downloaded file containing the formatting instructions and the text to

display, the browser sets aside enough space on the screen to display the elements in the document. The browser

leaves enough room to draw the images and flows the text around these images; the browser spaces the lines of the

text far enough apart to accommodate the appropriate font; the browser leaves enough room in the display for tables;

and the browser takes care of arranging any other elements as appropriate.

FIGURE 3. 3 Schematic of a Web page with a variety of elements. The Web browser arranges these elements

according to the HTML instructions in the document, setting aside the appropriate amount of space for each

element.

Web page

Welcome to my Web page!

picture Come back
soon!

table

Barry Boone and Dave Mark Learn Java on the Macintosh 29

Once the Web browser arranges the images, text, and links, all the user can do is view the document. The ele-

ments just sit there, passively, until the user clicks a link and the browser displays a new page. While this is actually

quite a feat, such a Web page still lacks the interactivity that people have come to expect from using a computer.

Interactivity

Recently, Web browsers have become capable of handling another type of element: A software application. Just as the

Web browser sets aside a region of the screen to display images and text, Web browsers can now also set aside a

region of the screen in which to display the user interface for an application. With an application, a Web page is no

longer passive, but can offer any type of capability you're used to from the desktop.

For example, as of this writing, the comet Hyakutake is currently making its (mostly fuzzy) appearance in

the night-time sky. A number of excellent Web pages show diagrams of the comet’s path through the solar system and

through the backdrop of stars as seen from earth. While this is informative, a Web page created using Java could

really make such pages come alive. Rather than showing printouts of plots made with desktop-bound software appli-

cations, a software application written in Java could be inserted into a Web page. This would allow any Web user to

make his or her own plots, animate the flight of the comet, simulate how the comet would appear if it increased or

decreased in magnitude, and so on. In other words, Java applications on the Web can provide the immediacy, interac-

tivity, excitement, and power you’ve come to expect from the software applications sitting on your own Mac’s hard

drive.

What does it mean to include a software application in a Web page? In many ways, the software application

referenced by an HTML document is treated just like any other element on a Web page. As with images, software

applications are kept in separate files. The Web page creator indicates that a software application should be part of the

Web page document by using an HTML tag called applet. Here’s an example (the specifics of this applet tag

will be explained in much greater detail later in this book):

Barry Boone and Dave Mark Learn Java on the Macintosh 30

<applet code=HelloWorld.class width=250 height=50> </applet>

The name of the application to run is given after the words code= and, in the above example, is named

HelloWorld.class. When the Web browser encounters an applet tag, it downloads the application referenced

by this tag from the Internet.

FIGURE 3. 4 Downloading a Java application found on the Internet.

As with other Web page elements, the browser sets aside enough space on the screen to display the user

interface for the Java application. The amount of space required by the application is initially provided in the applet

tag. The browser flows the text and the other Web page elements around this application as necessary to format the

rest of the Web page.

Internet

file
file

application

Web browser on your computer

find application

download application

Barry Boone and Dave Mark Learn Java on the Macintosh 31

FIGURE 3. 5 An application's user interface as part of a Web page.

Web browsers that are capable of running software applications written in Java are said to be Java-enabled.

Java-enabled Web browsers include Netscape Navigator 2.0 and Sun's HotJava, and soon all Web browsers are likely

to incorporate support for Java applications.

When a traditional Web browser has downloaded an HTML document and formatted the display, that's the

end of the story. However, once a Java-enabled Web browser has downloaded a Java application, that’s only the begin-

ning! After the Java application is downloaded, the Web browser runs the Java program—just as if you, the end user,

started a program by double-clicking an icon on the Mac. Now you can interact with the application that’s part of the

Web page just as if you had installed the application on your Mac's hard drive. Just as a store-bought application can

be anything at all, so, too, can a Java application be whatever the programmer has imagined.

Web page

Welcome to my Web page!

picture Come back
soon!

table

Java application
User interface for a

Barry Boone and Dave Mark Learn Java on the Macintosh 32

Jazzing Up Your Web Page

In addition to writing full-fledged applications, there are also other ways for adding pizzazz to your Web page. Some

of these ways include using extensions to Web browsers that allow you to create animation (such as with a product

called Shockwave). Some extensions allow you to perform simple tasks such as finding the average of a set of num-

bers (by using a scripting language such as JavaScript or VisualBasic Script).

Some of these options make a Web page more interactive; some only provide a “special effect”—which is

nice, but that’s as far as these options go. While these Web page elements have their places, and in some situations

may do the job just fine, it’s important to know that these other approaches are not programming languages. Only

Java is a complete programming language for the Web. The next section explains why this distinction is so important.

Reasons for Programming

When you write a program you can make anything occur that you can imagine. With a full programming language,

such as Java, there are no limits to what you can accomplish.

People have long dreamt of achieving what today’s computer technology makes possible. Back in the 1800s,

mathematicians and inventors theorized about machines that could perform complex calculations and follow instruc-

tions to solve problems. Since the 1940s and 1950s, when modern computers were first invented, people have written

programs to perform tasks that would have been impossible without these computers and the programs that controlled

them. These tasks range from landing a man on the moon to creating feature-length movies with computer-generated

astronauts and cowboys.

You might have a more pressing need to write a program than space exploration or movie making. You might

want to find a simple way to calculate your mortgage payments. You might want to maintain your favorite recipes in a

Barry Boone and Dave Mark Learn Java on the Macintosh 33

home-grown database. You might want to create a nifty computer game you’ve dreamt up. Or you might want to pro-

mote your company on the Web by creating a software application that illustrates and perhaps even sells your com-

pany’s products or services.

All of these examples require that you control the computer to make it do the things you want. To control the

computer, you need to write a program. There is no other way to do it. If you’re new to programming, you’ll find that

writing programs and making the computer do what you tell it to do can be a very fun, exciting, and rewarding expe-

rience.

What is a Program?

A program defines the exact steps that a computer must follow to perform some action. For example, if you wanted to

explain to a person (rather than to a computer) how to call for help in an emergency, you might say:

• First, pick up a telephone hand piece.

• Then, dial 911.

These instructions are concise and explicit. You need to do the same kind of thing when you write computer

programs. For a more computer-oriented example, check out the following. If you wanted to add some numbers

together, it would be nice to be able to create a file for the computer that read:

Hi, Computer!
Do me a favor. Ask me for five numbers, add them together, then
tell me the sum.

Barry Boone and Dave Mark Learn Java on the Macintosh 34

These instructions are understandable to an English-speaking person. Computers, however, don't understand

English. Instead, computers understand something called, naturally enough, machine language. So, if you want to

tell a computer what to do, you need to tell it what to do in machine language.

Unfortunately, machine language is difficult for people to speak and understand. Machine language is writ-

ten using only 1s and 0s, and people don't usually want to communicate using only 1s and 0s. People want to use

words. So, instead, programmers perform the following steps.

First, they use a programming language, such as C, PASCAL, or Java, to write out words that describe how

the program should work. Learning a computer language is somewhat analogous to, in its objective, learning to speak

a foreign language. For example, if you want to communicate effectively when you are in Rome, you need to learn

Italian. Similarly, if you want to communicate instructions to your computer, you need to learn a programming lan-

guage.

After the programmer has used a programming language to describe how the program should work, the pro-

grammer compiles the program. To compile a program means to turn the C, PASCAL, or Java instructions into

machine language. Compilers know how to perform this translation from words to 1s and 0s. Compilers save you,

the programmer, from needing to speak in 1s and 0s yourself.

By writing in a programming language, programmers bridge the gap between people and computers. Pro-

grammers can write in a combination of English and special words and symbols to tell the computer what to do. This

book will teach you all about writing in the Java programming language. That's what you'll be doing when you write

Java programs—you’ll be telling the computer exactly what to do!

Barry Boone and Dave Mark Learn Java on the Macintosh 35

FIGURE 3. 6 Programmers write in a programming language; compilers translate this to 1s and 0s.

(Even though Figure 3.6 shows part of a program written as if it were in English, this is not quite how Java

programs really look. You’ll see soon what programs actually look like when you start programming in Java in Chap-

ter 5.)

How is Java Different from HTML?

If you're familiar with HTML, you may be saying to yourself, “I've written HTML documents that also tell the com-

puter what to do—how to format text, how to lay out a table, and more. Is a software application just a glorified

HTML document?”

Not quite. Computer languages such as Java address a different need than HTML. HTML is tailored to one

specific task—page formatting. However, you cannot use HTML to store data, implement algorithms, or communi-

cate with other parts of your computer or network. For example, it would be impossible to use HTML, and only

HTML, to perform even simple tasks such as calculating the area of a triangle, drawing a squiggly line as the user

moves the mouse across the screen, or creating a game of Tetris. In Java, these things are easy. Some of these objec-

part of a program machine language

display a text field
ask the user to enter
 a number
multiply the number
 by 2
.
.
.

110010100111100
101110010100110
0110001001
.
.
.

compile

Barry Boone and Dave Mark Learn Java on the Macintosh 36

tives are easier to achieve than others, of course—Tetris being a little more difficult than calculating the area of a tri-

angle. But the point is that these examples are impossible to accomplish in HTML, while quite natural to implement

in Java.

Other Programming Languages

Java is not the first programming language to come along. The most popular languages of the recent past include

BASIC, FORTRAN, PASCAL, C, and C++. Each of these languages was developed with particular objectives in

mind, and each was quite successful in achieving these objectives.

For example, BASIC is an acronym for Beginner’s All-purpose Symbolic Instruction Code. It was designed

in the 1960s, and as its name implies, it was meant to be a simple language for people new to programming. While the

original BASIC language is not used much today, there are quite a few people programming in a Microsoft variant of

BASIC called Visual Basic. (The main reason for this is that Bill Gates loves BASIC.)

The name FORTRAN came from combining the two words “Formula Translation.” The FORTRAN lan-

guage was invented in the 1950s and is adept at manipulating and displaying large values and writing mathematical

equations. Engineers and scientists still use FORTRAN a lot for solving problems in their fields.

PASCAL was named in honor of the 17th-century French mathematician, Blaise Pascal. The goal behind

PASCAL was to create a language that encouraged computer science students to write good, structured programs.

PASCAL was introduced in the 1970s, and it was hot for a time. It’s still in use today, though it’s not as popular as it

once was.

C was developed at AT&T. Believe it or not, it's name comes from the third attempt at creating a language.

(The first was named A, the second was named B.) C provides a kind of combination of being able to program at a

Barry Boone and Dave Mark Learn Java on the Macintosh 37

high level while still being able to get down to the details of machine language and manipulate 1s and 0s directly. C is

good for writing system software, and the Unix operating system, for example, is usually implemented in C.

All of these programming languages basically encourage the programmer to write a big list of instructions

for the computer to follow. This approach works fine for simple programs, but over the years programmers began to

realize that while these languages were powerful, they did not always work well when writing large or complex pro-

grams.

In the 1980s, a new way of thinking about software began to emerge. Programmers found a better way to

program complicated applications such as drawing programs, spreadsheets, scientific simulations, and so on. This

better way was to think of the application not as one big list of instructions, but as a collection of objects. The next

chapter gets into the details of what objects are. For now, here’s a simple example. Suppose you want to write a pro-

gram that represents something in the real world—say the flow of traffic through your city. Your program will have

streets, cars, traffic lights, draw bridges, and everything else that affects the flow of traffic. If you were using a pro-

gram that supported objects, each of these real world elements—the streets, cars, and so on—would be represented by

an object in your program.

The language called C++ is a language that uses objects. (It was named C++ as a way to indicate it was

incrementally better than C!) While C++ was not the first language to use objects, many programmers have used C++

in recent years because they already knew C, and C++ is based on C. It was therefore easier for experienced program-

mers to figure out C++ than to learn a new language altogether.

Barry Boone and Dave Mark Learn Java on the Macintosh 38

Developing Software Using These Languages

There are many other programming languages than the five mentioned above, and you may have some background in

one of these other languages. But the basic characteristics of just about any language that came before Java are the

same. Almost all of the pre-Java languages (including BASIC, FORTRAN, PASCAL, C and C++) were built for a

world in which the application that resulted from compiling the program would run on one (and only one!) type of

computer. If you wanted to run the application on a different type of computer, you would have to recompile the pro-

gram for that type of computer. This is crucial to understanding one of the primary reasons for Java's existence.

Every computer is based on a particular chip. In fact, chips are so central to a computer that computers are

often identified by the kind of chip they contain: People talk about a “386,” a “486,” or a “Pentium,” for example.

However, chips know nothing about C, PASCAL, or any other language; they only understand machine language. (To

recap, that’s what happens when you compile a program: You turn the program written in a programming language

into machine language for your specific type of computer.) What’s more, each type of chip speaks its own brand of

machine language.

With each type of chip speaking a different machine language, a programmer must compile the same pro-

gram separately for each type of chip on which the application will run. Sometimes the programmer must even

change the program a little to get it to run correctly on a new type of chip. This process is known as porting.

Now, so far, by talking about computer chips, we’ve just been considering the hardware side of things. If

you've used both Windows and the Mac, you'll notice there are many differences, both large and small, in how appli-

cations look. For example, the icons along the top of the windows are different. Windows 95 reacts to two mouse but-

tons, while the Mac only reacts to one. And if you've ever programmed in these different environments, you know that

the way you create a window on the Mac, for example, is nothing like how you create one in Windows 95. Your code

looks completely different. This means that the code that creates your user interface (the way in which the user inter-

Barry Boone and Dave Mark Learn Java on the Macintosh 39

acts with the application by using windows, buttons, check boxes, and so on) must be rewritten every time you port

your application to a new operating environment.

By the Way

Windows 95, Windows NT, the Mac OS, Solaris, OS/2, Linux, and DOS are all examples of operating environments.

Pentiums, SPARCs, 486s, and PowerPCs are examples of computer chips.

FIGURE 3. 7 Compiling different programs for different types of chips and operating environments.

Why Java Is Perfect for the Web

While other languages were created with the intent that programs written in those languages would be developed for

one type of chip and one operating environment, the Java language was developed with a different idea in mind. Java's

creators envisioned the same Java program running on many different types of computer chips and in many different

operating environments—without modification.

While writing a program expressly for one type of chip and one type of operating environment works great

when you know what kind of computer the end user has, this is not a good solution for the World Wide Web. On the

computer

personal computer
running Windows

PowerPC running
the Mac OS

Sun SPARCstation
running Solaris

program
version 1

computer
program
version 2

computer
program
version 3

compile compile compile

Barry Boone and Dave Mark Learn Java on the Macintosh 40

Web, everybody is using a different computer. If you develop an application and place it on your Web page, you have

no way of knowing who will access this page and its corresponding application. Will it be Windows NT users? Mac

users? Unix users? OS/2 users? Be Box users? The list goes on and on! In fact, all of these users will likely access

your Web page, and all will want to run your application.

If you develop your application using a traditional language, you’ll have to create different versions of this

program and compile these different versions for different computers. By contrast, the same compiled Java program

runs on any hardware and software combination. This is perfect for the Web, and this is one reason why Java is so hot.

Applications written in Java work on the Web regardless of the computer that accesses them. Applications written in

other languages do not.

FIGURE 3. 8 Downloading the same Java application for different chips and operating environments.

There are also a number of other reasons why Java is perfect for the Web. Here are two:

1. It is virtually impossible to write a computer virus in Java. This is much more crucial on the Web than it is for

shrink-wrapped products. When you buy a program in a store, there is some accountability; you know where you

purchased it and who was responsible for the software. When you encounter a program on the Web, you’re much

less sure of who wrote it, why they wrote it, and what the program will do. It’s great to know that a Java program

that you encounter on the Web will never wreak havoc with your computer.

computer

personal computer
running Windows

PowerPC running
the Mac OS

Sun SPARCstation
running Solaris

program
version 1

download download download

Barry Boone and Dave Mark Learn Java on the Macintosh 41

2. Java programs are small compared with programs written in other languages. This is important when programs are

transferred over the Web. Users don’t want to spend a lot of time waiting for a program to appear on their comput-

ers. Java helps make this waiting time as small as possible.

By the Way

What’s the history of Java? Java was invented at Sun Microsystems in the early 1990s. The developer’s original intent

was to create a language that was safe to run (impossible for viruses and easy for the programmers to write error-free

software) and that could run on any type of computer. When the Web came along, people began to realize that Java

was perfect for the Web. When Sun built Java into a Web browser and showed the world what was possible, Web afi-

cionados were hooked!

In case you’re wondering where the name Java come from: The name was hit upon at a favorite cafe fre-

quented by the developers of this new language.

Runtime Environments

So by now you might be asking, “How is it possible to have the same Java program run on different types of chips and

operating environments when other programs can’t do the same thing? If different types of chips speak different

machine languages, and if different operating environments have different types of user interfaces, what makes Java

programs so special that they don’t care what chip or environment they run on?”

The key to making the same Java program work on different computers with different types of chips and

environments is the Java interpreter. What actually happens is as follows. You write a Java program and compile it,

just as you do with any program written in any language. However, the Java compiler does not convert your program

to machine language specific to the computer on which you want to run. Instead, the Java compiler converts your pro-

gram to machine language that runs on a theoretical machine. This theoretical machine speaks its own brand of

Barry Boone and Dave Mark Learn Java on the Macintosh 42

machine language. This theoretical machine is called, appropriately enough, the Java Virtual Machine, or JVM. Fig-

ure 3.9 shows this part of the picture.

FIGURE 3. 9 Java programs are compiled for the Java Virtual Machine.

So where is this Java Virtual Machine? Where does it exist on your Mac? All you have is the Mac hardware,

right? Right! The Java Virtual Machine is implemented in software. The JVM runs as a program, and this program is

called the Java interpreter. Figure 3.10 takes Figure 3.9 one step further.

Java program

compile

compiled code ready
to run on the Java
Virtual Machine

Barry Boone and Dave Mark Learn Java on the Macintosh 43

FIGURE 3. 10 Java programs run in the Java interpreter, which simulates the Java Virtual Machine on your Mac.

The Java interpreter is what is different from chip to chip and operating environment to operating environ-

ment. It’s the Java interpreter that translates between the Java Virtual Machine’s machine language and the machine

language spoken by your computer. There’s a Java interpreter for Windows 95; there’s a Java interpreter for the Mac

(for CodeWarrior, it’s the one supplied by Metrowerks called Metrowerks Java); and so on.

The different Java interpreters allow the same Java program you write to run on different machines. In fact,

you can take the same HTML file you used in Chapter 2, and the same compiled class file generated by CodeWarrior,

and run them on Windows 95, Windows NT, Solaris, and anywhere else that a Web browser with a Java interpreter

exists. This is depicted in Figure 3.11.

Java program

compile

compiled code ready
to run on the Java
Virtual Machine

run

the Java interpreter

your Macintosh
(or any other computer)

Barry Boone and Dave Mark Learn Java on the Macintosh 44

FIGURE 3. 11 Running the same class file on multiple platforms.

Figure 3.11 really shows the same thing as Figure 3.10 but with the HelloWorld.class file being

loaded into a Java-enabled browser. You’ll work on the Macintosh while using this book, but all of the Java programs

presented here, and all of the Java programs you write, will run just fine on any other computer, as well.

Review

By writing a program, you can tell a computer exactly what steps to perform. You can make the computer do anything

at all. This allows you to create very exciting Web pages. With Java, Web pages can contain software applications, and

browsing the Web becomes a much more interactive and rewarding experience.

Why use Java to write Web applications? Why not use a language that came before Java, such as BASIC or

C? Java is a programming language that is perfect for the Web. Java is an interpreted language, which means that it

Java-enabled
Web browser
for the Mac

Java-enabled
Web browser
for the Windows 95

Java-enabled
Web browser
for the Solaris 2.4

Mac PC Workstation

Barry Boone and Dave Mark Learn Java on the Macintosh 45

can run on any computer that has a Java interpreter. Java is also a modern language that uses objects, and it is impos-

sible to write a virus using Java that can be downloaded over the Web.

What's Next?

Now that you have an understanding of how Java fits into the overall Web programming picture, we'll look at a pro-

gramming problem and find a solution for it that’s tailored to Java. You’ll learn how to approach Java development so

that the solutions you plan before you begin writing your programs are easy to implement in Java.

Barry Boone and Dave Mark Learn Java on the Macintosh 46

CHAPTER 4 Problem Solving In Java

Writing a computer program is a lot like solving a puzzle. You’ve got to understand your objective. Often, it’s helpful

to be creative. And perhaps most importantly, you need a strategy for solving the problem at hand.

When you program in Java, it's important to know how to solve the problem in front of you in such a way

that you can implement your solution in Java easily. Put more concretely, Java is the tool at your disposal; it's impor-

tant to know how to use this tool most efficiently.

This chapter will explain how to solve programming problems in a way that makes it easy to write Java pro-

grams. We’ll introduce three terms that you’ll become quite familiar with by the time you’ve written a few Java pro-

grams. These three terms are object, class, and method. You don’t know yet what these words mean as far as Java is

concerned, but by the end of this chapter you’ll have a pretty good idea.

While introducing these terms, we’ll also cover a few Java keywords so that you can begin to see how to pro-

gram in Java. However, we won’t compile any of these programs until the next chapter.

Before we explain how to solve problems in Java and discuss what the terms “object,” “class,” and “method”

mean, we’d like to make a few comments about what it’s like to be a programmer.

What It’s Like to Be a Programmer

Programming is an extremely rewarding experience. When you program, you find ways to structure your ideas that

are both logical and creative. Even though both the programs and the computers that programs run on are based on

logic, that does not mean that programming is a science.

Barry Boone and Dave Mark Learn Java on the Macintosh 47

An important part of programming is recognizing that there is not necessarily a “right” or “wrong” way to

write a program. Many times, the definition of “right” is simply that the program behaves as you expect it to. How-

ever, while this is mostly true, you’ll come to realize that some Java programs are “better” than others in terms of how

easy they are to maintain, how fast they run, and how efficiently they use the resources of the computer on which they

run. This book is filled with examples that help show you how to write fast, efficient programs that are easy to main-

tain. But keep in mind, your primary concern is always going to be: Does the program do what you intended it to do?

Why learn how to approach Java programs before you learn the language? Why not just jump in and start

programming? One of the most crucial lessons to learn in programming is that the better prepared you are, the more

quickly and easily you'll be able to write your program. Examples abound in real life in regards to other activities. For

example, architects create blueprints before the construction crew begins erecting the building. Pilots plot their

courses before they take to the skies. Doctors plan out an operation before they place the patient under anesthesia. So,

too, as a programmer, you should plan your application before you start writing code. In addition to learning the Java

language, this book will also teach you how to plan your programs before you begin clicking away at your keyboard.

So, now that you’re warmed up, let’s discuss the programming process and learn how to plan your programs.

The Programming Process

Here's the process we'll use to solve programming problems in this book. First, we’ll answer these four questions:

Question 1: What will the program do?

For some programs, this might seem like a simple question to answer, but there is more to this question than

first meets the eye. Answering this question involves clarifying your objectives for the program and considering what

your program will look like to the user when your program runs.

Barry Boone and Dave Mark Learn Java on the Macintosh 48

Definition

What your program looks like when it runs and how users interact with your program is referred to as a program’s

user interface. If the program takes advantage of graphical elements, such as windows, buttons, and pictures, the

user interface is called a graphical user interface, or GUI (often pronounced “gooey”). Programs that don’t use a

GUI, but instead write characters to the screen without taking advantage of any graphics capabilities, use a charac-

ter-mode user interface.

Question 2: What are the different parts of your program?

Answering this question means first thinking about how your program will be put together. You might have

parts of the program that perform calculations; you might have parts of the program that display text fields in which

the user enters numbers; other parts of your program might draw windows that display results calculated by the pro-

gram.

Question 3: What are the sequence of tasks your program will perform?

All programs perform a sequence of tasks. It’s important to write out this sequence of tasks before you get

involved in writing Java code so that you’ll know what code you need to write in the first place.

Question 4: What data will your program need?

Most programs you write will need to keep track of certain data. Once you know what your program will do

and how it will do it, you can think about what data you’ll need to keep track of.

This chapter will explain what each of these questions means and how you can go about answering them.

Once you have answered these four questions, you will be ready to actually write your program. Starting with the

next chapter we’ll cover what it’s like to develop a Java applet and we’ll begin to write working applets using Java.

Let’s look at a few examples to see how you can go about answering these four questions.

Barry Boone and Dave Mark Learn Java on the Macintosh 49

Designing Your Program

You can tinker with the completed SimpleDraw application by going to the Learn Java Projects folder. Open the

folder named SimpleDraw and double-click the file named SimpleDraw.html. You can create squares and circles

in different colors by selecting the shape to draw and the colors in which to draw them. Click in the applet to create a

shape at that location. Figure 4.2 shows a typical SimpleDraw session.

FIGURE 4. 1 SimpleDraw in action.

Let’s look at this applet from the programmer’s perspective. How would you go about designing this applet?

If you’re unsure, you can always start at the first question listed above, and see where that takes you.

Barry Boone and Dave Mark Learn Java on the Macintosh 50

Question 1: What will the program do?

If you had a chance to experiment with this applet, you’ll be able to formulate a description of this applet that goes

something like this: The user interacts with this simple drawing applet by first indicating which shape to draw. The

user has a choice of drawing a circle or a square. The user can also indicate which color to use when drawing the

shape: Red, green, or blue. To select the shape to draw and the color to use, the user picks from a list of possible

options. The user then clicks in the applet window, and the applet draws the indicated shape at the location of the

mouse click.

Question 2: What are the different parts of your program?

Once you can describe the things you expect your applet to do, you can start to plan out how to set up your program

to do them. In Java, your program will consist of a collection of different parts, and each of these parts will have a dif-

ferent task. For example, a spreadsheet applet might consist of cells and formulas; the cells’ task would be to display

numbers, and the formulas’ task would be to calculate the numbers to display. As a second example, an applet used by

NASA (the National Aeronautic and Space Administration) to send an unmanned space-probe to Jupiter might consist

of a number of parts: The space-probe, Jupiter, Jupiter’s moons, and the earth. This applet would use these different

parts of the program to calculate things like the path of the probe due to gravity and when the probe would arrive at its

destination. For a third example, consider a payroll program. This might consist of a collection of employees, checks

to print, as well as a variety of graphical user interface elements that would allow a user to interact with the employ-

ees and checks that make up the program.

Let’s introduce one word of terminology at this point. Instead of saying that we want to identify the “parts of

the program,” let’s give these “parts” an official term. In Java, these parts are called objects.

Barry Boone and Dave Mark Learn Java on the Macintosh 51

Objects

What are objects? Objects represent “real world” or conceptual parts of the “thing” you are trying to program. (We’re

being vague on purpose by saying “thing,” because you can program so many things. What you are trying to program

might be a model of a real world domain such as a chemical experiment or the stock market; the elements of a game;

or even the concepts of supply and demand in a business application—your choices are never ending!)

All of your Java applets will consist of objects. Put slightly differently, everything in your Java applet will be

an object. You will always create at least one object for every applet you write, because your applet itself is defined as

an object. Objects include all the items in a graphical user interface, such as the windows that appear on the screen,

the buttons the user can click with the mouse, and text fields that allow the user to type in characters. For our exam-

ples given above, each cell in the spreadsheet could be an object in a Java program. Each formula could also be repre-

sented by an object. Each moon and planet in the solar system could be an object in a Java program used by NASA.

Each employee and check in the payroll program would likely be an object, as well.

Objects Equal Data and Behavior

When you use objects, these objects “know” how to take care of themselves. There is no overall part of your program

that controls everything. For example, for the spreadsheet program, a cell object might use its formula object to deter-

mine what it should display. The formula object would know how to use the data it stores to calculate the number to

display. The cell object would know how to display this number. For the payroll program, each employee object

might know its hourly wage and how many hours the employee worked that month. The employee object would know

how to use the values it keeps for the hourly wage and number of hours worked to calculate the employee’s earned

income for that month.

These examples imply that objects consist of two parts: Data and behavior. Figure 4.2 provides a high-level

schematic of an object.

Barry Boone and Dave Mark Learn Java on the Macintosh 52

FIGURE 4. 2 Objects consist of data and behavior.

Objects equal data and behavior. As for data: Objects need to keep track of the information that makes each

object unique. For example, each employee object in the payroll program might have a different hourly wage. For the

simple drawing program, each shape that the user draws is an object, and each circle and square might have a differ-

ent position on the screen. In addition to data, objects can also do things with their data. What an object can do with

its data defines its behavior. For example, the space-probe object in the NASA program knows its current speed and

direction and can calculate where it will be at some future time. Employee objects in the payroll program could calcu-

late their earned income. Figure 4.3 illustrates how you might think of a specific employee object.

FIGURE 4. 3 A specific employee object would maintain data for a particular employee’s hourly wage and hours

worked this month, and it would provide behavior for calculating the employee’s earned income for the month

based on its data. (In this case, it could multiply the hourly wage by the hours worked to arrive at the earned

income for the month.)

data

behavior

object

hourly wage = $12

calculate

employee object

hours worked = 40

 this month’s
 income

Barry Boone and Dave Mark Learn Java on the Macintosh 53

Creating Objects

So you know you will need to create objects in your programs. When will you create these objects? That is, how does

your program know when it is time to create the objects you’ll need?

The answer is that the applet object can tell when to perform all the initialization for your program. Your

applet knows when it is starting and stopping, and when it is on the user’s screen. You’ll write Java code for your

applet that creates the appropriate objects when your applet is doing one of these tasks: Initializing, starting, stopping,

or displaying itself on the screen. Chapter 9 delves into the phases of a Java applet in detail and shows you how to

write code that executes at the appropriate times in an applet’s life.

You might notice, thinking over some of the candidates for objects provided so far, that some objects are

almost identical to each other. For example, for the payroll program, you probably don’t have to provide a separate

definition for each employee object. Employees only differ by the data they contain. For example, you might have

100 employees in your company. Each employee maintains an hourly wage and the number of hours worked. Each

employee knows how to calculate its income for the month. When we get around to defining an employee object

using Java code, they’re all likely to look pretty similar. Employee objects could all be considered to be part of the

same group.

For the NASA program, all the planets are pretty similar, when it comes down to it. They all obey Newton’s,

Einstein’s, and Kepler’s laws. They only differ in their mass, rotation, distance from the sun, current position, and so

on. That is, they have the same behavior, just different data. All of the planet objects could be said to belong to the

same group, or class, of objects.

In Java, when objects have similar definitions and only differ by the data they contain, they all belong to the

same class. In fact, objects are defined by their classes.

Barry Boone and Dave Mark Learn Java on the Macintosh 54

Classes

Here are some examples of classes. For the spreadsheet application we mentioned, we’d have two classes: A Cell

class and a Formula class. For the NASA program above, we’d have a Probe class, a Planet class, and maybe a sepa-

rate Moon class. For the payroll program, we’d have an Employee class, and maybe a Check class.

Classes define objects in a general way. A class definition in a Java program might say something like: “I am

an Employee class. All employee objects will maintain two pieces of data: Their hourly wage and the number of

hours worked. All employees will know how to calculate their earned income by multiplying their hourly wage by the

number of hours they worked.” Another class definition might say, “I am a Planet class. Each planet object will main-

tain its name, diameter, and distance from the sun. Each planet can determine where it will be at some future time

given its current data and Kepler’s Laws.” A schematic for a Planet class is illustrated in Figure 4.4.

FIGURE 4. 4 The Planet class defines a planet in a general way, specifying the data it will maintain and the

behavior it will have.

Classes are central to Java programs. You use classes to create objects. In fact, all Java programs consist of a

collection of class definitions.

Planet class

name
diameter
distance from sun

determine future
position

Barry Boone and Dave Mark Learn Java on the Macintosh 55

Class definitions define the data your objects will maintain. Class definitions also specify the behavior for

your objects. You will base all of your objects on a class that either you define or that comes predefined as part of

Java. Figure 4.5 shows that the Planet class can be used to create individual planet objects.

FIGURE 4. 5 When planet objects are created, they are based on the Planet class. Each planet object maintain its

own unique data and uses the behavior defined by its class.

What’s In Your Java Source File?

As we’re beginning to hint at here, your entire application will consist of a collection of class definitions. For exam-

ple, you might have a Java program that implements the spreadsheet application. This program could be contained in

a file on your Mac. This file would define the three classes that you need. First, the file would contain the definition

for the Applet class (all applets contain a definition for an Applet class); after this, the file would contain a definition

for the Cell class; following this, the file would contain the definition for the Formula class. A simplified outline of

this file would be:

Planet class

determine future
position

planet object

determine future
position

planet object

determine future
position

create
new
objects

name
diameter
distance from sun

name = Earth
diameter = 12,756 km
distance from sun =

name = Mars
diameter = 6,794 km
distance from sun =

 148,000,000 km

228,000,000 km

Barry Boone and Dave Mark Learn Java on the Macintosh 56

start definition for the Applet class
 Java code that describes the objects created from this class
end definition for the Applet class

start definition for the Cell class
 Java code that describes the objects created from this class
end definition for the Cell class

start definition for the Formula class
 Java code that describes the objects created from this class
end definition for the Formula class

How you write these classes is what Java programming is all about. In fact, it’s time to look at your first

piece of Java code! Here’s how you define a class, devoid of Java code that describes the objects created from this

class:

class YourClassName {

}

You would replace YourClassName with the name of the class you wanted. Let’s put this into action. How

would you define a class for a Romulan War Bird? You’d write the following:

class RomulanWarBird {

}

Barry Boone and Dave Mark Learn Java on the Macintosh 57

As you might surmise from these two examples of a class definition, Java uses symbols to indicate where a

class begins, and another, similar symbol to indicate where a class ends. These symbols are called “curly braces” and

are:

symbol name usage

{ left curly brace indicates where a class begins

} right curly brace indicates where a class ends

By the Way

On most keyboards, the left curly brace is located on the third row up on the right, above the left bracket ([). The right

curly brace should be next to the left curly brace, above the right bracket (]).

All of the Java code that describes these classes would be placed between the right curly brace ({) and the

left curly brace (}) for each class. Even empty classes would compile, but they wouldn’t do much, because we haven’t

put any Java code between their left and right curly braces.

Let’s return to SimpleDraw. As with most programs, this one can be divided into two broad areas: a) the user

interface and b) the rest of it. What are the elements of the user interface? To answer that, we can examine what we

said the program will do. We need a way to select the shape to draw, and we need a way to select the color to use for

the shape. We can click right on the applet itself to draw a shape there. What about the rest of it? We need a definition

for two shapes to draw: The circle and the square.

What are the objects we might need for this program, then? Based on the previous paragraph, we could use

an object that offers a selection list to pick the shape to draw and another selection list object to choose the color in

which to draw it. We can draw right on the applet; we will make our applet able to detect mouse clicks so that we

know where to draw. We also need shape objects. You know that objects come from classes. This means we’ll need a

Square class and a Circle class. Figure 4.6 points out where the objects are in the SimpleDraw applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 58

FIGURE 4. 6 The objects in the SimpleDraw applet.

Let’s start by looking at the shapes. We can create classes for these—and you already know how to start to

define classes:

class Circle {
}

class Square {
}

The class that will be an applet is an interesting animal; let’s take a moment to see what an applet’s class def-

inition looks like. We’ll create a class called SimpleDraw that will take on the roles and responsibilities of being the

Applet class. Here’s how we can define this class:

choice objects

circle objects

square objects

applet object

Barry Boone and Dave Mark Learn Java on the Macintosh 59

public class SimpleDraw extends java.applet.Applet {
}

In addition to what you saw already for defining classes, this class definition introduces two new keywords:

public and extends. The public keywords indicates that this class can be referenced by any other class (not all

classes can be referred to by any other class, as you’ll see in Chapter 10). The extends keyword indicates what

roles, responsibilities and default behavior the class will take on (as you’ll also learn more about in Chapter 10). For

now, it’s enough to know this is how you define an Applet class.

Let’s think about what we have so far. You know that you need to identify the parts of your application. Each

part of your application will be an object. You create objects based on class definitions. We’ve even looked at some

very simple class definitions. Now, what more is there to a class? We defined a class called Circle and a class called

Square. We’ve also defined an Applet class called SimpleDraw. But these classes don’t do anything yet, do they?

No. Not yet. You have to tell them what to do. That’s the programmer’s job. So, what do you need to do to

create a full-fledged class that does things? You need to tell the class two things:

1. What tasks the objects based on the class will perform.

2. What data the objects will need to keep track of.

From these two items, you can see how answering our four questions is leading us along in Java develop-

ment. In fact, we’re now up to question 3.

Question 3: What are the sequence of tasks your program will perform?

All programs perform a sequence of tasks. It’s important to write out this sequence of tasks before you get involved in

writing Java code so that you’ll know what code you need to write in the first place.

Barry Boone and Dave Mark Learn Java on the Macintosh 60

What is the sequence of tasks our simple drawing program will perform? We’ve already determined a great

deal of this from answering question 1: What will the program do? Based on what we’ve said so far, there are two

parts to the simple drawing program: The user interface and the rest of it. Each part has its sequence of tasks, and

these tasks do not require more than a few steps each.

First, the simple drawing program will need to arrange its user interface. This means:

1. Displaying selections for shape types and color.

2. Making the applet’s window big enough to draw in.

Second, when the user clicks in the applet, the program will:

1. Determine the shape type to draw and color with in to draw it.

2. Create a new shape object for the appropriate shape type.

3. Draw this new shape object at the location clicked in the proper color.

This seems simple enough. In fact, step 3 in the task list above provides a good illustration of where and

when a program creates objects. The following three screen shots show a typical user progressing through the simple

drawing application. Take a look at what’s going on starting in Figure 4.7.

Barry Boone and Dave Mark Learn Java on the Macintosh 61

FIGURE 4. 7 The user has just drawn one square by selecting “square” from the shape selection list and clicking on

the applet.

When the user draws a new square by clicking on the applet, the simple drawing program creates a new

object based on the Square class. The program fills in the data for the square class (it’s position and color) and draws

it on the applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 62

FIGURE 4. 8 Now, the user has selected “circle” and has drawn a circle by clicking on another location on the

applet.

As shown in Figure 4.8, the user clicks on the applet with the circle choice selected. You know what to do:

Create a circle object based on the Circle class. Fill in the circle object’s data (position and color) and draw it on the

screen.

Barry Boone and Dave Mark Learn Java on the Macintosh 63

FIGURE 4. 9 Here, the user has drawn a second square by selecting “square” from the shape selection list and then

clicking on the applet.

The user can continue on indefinitely. Figure 4.9 shows the user creating a second square. The program will

create a second square object based on the Square class. This second square object will contain the data that makes it

unique and different from the first square object. It will have a different position on the screen, maybe a different

color. And the user can keep on going. In fact, the user can create as many shapes as he or she desires!

This shows that Square and Circle classes acting like “templates” or “rubber stamps” to “stamp out” shapes

when the user draws on the applet. Notice that the same shape classes are used again and again to stamp out different

objects. Another analogy would be something like a cookie cutter. You wouldn’t use a cookie cutter once and then

throw it away! Instead, you’d use the same cookie cutter over and over again, creating as many cookies as you’d like

to (or at least, as many cookies as you have the dough for!). Each cookie can be decorated a little differently, blue-col-

ored sprinkles on one, red-colored sprinkles on a second, green on a third, but each cookie is essentially the same.

Barry Boone and Dave Mark Learn Java on the Macintosh 64

With our drawing program, our Square class and our Circle class act like cookie cutters. Since classes are

like cookie cutters, we can use them to create as many squares and circles as we need. In particular, we can stamp out

a new square or a new circle every time the user draws a new shape by clicking in the applet.

Each object will look to its class for its behavior. Each object will also look to its class to see what data it

should keep track of. This is illustrated in Figure 4.10.

FIGURE 4. 10 Objects look to their classes for their behavior and to see what data they should maintain.

These diagrams show what’s happening conceptually with classes and objects, but what’s going on in the

computer with classes and objects? Here’s the basic idea: Classes are part of your application. You define classes

using Java code. This is shown in Figure 4.11.

class Circle {
 data to maintain in the objects
 behavior for the objects

stamp out a
new object

circle object
 what data should I keep track of?
 what can I do?

} look to
 the class
 for the answer

 look to
 the class
 for the
 answer

Barry Boone and Dave Mark Learn Java on the Macintosh 65

FIGURE 4. 11 Classes are defined in your application.

When you create objects, you are asking the computer to set aside some memory to hold the data for that

object. For a circle object created from the Circle class, that data might include the circle’s position on the screen and

its color. The computer would set aside the appropriate amount of memory to hold this data, based on what the class

indicated every object needed to keep track of. This is shown in Figure 4.12. (This figure contains a slightly simplified

diagram—while both your application and the data created by your application are maintained in your computer’s

memory, they are maintained in separate regions of memory.)

definition for the Circle class:
 data that objects need to keep track of:
 - position on the screen
 - color

Your Application

 behavior for the objects

definition for the Circle class:
 data that objects need to keep track of:
 - position on the screen
 - color

Your Application Your Computer’s Memory

memory set aside for
a circle object

memory set aside for
another circle object behavior for the objects

 that Maintains Data

Barry Boone and Dave Mark Learn Java on the Macintosh 66

FIGURE 4. 12 Objects are created in your computer’s memory. Enough memory is set aside by the computer to

hold all the data that the class indicates the object needs to keep track of. Notice that your application can fill up

memory with as many objects as it needs.

Some programs are simple enough that they never need to define a class other than an applet class. In these

cases, the applet itself can handle all the details of the program. The HelloWorld applet that you saw in Chapter 2 was

an example of an applet that did not use any additional classes or objects.

Defining Behavior

How do we define an object’s behavior? To do this, we tell the class the approach, or method, its objects will use to

perform a particular task. We describe behavior by writing out a sequence of instructions. This sequence of instruc-

tions is officially called a method. This is our third technical term, after “object” and “class.” “Method” is Java’s term

for a sequence of instructions that define a particular task that an object will perform.

For now, all you need to know concerning methods is that they define an object’s behavior. To recap, here’s

what you know so far: You need to define classes. Your classes will be used like cookie cutters to stamp out objects.

Each object will maintain data that makes it unique. Your classes will provide the instructions that tell objects how to

behave. These instructions will be contained in methods.

You also know that objects keep track of the data that makes them unique. This leads us to question four.

Question 4: What data will your program need?

Based on our discussion of Question 3, can you determine what data we’ll need to write the simple drawing program?

We need to know three pieces of information:

1. The shape type to create an object for.

2. The color to use for that shape object.

Barry Boone and Dave Mark Learn Java on the Macintosh 67

3. The location where the user clicked.

The Circle class, for example, might look like what’s shown in Figure 4.13.

FIGURE 4. 13 The Circle class would specify that a circle object should maintain two pieces of data: It’s color and

where it should appear on the screen (that is, where the user clicked). The circle object’s behavior, as supplied by

the class, includes being able to draw itself at the proper location and in the proper color. The Square class would

be similar to this, but it would draw differently.

Let’s also give a little bit of thought to the Applet class. Remember, each applet contains at least one Applet

class definition. Based on what we said the simple drawing application would do, the Square class and Circle class

only provide part of the functionality for this application. The rest must be supplied by the applet. For example, Fig-

ure 4.14 shows a possible Applet class.

Circle class

draw

color
position

Barry Boone and Dave Mark Learn Java on the Macintosh 68

FIGURE 4. 14 An Applet class for the simple drawing program that interacted with the Square and Circle classes.

As you can see, the applet will need to work with the shape classes to make the program work. This is typi-

cal in a Java application, where different classes implement their own parts of the program and work together to get

the job done.

The Final Result

The outcome of answering these four questions (what your program will do, what the different parts of it are, what

tasks it will accomplish, and what data it needs) is a game plan for writing your Java program. Once you know where

you’re going, you can get there much more easily!

Circle class

draw

color
position

Square class

draw

color
position

SimpleDraw class (Applet)

current color
current shape

create shape
detect user click
create user interface

Barry Boone and Dave Mark Learn Java on the Macintosh 69

Review

Before you begin writing your Java applet, it’s a good idea to plan out your program. One way to proceed is to answer

the following four questions:

• Question 1: What will the program do? Answering this question involves determining what users will see when

they run your program.

• Question 2: What are the different parts of your program? Answering this question leads to determining the

classes you’ll define for your program, and what objects they will create when the user runs your program.

• Question 3: What are the sequence of tasks your program will perform? Answering this question leads to finding

the methods for your classes. Methods contain the instructions the computer must follow to make your applet do

the things you want it to do.

• Question 4: What data will your program need? Answering this question helps you plan out what data you’ll keep

track of in your objects.

Let’s recap some terminology before moving on. This chapter discussed objects, classes, and methods.

• Objects describe the different parts of your application. Each object maintains data that makes it unique and has

access to behavior that enables the object to perform calculations and do things.

• Classes are a “cookie cutters” that stamp out objects. Classes define what data an object should maintain and what

behavior they have.

• Methods are sequences of instructions that give your objects behavior.

You’ve also learned a small but highly important bit of Java syntax and grammar: You now know how to

define a class (albeit an empty class). You know how to design objects, thinking through the data they should contain

and the behavior they’ll have. You’ll see more examples throughout this book to get you into the swing of things.

You’ll define classes in your program by writing the word class, followed by your class name, and you indicate

Barry Boone and Dave Mark Learn Java on the Macintosh 70

the start and end of the class using a left and right curly brace. You’ll place all your Java code that describes what data

the object should keep track of and what behavior they have between the left and right curly braces. An example of an

empty class called PlanetEarth is:

class PlanetEarth {

}

All of your Java applets will be a collection of some number of classes—at least one, because you always

need a class that takes on the roles and responsibilities of an applet (you’ll learn what some of these roles and respon-

sibilities are in the next chapter, and you’ll learn more as you progress). You might have one applet class that defines

your entire program; more complicated programs might define many additional classes.

What's Next?

Once you plan out your program, you’re all set to write Java code. In fact, it’s time to take off the gloves and really get

to it! In the next chapter you'll take a look at how to write, edit, and test a Java program by implementing the simplest

applet possible and learning what the Java development cycle is all about. You’ll also learn how to write messages to

the Java Output window so you can see what’s going on as your program runs. In other words, you’re about to write

your first applet!

Barry Boone and Dave Mark Learn Java on the Macintosh 71

CHAPTER 5 The Development Cycle

Now you're all set to go. You know how to approach designing your applet. You know to first answer four basic ques-

tions, starting with determining what your applet will do. You've been introduced to the terms class, object, and

method. To review: Your applet consists of classes, and classes define sets of instructions called methods. Classes can

be used as templates to create objects. Objects maintain data that make individual objects unique. Objects look to

their classes for their behavior.

Once you’ve planned out your applet, the next step is to write the program. This means programming in Java

by defining classes, creating objects, and writing methods.

This chapter introduces you ever-so-gently to Java programming. We’ll write a simple program by defining

three empty classes. Chapter 5’s real mission is to introduce you to the Java development cycle. In fact, we’ll start so

simply that our three classes will not even define any behavior or data. You will learn how to begin a program, edit a

program, compile it, and run it. You’ll learn what happens when the compiler complains about your program due to

typos and how to go about fixing them. You’ll also learn how to write a simple message to the Java Output window to

help you see how your program is working. This chapter provides an introduction to Java programming; the details of

Java programming are what the remaining chapters are all about.

An Overview

Once you have past the planning stage, you are ready write the program. Programmers often speak about a “develop-

ment cycle.” You'll find that you iterate through this cycle with every program you write.

Barry Boone and Dave Mark Learn Java on the Macintosh 72

What’s a development cycle? A development cycle is made up of the steps required to develop a Java applet.

These steps include creating a file to hold your program, editing the file to create your classes and methods, running

and testing your program, and making changes to your program as necessary.

The reason that developing in Java (or in any programming language, for that matter) involves a develop-

ment cycle is that programs rarely, if ever, work correctly on a programmer’s very first attempt. Programs are usually

just too complex to write all in one shot and get working the very first time. That is, instead of a one-time progression

that involves writing the program, compiling it, running it, and then distributing 10,000 copies, programmers often

repeat these steps as often as necessary, returning to rewrite and re-edit the program, compiling again, running again,

then—you guessed it—editing the program again, and so on, until it all works as intended. Figure 5.1 shows this

cycle in action.

FIGURE 5. 1 Rather than a one-shot process, programming usually involves a cycle that repeats the programming

steps a number of times.

As we've already covered, the more you plan out your program, the better off you'll be, because you'll

increase your chances of having your program work in fewer attempts. This, in turn, will save you hours of program-

ming time and confusion. The less debugging you have to do, the happier you'll be as a programmer.

create a file to
hold the program

write/edit
the program

compile the
program

run the
program

test the
program –
does the
program work?

done!

not yet

perfectly!

Barry Boone and Dave Mark Learn Java on the Macintosh 73

Definition

The term debugging refers to the process of removing the bugs, or problems, in a program. The term comes from the

early days of computers when problems arose because of actual bugs (ants, spiders, and so on) that got into in the big,

room-sized computers that scientists and engineers once used. Back then, when you said you were debugging your

program, you weren’t kidding!

Organizing Your Files

Before you write your first program, let’s take a brief moment to gain an overview of what files you’ll need.

Source File

Your Java program will be contained in a text file that you’ll work with directly. You’ll open this file and type in your

Java program. If you want to change the program, you’ll edit this file.

The file that contains your Java program is called your source file. The Java instructions contained in this file

are referred to as your source code. (The main purpose of this book is to teach you how to write Java source code—

that is, what to put inside your Java source files.) By convention, all of your Java source files will end in the file exten-

sion .java.

Project File

Since your program can be contained in more than one file, CodeWarrior provides a way for organizing your different

source files into one project. You’ll need to create a project for your Java program when using CodeWarrior, even if

your program is contained within one file. (You’ve already seen this in action in Chapter 2 and this chapter will

review how this works.)

Barry Boone and Dave Mark Learn Java on the Macintosh 74

HTML File

To run your applet, you need to define a Hypertext Markup Language (HTML) file to invoke your applet. This can be

a very simple, one- or two-line file that uses the <applet> and </applet> tags.

Compiled Class File

Once you’ve written your Java source code and have defined a project file for CodeWarrior, you can compile your

program. As discussed in Chapter 4, compiling a Java program means generating instructions that are ready for the

Java interpreter to execute on your computer.

When you compile your program, the compiler creates a new file that ends in the extension .class. The

compiler will create one .class file for each of the classes you’ve defined, even if you have defined multiple classes

within the same .java file. For example, say you have a Java source file named MyClass.java that contains two

class definitions, one for a class named MyClass, and another for a class named YourClass. When you compile this

program in CodeWarrior, the compiler will create two new files (or will overwrite these files if they already exist):

The first file the compiler will create is a file named MyClass.class, and the second is a file named

YourClass.class. These files generated by the compiler that end in the extension .class are known, as you

might expect, as class files or compiled class files. Figure 5.2 diagrams this situation.

Java source file named MyClass.java

class named MyClass

class named AnotherClass

compile

class file named MyClass.class

class file named AnotherClass.class

Barry Boone and Dave Mark Learn Java on the Macintosh 75

FIGURE 5. 2 When you compile a Java source file, the compiler creates a class file for each class defined in your

Java source file.

Detail

You might hear some Java programmers using the term bytecodes. Bytecodes refer to the compiled class instructions,

which are the machine language instructions contained in the compiled class files (the files that end in .class).

An Example: The Simplest Applet

Let's take everything we've learned so far and put it all together. We’re going to lead you through the development of

a simple Java program that simply displays a window on the screen. For this first example, we’ll lead you step by step

through each word and symbol. By the end, you'll have written your first applet.

First, let's answer the questions we set for ourselves in the previous chapter. This will allow us to plan out

our applet.

Question 1: What will the program do?

The program will display a window on the screen.

Barry Boone and Dave Mark Learn Java on the Macintosh 76

Question 2: What are the different parts of your program?

All we have to do is display a window, so the only part of the program we need to think about is the part that does this

one thing. We already know that every program is made up of at least one class: An applet. One of the things that an

applet can do by default is display a window on the screen. This makes our task quite straightforward. All we need to

do, then, is create an applet class. We’ll call our class SimplestApplet. This program is also simple enough that we do

not need to create any objects.

Question 3: What are the sequence of tasks your program will perform?

There is only one task: Display a window.

Question 4: What data will your program need?

This program will not need any data.

So here we go. How do we create a class? You already know how to do this first step from the previous chap-

ter! To define a class in Java, you write the word class followed by the name of the class. We can call our class any-

thing we want to. As we mentioned above, we’ll call our class SimplestApplet. We’ll also indicate we’re creating an

applet by using the keywords you learned about in Chapter 4: public and extends java.applet.Applet.

(Just what these keywords are actually doing will be explained in Chapter 10. For now, it’s enough to know this is

what you do when you define a class that will take on the roles and responsibilities of an applet).

Style

A word about naming classes and methods: In this example, the name HelloJava is an arbitrary name. We could also

call our class Hello, FirstExample, or Fred. It doesn’t matter. While it might be funnier to call the class Fred, such a

name would not be very descriptive. Someone else reading your code would have no idea what this class was all

about. Therefore, you should always take a stab at naming the class in such a way that it provides a clue to its exist-

ence.

Barry Boone and Dave Mark Learn Java on the Macintosh 77

Defining an applet class named SimplestApplet, we have:

public class SimplestApplet extends java.applet.Applet {

}

Even though our SimplestApplet class does not contain any Java code between the curly braces, it will com-

pile and run just fine. The Java compiler will understand that we are defining a class that’s an applet, even though we

have not yet provided any code for this class. That’s fine with the Java compiler. We can always change this file later.

Let's go ahead and create a file that contains this simple class definition for an applet. Here are the steps you can fol-

low:

1. Normally, you would create a new project file and a new Java source file in CodeWarrior to hold your new

program. While the full version of CodeWarrior obviously allows you to do this, the version of CodeWarrior Lite

that’s on the CD restricts this functionality. (They can’t just give away their crown jewels, after all.) So, if you do not

have the full-blown version of CodeWarrior and instead are using the version of CodeWarrior Lite found on the CD,

we have supplied a project file with an empty Java source file that you can use for this exercise.

To find this empty project, go to the Learn Java Projects folder and open the file 05.01 - empty

project. Double-click SimplestApplet.µ to start up CodeWarrior Lite if it’s not already running. Open the

file to edit by double-clicking SimplestApplet.java in the project window.

Barry Boone and Dave Mark Learn Java on the Macintosh 78

FIGURE 5. 3 The empty Java source file, ready for your code!

2. Once the empty project window appears named SimplestApplet.java (Figure 5.3), type the fol-

lowing two lines into this window (Figure 5.4):

public class SimplestApplet extends java.applet.Applet {
}

FIGURE 5. 4 The SimplestApplet.java window after you’ve entered the empty class definition.

Barry Boone and Dave Mark Learn Java on the Macintosh 79

3. Compile this Java source file. Select the Make command from the Project menu (just be certain you

have selected a current project, the project SimplestApplet.µ, to enable this menu option). Executing this com-

mand creates the type of folder and file you’ve seen before: The folder is named SimplestApplet, and the compiled

file within this folder is named SimplestApplet.class (Figure 5.5).

FIGURE 5. 5 The new folder named SimplestApplet in your project’s folder after compiling your Java source code.

This new folder contains the compiled class file.

To execute this applet, you have to supply an HTML file to drop onto the Metrowerks Java application icon.

Once you perform this drag-and-drop operation, your applet will load and run automatically. We’ve already supplied

an HTML file in the SimplestApplet project for you to use. (For testing purposes, you’ll often create HTML files for

your new projects by cutting and pasting from existing HTML files and changing the name of the applet class referred

to by the HTML file.) Take a look at the HTML file now by double-clicking the file SimplestApplet.html in

the project window (Figure 5.6).

Barry Boone and Dave Mark Learn Java on the Macintosh 80

FIGURE 5. 6 The SimplestApplet.html file.

There are two lines in this file. The first line begins the applet definition:

<applet codebase="SimplestApplet" code="SimplestApplet.class"
width=250 height=50>

This line of HTML code does the following two things:

First, it identifies which class defines the applet through the use of the keyword code=. The name of the

compiled class file that contains the applet is supplied in quotes. It also identifies where to find this compiled class. It

is in the folder named SimplestApplet, which is identified by the keyword codebase=.

Second, it provides an initial size for the applet. If the applet were running in a Web browser, rather than in a

special window for testing that’s supplied by Metrowerks Java, then the browser would be able to arrange the other

elements in the Web page around the applet, because the browser would know how much room the applet needed. The

keywords width= and height= indicate that the applet is being sized to the values provided.

The second line ends the applet definition:

Barry Boone and Dave Mark Learn Java on the Macintosh 81

</applet>

This, my friends, is a perfectly valid applet and HTML file! What’s more, since an applet automatically dis-

plays a window, and since we’ve set the size for this window in the HTML file, we’re done.

The SimplestApplet class should compile fine. If for some reason a window appears indicating that some-

thing went wrong, close this window and look over your SimplestApplet.java file very carefully. Be sure

you’ve typed in everything exactly as shown in this book. Remember, Java, like all programming languages, is very

picky about what letters and symbols you type and will become confused if you don’t follow the rules of the language

exactly.

Once your applet compiles, you can run the applet. Just as in Chapter 2, drag the icon for the HTML file

called SimplestApplet.html from the folder 05.02 - empty project and drop it on the Metrowerks

Java application icon. When you do, the Java interpreter (called Metrowerks Java) will start and run your applet. Fig-

ure 5.7 shows what this will look like.

FIGURE 5. 7 The SimplestApplet.

Barry Boone and Dave Mark Learn Java on the Macintosh 82

We’ve created an actual, working applet, even though it’s not doing much yet. Don’t worry about that yet.

Starting in Chapter 6 you’ll begin to write some Java code for real. For now, just think about the steps that are occur-

ring when you create, compile, and run a Java applet. Think about launching the Java interpreter and Applet Viewer

called Metrowerks Java by dropping the HTML file icon onto the Metrowerks Java application icon; how Metrowerks

Java loads the class referred to in the HTML file; and how it sizes the window according to the dimensions in the

HTML file. Keep in mind that the applet class knows how to display a window on the screen without you doing any-

thing. All you have to do is tell it its default size.

Editing the Source File

Now you get to see the development cycle in action. In the next few sections, you’ll edit the source file, add some

classes, and even generate some syntax errors so you can see what to do when something unexpected happens at com-

pile time.

Let’s start by adding a couple of new classes to the SimpleDraw application. Return to the source file for the

SimpleDraw project. (The source file is named SimpleDraw.java.) Open this file if it is not already open by dou-

ble-clicking the file icon or by double-clicking the file name in the project window.

Let’s add a class definition for a Circle class and a Square class. You already know how to create a simple,

empty class definition. For these two classes, you can write:

class Circle {
}

class Square {
}

Barry Boone and Dave Mark Learn Java on the Macintosh 83

Put these definitions after the definition for the applet class called SimplestApplet. Figure 5.8 shows what

your source file will look like after you’ve added these two classes.

FIGURE 5. 8 SimplestApplet.java after adding two new, empty classes.

Now recompile the SimplestApplet project (select Make from the Project menu). If you run the applet

again, you’ll find it hasn’t changed. You will have created two new class files, however. Each of these class files will

be named after the new classes you defined: Circle.class and Square.class. You’ll find these in the folder

containing your project—the folder named 05.01 - empty project.

From this basic skeleton of three classes, you can start defining the rest of your SimpleDraw application.

That would include things like adding graphical user interface elements to your applet window to allow the user to

draw; making new circle and square objects out of the Circle class and Square class when the user clicked in the

applet; and defining the appropriate data and behavior needed by the circles and squares in this application. You’ll

learn how to do all of these things very soon.

Barry Boone and Dave Mark Learn Java on the Macintosh 84

Syntax Errors

Sometimes, you’ll find that your program won’t compile, even though you thought you typed in your program as it

should appear. When this occurs, you’re most likely dealing with a syntax error.

What Are Syntax Errors?

You’ll generate a syntax error when you use the wrong word or symbol in your program. For example, if you forget to

use a closing right curly brace (}) to end a class definition, you’ll generate a syntax error. If you make a typo, you’ll

generate a syntax error. Sometimes, when you’re just starting out, you’ll stare at a program and be convinced you’ve

typed it in correctly, yet the compiler still complains about syntax errors. How annoying! When that occurs, it’s very

likely you’ve used a keyword or a symbol incorrectly and the compiler really is right after all. You can browser

through the appendices to find examples of how to use Java’s keywords and symbols if you do get stuck.

Generating Syntax Errors

Let’s generate a syntax error so you can see what happens (in case you haven’t run into any already!). Our Simple-

stApplet program currently contains six lines of code (counting the lines with the single, closing right curly brace, but

not counting the blank lines). Let’s leave off the first left curly brace in this file and see what happens. Now, the pro-

gram should appear as in Listing 5.3.

Listing 5.3—Note that this will not compile!

class SimplestApplet extends java.applet.Applet
}

class Circle {
}

class Square {
}

Barry Boone and Dave Mark Learn Java on the Macintosh 85

Go ahead and attempt to compile this program now (select Make from the Project menu). What happens?

You get a syntax error! Figure 5.9 shows what a syntax error looks like.

FIGURE 5. 9 The Java compiler generates a syntax error if there’s a problem with the source code.

Cool! Not only did the Java compiler find that there was a problem, but it also identified what the problem

was and where it occurred. You can open the file and jump right to the line that contains the error by double-clicking

the syntax error. You’ll notice a little arrow identifies where the compiler thought there was a problem (Figure 5.10).

FIGURE 5. 10 The arrow identifies where the compiler has identified a syntax error.

Barry Boone and Dave Mark Learn Java on the Macintosh 86

To fix this, all you have to do is enter the left curly brace as appropriate and recompile.

Warning

The messages indicating a syntax error has occurred will not always correctly identify where the error exists, though

it will usually be close by (within a line or so). The reason this can happen is that the compiler must make a guess as

to what went wrong while it was looking over your program; since it doesn’t always know what you were trying to

do, it sometimes makes assumptions. If the line identified by the compiler does not look incorrect, try checking out

the line above it before pulling your hair out.

Displaying Messages

Even though we won’t start displaying things inside the applet’s window until Chapter 11, our programs are still

capable of displaying messages. You can do this by writing to the Java Output window. (Remember, the Java Output

window is always displayed by Metrowerks Java when you run your applet.)

Definition

The Java Output window plays the role of the standard output when running applets using Metrowerks Java. In the

old days of writing software, computer terminals didn’t have such things as windows, menus, and so on. They only

displayed characters. Back then, programmers didn’t have to worry about where text they displayed would end up—

as long as they wrote to the standard output, it would end up on the device being used to interact with the computer.

That device might be a screen, or it might even be a line printer. But there wasn’t any possibility of it being displayed

in some window floating on the screen; there simply weren’t any windows!

In these modern times, things are more complicated, but even new languages still retain the concept of writ-

ing text to the standard output. Even in a sophisticated language like Java, this idea is still around. CodeWarrior

allows you to write to the standard output by supplying the Java Output window.

Barry Boone and Dave Mark Learn Java on the Macintosh 87

The Java Output Window

Even if you don’t write anything to the Java Output window yourself, Metrowerks Java still writes its own messages

to this window. As you saw in Chapter 2, this includes messages indicating that a particular applet class is loading and

running.

To make a message appear in this Java Output window (that is, the standard output) from your own program,

you use a command that looks like this:

System.out.println(“Your message goes here.”);

This cryptic-looking line of code contains a few aspects to Java that will be fully explained later. Until then,

it’s best to just accept that this works when we use this in our own sample programs. This will display a line of text

like this in the Java Output window:

Your message goes here.

You can put almost anything between the parentheses and quotes and have it appear in the Java Output win-

dow. As another example, to write the message “I like Java in the springtime,” you could write a line of code like this:

System.out.println(“I like Java in the springtime”);

As you might guess, this makes the line:

Barry Boone and Dave Mark Learn Java on the Macintosh 88

I like Java in the springtime

appear in the Java Output window.

Static Initializers

Now, where do we put these lines of code? We can put them in two places: Methods and static initializers. We

haven’t learned how to define our own methods quite yet; that’s to be covered in Chapter 7. So for now, let’s turn our

attention to static initializers.

 What is a static initializer? When you drop your HTML file onto the Metrowerks Java icon, Metrowerks

Java starts up. It loads the applet class listed after the code= keyword in your HTML file. When your class loads,

Java looks to see if the class has defined a static initializer. If it has, then Metrowerks Java executes this code.

The way you define a static initializer is by using the static keyword and an opening and closing curly

brace, like this:

public class StaticInit extends java.applet.Applet {

 static {
 System.out.println(“I like Java in the springtime”);
 }

}

As we indicated, the code between the opening and closing curly brace after the keyword static is exe-

cuted when this class is loaded. Hey—this means we have written a Java program that actually does something! To

Barry Boone and Dave Mark Learn Java on the Macintosh 89

see this in action, drag and drop the StaticInit.html file icon onto the Metrowerks Java application icon. You

can find this HTML file in the folder named 05.02 - static located in Learn Java Projects. When it runs, you’ll

see that, as before, the applet window itself is blank. However, our new message appears in the Java Output window.

Figure 5.11 shows what the Java Output window looks like when this static initializer code is added to an otherwise

empty applet class definition.

FIGURE 5. 11 A static initializer message in the Java Output window.

Definition

Each line of Java code that actually does something is referred to as a statement. Each statement must always end in

a semicolon (;), similar to the way that each English sentence ends in a period. Notice the semicolon at the end of the

line:

System.out.println(“I like Java in the springtime”);

Barry Boone and Dave Mark Learn Java on the Macintosh 90

You would receive a syntax error from the compiler without this ending semicolon. Look for the semicolon

in the lines of code that follow in this chapter and through the rest of this book to become familiar with it.

What if you wanted to write a second message in addition to singing about Java in the spring? How could

you also write out a message about preferring another drink in the summer? You could write another line of code right

after the first, like this:

static {
 System.out.println(“I like Java in the springtime”);
 System.out.println(“I like iced tea in the summer”);
}

Notice that each line of code ends in a semicolon. You can write as many lines of code as you’d like. Just put

them all between the starting, left curly brace and the ending, right curly brace and you’ll be fine.

Warning

With Metrowerks Java and the Applet Viewer, if you want to make a change to your Java source code and rerun your

applet, you should not drag and drop the HTML file onto the Metrowerks Java icon again. As long as Metrowerks

Java is still running, you should select Reload from the Applet menu.

More Complicated Messages

You must place all the text you’d like to appear in the Java Output window within quotes. In addition to writing text,

you can also write other types of information. For example, you can display a number like this:

System.out.println(99);

Barry Boone and Dave Mark Learn Java on the Macintosh 91

You can even combine text and numbers by using plus sign (+), like this:

System.out.println(“My agent number is “ + 99 + “!”);

This would display:

My agent number is 99!

In the next chapter, you’ll see how you can take advantage of this technique to write even more sophisticated

messages to the Java Output window.

Review

This chapter outlined the development cycle for programming in Java. You’ll always follow these basic steps when

writing your Java programs: Create and edit a file to contain your Java source code, compile this code, and run your

program. When you want to make changes, repeat these steps. You now know how to create .java files, compile

them to create .class files, and you even know how to fix syntax errors should you ever see these beasts.

This chapter stepped through the simplest possible Java applet. You are probably beginning to get a sense

that applets are pretty powerful. For example, your applet class knew how to put a window up on the screen all by

itself. You also learned how to make messages appear in a window on the screen. Soon, you’ll be displaying messages

in the applet window itself, adding graphical user interfaces, and more. In the upcoming chapters, you’ll gain insights

into this as well as other mysteries of Java programming.

Barry Boone and Dave Mark Learn Java on the Macintosh 92

What's Next?

For our first formal programming chapter, you’ll learn how to work with data. The next chapter discusses how to

maintain data in your program by using variables, and how to use operators to change the values in those variables.

This will provide the basis for all of the programming chapters that follow.

Barry Boone and Dave Mark Learn Java on the Macintosh 93

CHAPTER 6 Variables and Operators

Congratulations on reaching Chapter 6! You’ve travelled a long way, and you’re on the verge of becoming a Java pro-

grammer. Let’s take stock of where you stand right now.

You’re beginning to get comfortable with the CodeWarrior environment. In particular, you know how to

open a project and edit a project’s source code. You know how to run a Java program, and you’ve run a number of

Java programs as you progressed through the first five chapters. You created a very simple applet in Chapter 5, having

learned the stages of the development cycle and one or two Java keywords relating to applets. You even know what to

do if you run into any syntax errors, and you’ve experienced how to go about fixing them.

You’ve learned a little what it’s like to develop a program using Java, including how to think through your

program’s design by answering four questions. You’ve also put together classes that will become the framework for

your application. You even know how to write messages to the Java Output window. You know that each line of code

is called a statement, and each statement ends in a semicolon.

Doesn’t that sound like you’re on the road to becoming a programmer? Now it’s time to go a little further.

One of the primary tasks of a program is to work with data. Programs work with just about every type of data

you can imagine, ranging from a person’s hourly wage in a personnel file, to a bank balance in a checking account, to

a flight path for a space-probe, to the colors of circles and squares. To write programs, then, you need to know how to

work with the data required by the program. So far, we’ve hinted at how to begin planning to work with data but we

haven’t gotten into the details. This chapter shows you what you need to know to work with data using Java.

This chapter uses parts of Chapter 5 from the book Learn C on the Macintosh, by Dave Mark. The C lan-

guage was a direct predecessor to Java, so the approaches for maintaining and manipulating data are quite similar

between C and Java. We took advantage of this situation to present text that has already been tested in production, as

Barry Boone and Dave Mark Learn Java on the Macintosh 94

it were, and run through the gamut by tens of thousands of readers of Dave’s other book. Where necessary, we

updated this text to take into account the differences with Java.

An Introduction to Variables

A large part of the programming process involves working with data. In Java, data is represented by using variables.

Variables can be thought of as containers for your program's data. Imagine three containers on a table. Each container

has a label: “cup1,” “cup2,” and “cup3.” Now imagine that you have three pieces of paper. Write a number on each

piece of paper and place one piece inside each of the three containers. Figure 6.1 shows what this might look like.

FIGURE 6. 1 Numbers placed in cups.

Now imagine asking a friend to reach into the three cups, pull out the number in each one, and add the three

values. You can ask your friend to place the sum of the three values in a fourth container created just for this purpose.

The fourth container is labeled “sum” and is shown in Figure 6.2.

2 63

cup1 cup2 cup3

Barry Boone and Dave Mark Learn Java on the Macintosh 95

FIGURE 6. 2 Adding three numbers and placing them in a container labelled “sum.”

This is exactly how variables work. Variables are containers for your program's data. You create a variable

and place a value in it. You then ask the computer to do something with the value in your variable. You can ask the

computer to add three variables and place the result in a fourth variable. You can even ask the computer to take the

value in a variable, multiply it by 2, and place the result back into the original variable.

Getting back to our example, now imagine that you changed the values in cup1, cup2, and cup3. Once again,

you could call on your friend to add the three values, updating the value in the container sum. You've reused the same

variables using the same formula to achieve a different result. Here's the Java version of the formula:

sum = cup1 + cup2 + cup3;

Every time you execute this line of source code, you place the sum of the variables cup1, cup2, and cup3

into the variable named sum. At this point, it's not important to understand exactly how this line of Java code works.

What is important to understand is the basic idea behind variables. Each variable in your program is like a container

with a value in it. This chapter will teach you how to create variables and how to place a value in a variable.

11

sum

Barry Boone and Dave Mark Learn Java on the Macintosh 96

Working with Variables

Variables come in a variety of types. A variable's type determines the kind of data that can be stored in that variable.

You determine a variable's type when you create the variable. (We'll discuss creating variables in just a second.) Some

variable types are useful for working with numbers. Other variable types are designed to work with text. Still others

are good for maintaining true/false values. In this chapter, we'll discuss only one type of variable. This will be vari-

ables of type int (int stands for “integer”). A variable of type int can hold a numerical value, such as 27 or -589.

Working with variables is a two-stage process. First, you create a variable; then you use a variable. In Java,

you create a variable by declaring it. Declaring a variable tells the compiler, “Create a variable for me. I need a con-

tainer in which to place a piece of data.” When you declare a variable, you have to specify both the variable's type and

its name. In our earlier example, we created four containers, or cups, each having a label. In the Java world, this

would be the same as creating four variables with the names cup1, cup2, cup3, and sum. In Java, if we want to use

the value stored in a variable, we use the variable's name. We'll show you how to do this later in the chapter.

Here's an example of a variable declaration:

int myVariable;

This declaration tells the compiler to create a variable of type int (remember, an int is used to work with

numbers) with the name myVariable. The type of the variable (in this case, int) is extremely important. As you'll

see, a variable type determines the kind and range of values a variable can be assigned.

Barry Boone and Dave Mark Learn Java on the Macintosh 97

 Variable Names

Here are two rules to follow when you create your own variable names:

• Variable names must always start with an uppercase or lowercase letter (A, B,..., Z or a, b,..., z) or with an under-

score (_).

• The remainder of the variable name must be made up of uppercase or lowercase letters, numbers (0, 1,..., 9), or the

underscore.

These two rules yield such variable names as myVariable, THIS_NUMBER, VaRiAbLe_1, and

A1234_4321. Note that a Java variable may never include a space or a character such as & or *. These two rules

must be followed.

On the other hand, these rules do leave a fair amount of room for inventiveness. Over the years, different

groups of programmers came up with additional guidelines (also known as conventions) that made variable names

more consistent and a bit easier to read.

Macintosh programmers tend to use the following convention (which we’ll also use throughout this book):

• We’ll form our variable names from lowercase letters and numbers, always starting with a lowercase letter. This

yields variable names like number or digit33.

• When we create a variable with more than one word, we’ll start the variable name with a lowercase letter and each

successive word in the variable name with an uppercase letter. This yields variable names like myVariable or

howMany.

As mentioned earlier, Java is a case-sensitive language. The compiler will cough out an error if you some-

times refer to myVariable and other times refer to myvariable. Adopt a naming convention and stick with it: Be

consistent!

Barry Boone and Dave Mark Learn Java on the Macintosh 98

By the Way

Many times, programmers use a variable named i or j to keep track of integers. In fact, this book uses these names

for some of its variables, as well. Why i and j? Why not a and b, or q and z? Actually, a and b (and any other let-

ter—or any other word, for that matter) is just as valid as i and j. Using i and j is just a convention.

The reason this convention arose has to do with the computer languages that come before Java. In particular,

at one time, FORTRAN was one of the most popular computer languages around. FORTRAN is designed for math,

and in earlier versions of FORTRAN, the way the variables were named determined what types of values they could

hold. In particular, all variables that began with the letters ‘i’ through ‘n’ could hold an integer value (‘i’ and ‘n’ being

the first two letters of the word integer). So, whenever FORTRAN programmers needed a simple integer, they would

use i. If they needed another integer and i was already in use, they would use j, and so on. This convention has

stayed with programmers and is still used all the time today.

The Size of a Type

When you declare a variable, the compiler reserves a section of memory for the exclusive use of that variable. When

you assign a value to a variable, you are modifying the variable’s dedicated memory to reflect that value. The amount

of memory assigned to a variable is determined by the variable’s type.

For example, the following variable declaration reserves memory for the exclusive use of the variable

myInt:

int myInt;

Barry Boone and Dave Mark Learn Java on the Macintosh 99

If you later assign a value to myInt, that value is stored in the memory allocated for myInt. If you ever

refer to the value of myInt, you’ll be referring to the value stored in this memory.

Operators

One way to assign a value to a variable is to use the = operator, also known as the assignment operator. An operator

is a special character (or set of characters) representing a specific computer operation. The assignment operator tells

the computer to compute the value to the right of the = and to assign that value to the variable on the left of the =.

Take a look at this line of source code:

myInt = 237;

This statement causes the value 237 to be placed in the memory allocated for myInt. In this line of code,

myInt appears on the left side of the = operator. A variable makes a fine left hand side of an assignment. A number

(like 237) makes a terrible left hand side. Why? Because values are copied from the right side to the left side of the =

operator. For example, the following line of code asks the compiler to copy the value in myInt to the number 237:

237 = myInt;

Since you can’t change the value of a number, the compiler will report an error when it encounters this line

of code (the error message will complain about an “Invalid left hand side of assignment”).

By the Way

Barry Boone and Dave Mark Learn Java on the Macintosh 100

As we just illustrated, you can use numerical constants (such as 237) directly in your code. In the programming

world, these constants are called literals. Just as there are different types of variables, there are also different types of

literals. You’ll see more on this topic later in this book.

Look at this example code placed into a static initializer for an applet class:

public class Sample0601 extends java.applet.Applet {

 static {
 int myInt, anotherInt;

 myInt = 503;
 anotherInt = myInt;
 }
}

Notice we’ve declared two variables in this program. One way to declare multiple variables is the way we

did here, separating the variables by a comma (,). There’s no limit to the number of variables you can declare using

this method. (Just be sure to end this line with a semicolon.)

We could also have declared these variables by using two separate statements:

int myInt;
int anotherInt;

Either way is fine. As you’ll see, Java is an extremely flexible language. For example, you can declare vari-

ables pretty much anywhere in your program. Consider this example:

Barry Boone and Dave Mark Learn Java on the Macintosh 101

public class Sample0602 extends java.applet.Applet {

 static {
 int myInt;

 myInt = 503;

 int anotherInt;
 anotherInt = myInt;
 }
}

This will work perfectly fine, as well. The only issue is a matter of style. Some programmers like to place all

the variable declarations at the start of the method, so that they are easy to find. Some programmers like to declare

variables just before they’re used. In this book, we’ll declare all the variables at the start of the method, which is what

the majority of programmers do, especially those who have programmed in less flexible languages that required all

variables to be declared first. You should pick a style you like and be consistent, as well.

Let’s take a look at the static initializer for this program. This static initializer starts by declaring an int.

int myInt;

Next, this program assigns the value 503 to myInt:

myInt = 503;

Barry Boone and Dave Mark Learn Java on the Macintosh 102

Then, the program declares another variable.

int anotherInt;

Finally, the value in myInt is copied into anotherInt:

anotherInt = myInt;

After this last statement, the variable anotherInt also contains the value 503.

Now that you know how to declare a variable and use the assignment operator to set it to a value, let’s look at

some of the other operators in Java. Many of these operators have to do with arithmetic operations (such as addition,

subtraction, and so on). We’ll look at these operators in this chapter. Other operators are useful for comparing two val-

ues and determining things like if one is greater or less than another. We’ll look at these operators later in the book.

Arithmetic Operators

The +, -, ++, and -- Operators

The + and - operators each take two values and reduce them to a single value. For example, the following statement

will first resolve the right side of the = by adding the numbers 5 and 3.

Barry Boone and Dave Mark Learn Java on the Macintosh 103

myInt = 5 + 3;

Once that’s done, the resulting value (8) is assigned to the variable on the left side of the =. This statement

assigns the value 8 to the variable myInt. Assigning a value to a variable means copying the value into the memory

allocated to that variable.

Here’s another example:

myInt = 10;
anotherInt = 12 - myInt;

The first statement assigns the value 10 to myInt. The second statement subtracts 10 from 12 to get 2, then

assigns the value 2 to anotherInt.

The ++ and -- operators operate on a single value only. The ++ operator increments (raises) the value by 1,

and -- decrements (lowers) the value by 1. Take a look:

myInt = 10;
myInt++;

The first statement assigns myInt a value of 10. The second statement changes the value of myInt from 10

to 11. Here’s an example with --:

myInt = 10;

Barry Boone and Dave Mark Learn Java on the Macintosh 104

-- myInt;

This time, the second line of code left myInt with a value of 9. You may have noticed that the first example

showed the ++ following myInt, whereas the second example showed the -- preceding myInt.

The position of the ++ and -- operators determines when their operation is performed in relation to the rest

of the statement. Placing the operator to the right of a variable or an expression (this is called postfix notation)

resolves all values before performing the increment (or decrement) operation. Placing the operator to the left of the

variable (this is called prefix notation) increments (or decrements) first, then the evaluation continues. The following

examples should make this point clear:

myInt = 10;
anotherInt = myInt--;

The first statement assigns myInt a value of 10. In the second statement, the -- operator is to the right of

myInt. This use of postfix notation assigns myInt’s value to anotherInt before decrementing myInt. This

example leaves myInt with a value of 9 and anotherInt with a value of 10.

Here’s the same example, written using prefix notation:

myInt = 10;
anotherInt = -- myInt;

This time, the -- is to the left of myInt. In this case, the value of myInt is decremented before being

assigned to anotherInt. The result? Both myInt and anotherInt are left with a value of 9.

Barry Boone and Dave Mark Learn Java on the Macintosh 105

The += and -= Operators

In Java, you can place the same variable on both the left and right sides of an assignment statement. For example, the

following statement increases the value of myInt by 10:

myInt = myInt + 10;

The same result can be achieved using the += operator:

myInt += 10;

In other words, the preceding statement is the same as:

myInt = myInt + 10;

In the same way, the -= operator can be used to decrement the value of a variable. The following statement

decrements the value of myInt by 10:

myInt -= 10;

Barry Boone and Dave Mark Learn Java on the Macintosh 106

The *, /, *= and /= Operators

The * and / operators each take two values and reduce them to a single value, much the same as the + and - opera-

tors do. The following statement multiplies 3 by 5, leaving myInt with a value of 15:

myInt = 3 * 5;

The following statement divides 5 by 2 and, if myInt is declared as an int (or any other type designed to

hold whole numbers), assigns the integral (truncated) result to myInt:

myInt = 5 / 2;

The number 5 divided by 2 is 2.5. Since myInt can hold only whole numbers, the value 2.5 is truncated,

and the value 2 is assigned to myInt.

Detail

Math alert! Numbers like -37, 0, and 22 are known as whole numbers, or integers. Numbers like 3.14159, 2.5, and

.0001 are known as fractional numbers or floating-point numbers.

The *= and /= operators work much the same as their += and -= counterparts. The following two state-

ments are identical:

myInt *= 10;

myInt = myInt * 10;

Barry Boone and Dave Mark Learn Java on the Macintosh 107

The following two statements are also identical:

myInt /= 10;

myInt = myInt / 10;

By the Way

The / operator doesn’t perform its truncation automatically. The accuracy of the result is limited by the data type of

the operands. As an example, if the division is performed using ints, the result will be an int and is truncated to an

integer value. Several data types (such as float, introduced shortly) support floating-point division, using the /

operator.

Operator Order

Sometimes, the expressions you create can be evaluated in many ways. For example:

myInt = 5 + 3 * 2;

You can add 5 + 3, then multiply the result by 2 (giving you 16). Alternatively, you can multiply 3 * 2 and

add 5 to the result (giving you 11). Which is correct?

Barry Boone and Dave Mark Learn Java on the Macintosh 108

Java has a set of built-in rules for resolving the order of operators. As it turns out, the * operator has a higher

precedence than the + operator, so the multiplication will be performed first, yielding a result of 11.

Although it helps to understand the relative precedence of the Java operators, it is difficult to keep track of

them all. That’s where parentheses come in. Use parentheses in pairs to define the order in which you want your oper-

ators performed. The following statement will leave myInt with a value of 16:

myInt = (5 + 3) * 2;

The following statement will leave myInt with a value of 11:

myInt = 5 + (3 * 2);

You can use more than one set of parentheses in a statement, as long as they occur in pairs—one left paren-

thesis associated with each right parenthesis. The following statement will leave myInt with a value of 16:

myInt = ((5 + 3) * 2);

Detail

Barry Boone and Dave Mark Learn Java on the Macintosh 109

There are a few special operators that work with the individual bits in a variable or number. These are most often used

only as advanced programming techniques, but we’ll mention them here because you will run across them in your

travels, especially when combining variables that define properties and styles. For example, we’ll use these operators

when specifying a font style in Chapter 11. For now, here’s what you need to know.

These bit-wise operators (that is, operators that work on bits rather than taking into account the number as a

whole) are listed in Table 6.x.

Here’s a quick example using binary values, though binary math is a big topic; we won’t go into how binary

arithmetic actually works here. You might have a variable that takes up one byte (data types that take up only one byte

are described in Chapter 12). It might be represented by the bits 00100110 (there are eight bits here, because there are

eight bits for one byte). You might have a second byte variable that is represented by the bits 01001110 (again there

are eight bits in this one byte, but the bits are different in this particular byte). The way you represented such a value

in Java is by using the notation 0x in front of the number. If you combined these two byte values using the “logical

or” operator (|), like this:

byte myByte = 0x00100110 | 0x01001110;

TABLE 6.1 Bit-wise operators

operator description

>>> shifts the bits in a variable to the right and fills the vacated bits with zero.

| performs a “logical or,” which results in 1 if either of two bits are on, and 0 if both bits are off.

^ performs a “logical and,” which results in 1 only if both bits are on, and 0 otherwise.

<< shifts the bits in a variable to the left.

>> shifts the bits in a variable to the right.

Barry Boone and Dave Mark Learn Java on the Macintosh 110

myByte would take on a value that represented a combination of the bits in the first position, then a combi-

nation of the bits in the second position, and so on, up to a combination of the bits in the eighth position. Looking at

the table, you can see that the “logical or” operator results in a 1 if either bit in the same position is 1, and a 0 if both

are 0. So here’s what would happen:

 00100110 |
 01001110

 01101110

and myByte would be equal to 01101110. You can check out Dave Mark’s Learn C on the Macintosh, pub-

lished by Addison-Wesley, for an explanation of the equivalent bit-wise operators in C and for a thorough discussion

of bits, bytes, and binary arithmetic. We’ll also show how you can use this “logical or” operator to combine values in

Chapter 11 when we define a font’s style.

Sample Programs

So far in this chapter, we’ve discussed variables (mostly of type int) and operators (mostly arithmetic). The program

examples on the following pages combine variables and operators into useful Java statements.

Barry Boone and Dave Mark Learn Java on the Macintosh 111

Opening Operator.µ

Our next program, maintained by the project file Operator.µ, provides a testing ground for some of the operators

covered in the previous sections. Operator.java declares a variable (myInt) and uses a series of statements to

change the value of the variable. By including a System.out.println() after each of these statements, Oper-

ator.java makes it easy to follow the variable, step by step, as its value changes.

Start up CodeWarrior by double-clicking on the project file Operator.µ inside the Learn Java Projects

folder., in the subfolder named 06.01 - operator. The project window for Operator.µ should appear (as in

Figure 6.3).

FIGURE 6. 3 The Operator.µ project window.

Compile this applet by selecting Make from the Project menu. Once the code compiles, drag and drop

the HTML file icon from the folder 06.01 - operator onto the Metrowerks Java application icon. CodeWarrior

will launch the Applet Viewer and run the program, displaying the output from the program in the Java Output win-

dow. Compare your output to that shown in Figure 6.4. They should be the same.

Barry Boone and Dave Mark Learn Java on the Macintosh 112

FIGURE 6. 4 The output generated by the Operator applet.

Stepping Through the Source Code

Before we step through the source code in Operator.java, you might want to bring the source code up on your

screen (double-click the name Operator.java in the project window, or select Open from the File menu). A

new window will appear, listing the source code in the file Operator.java.

The file Operator.java starts off by defining a new class, just as you learned about in the previous chap-

ter. This program defines an Applet class called Operator.

We’ve placed a whole bunch of Java statements inside of a static initializer. These statements set a value for

a variable, change the value, and then display the new results.

The static initializer starts out by declaring an int variable named myInt.

int myInt;

Barry Boone and Dave Mark Learn Java on the Macintosh 113

 At this point in the program, myInt is equal to 0. We haven’t set it to any particular value, but Java always

makes sure your variables contain something safe.

The next line of code uses the * operator to calculate a value of 6, and the = operator to assign this new value

to myInt. Following that, we use System.out.println() to display the value of myInt in the Java Output

window:

myInt = 3 * 2;
System.out.println("myInt ---> " + myInt);

The next line of Operator.java increments myInt from 6 to 7 and prints the new value in the Java Out-

put window.

myInt += 1;
System.out.println("myInt ---> " + myInt);

The next line decrements myInt by 5 and prints its new value, 2, in the Java Output window:

myInt -= 5;
System.out.println("myInt ---> " + myInt);

Next, myInt is multiplied by 10, and its new value, 20, is printed in the Java Output window:

Barry Boone and Dave Mark Learn Java on the Macintosh 114

myInt *= 10;
System.out.println("myInt ---> " + myInt);

Next, myInt is divided by 4, resulting in a new value, 5:

myInt /= 4;
System.out.println("myInt ---> " + myInt);

Finally, myInt is divided by 2. Since 5 divided by 2 is 2.5 (not a whole number), a truncation is performed,

and myInt is left with a value of 2:

myInt /= 2;
System.out.println("myInt ---> " + myInt);

Opening Postfix.µ

Our next program demonstrates the difference between postfix and prefix notation (the ++ and -- operators defined

earlier in the chapter). In the Finder, go into the Learn Java Projects folder, then into the 06.02 - postfix sub-

folder, and double-click the project file Postfix.µ. CodeWarrior will close the project file Operator.µ and

open Postfix.µ.

Take a look at the source code in the file Postfix.java and try to predict the result of the two Sys-

tem.out.println() statements before you run the program. (This file is displayed in Figure 6.5.) Remember,

you can open a source code listing for Postfix.java by double-clicking the name Postfix.java in the

project window. (Careful, this example is tricky!)

Barry Boone and Dave Mark Learn Java on the Macintosh 115

FIGURE 6. 5 The file Postfix.java.

Once your guesses are locked in, select Make from the Project menu to compile the applet, then drop

the HTML file in the 06.02 - postfix folder onto the Metrowerks Java application. How’d you do? Compare

your two guesses with the output in Figure 6.6. Let’s look at the source code.

FIGURE 6. 6 The output generated by the program Postfix.

Barry Boone and Dave Mark Learn Java on the Macintosh 116

Stepping Through the Source Code

The first half of Postfix.java is what you’ve seen before. The variable myInt is declared to be of type int

inside of a static initializer. Then, myInt is assigned a value of 5.

int myInt;
myInt = 5;

The tricky part comes next. The first call to System.out.println() has a statement embedded in it.

This is another feature of the Java language. Where there’s room for a variable, there’s often room for an entire state-

ment. This allows you to perform two actions in the same line of code, so that:

System.out.println("myInt ---> " + myInt++);

performs two different tasks. First, a message is printed to the Java Output window:

myInt ---> 5

(That is, at the time the message is printed, myInt has a value of 5.) Second, myInt is incremented by 1.

By the time this line of code is finished executing, myInt has a value of 6. Two things for the price of one!

The use of postfix notation in the above line of code ensures the increment by 1 occurs after the value for

myInt is printed. What about the next line of code:

Barry Boone and Dave Mark Learn Java on the Macintosh 117

System.out.println("myInt ---> " + ++myInt);

This line of code uses prefix notation. This ensures that myInt is incremented first. That makes myInt take

on the value of 7. Then, the message is printed to the Java Output window.

By the Way

Can you break each of these System.out.println() statements into two separate ones? Give it a try, then read

on...

The first System.out.println() looks like this:

System.out.println("myInt ---> " + myInt++);

Here’s the two-statement version:

System.out.println("myInt --> " + myInt);
myInt++;

Notice that the statement incrementing myInt was placed after the System.out.println(). Do you

see why? The postfix notation makes this necessary. Run through both versions and verify this for yourself.

The second System.out.println() looks like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 118

System.out.println("myInt ---> " + ++myInt);

Here’s the two-statement version:

++myInt;
System.out.println("myInt ---> " + myInt);

This time, the statement incrementing myInt came before System.out.println(). This time, it’s the

prefix notation that makes this necessary. Again, go through both versions and verify this for yourself.

The purpose of demonstrating the complexity of the postfix and prefix operations is twofold. On the one hand, it’s

extremely important that you understand exactly how these operators work from all angles. This will allow you to

write code that works and will aid you in making sense of other programmers’ code. On the other hand, embedding

prefix and postfix operators within statements that also perform other tasks may save you a line of code but, as you

can see, may prove a bit confusing.

Programming With Style

You’ve now learned enough about Java that it’s time to say a few words about style. As your programs become more

complicated, one danger you must always guard against is writing code that is difficult to understand and maintain.

With that mind, let’s look at some approaches for making sure your code is clear, easy to read, and is written in a style

that most programmers use in their own code.

Barry Boone and Dave Mark Learn Java on the Macintosh 119

Comments

One great technique for explaining your program to other programmers is to use comments. Comments are written

directly in English and are mixed right into your source code. When you add a comment, you first tell the Java com-

piler you’re beginning a comment. This way, the compiler knows what it should skip over your comment before it

begins to compile again.

There are two basic types of comments you can add to your code. The first type is created by using two for-

ward slashes, like this:

// This is a comment.

Here’s an example of this type of comment:

public class PieChart extends java.applet.Applet {

 static {
 int numPieces; // Number of pieces of pie left

 numPieces = 8; // We started with 8 pieces

 numPieces--; // Marge had a piece
 numPieces--; // Lisa had a piece
 numPieces -= 2; // Bart had two pieces!!
 numPieces -= 4; // Homer had the rest!!!

 System.out.println("Slices left = " + numPieces); // no more
 }

}

Barry Boone and Dave Mark Learn Java on the Macintosh 120

Everything starting from the // that’s on the same line is ignored by the compiler. Comments that use the

double-forward slashes should appear after all the other code on a line. They can also appear on lines all by them-

selves.

The other type of comment is better suited to larger and more involved comments. You can indicate the start

of a comment by using /* (forward-slash star) and the end of a comment by using */ (star forward-slash). Every-

thing between the /* and */ is ignored by the compiler. For example, here is this type of comment in action:

public class PieChart extends java.applet.Applet {

 static {
 int numPieces; // Number of pieces of pie left

 numPieces = 8; // We started with 8 pieces

 numPieces--; // Marge had a piece

 /* This program charts the progress of a bunch of pie eaters.
 Even if we put valid Java code within the comment, this code
 is ignored.

 numPieces--; // Lisa had a piece
 numPieces -= 2; // Bart had two pieces!!
 numPieces -= 4; // Homer had the rest!!!

 This is the end of the comment. */

 System.out.println("Slices left = " + numPieces); // 7 left
 }

}

Barry Boone and Dave Mark Learn Java on the Macintosh 121

Formatting

As your programs grow more and more complicated, it becomes increasingly important to use good programming

style to help keep your code readable. Nothing’s more frustrating than trying to figure out someone else’s code that is

difficult to read and is not well-documented. Well, actually, maybe there is one thing more frustrating—having this

experience with your own code! You’ll find that when you return to look over your own code the next day, the next

week, or longer, you’ll be glad you took a few moments to make your code easy to read and understand. Here are a

few simple rules of thumb you can use to help you find a programming style you’re comfortable with.

White Space

You’ll notice that the sample code in this book intersperses lots of white space in the form of blank lines and indenta-

tions. The Java compiler does not care how much white space you insert into your code. The compiler will simply

ignore this white space. For example, check out the following program, which you’ve seen before:

public class PieChart extends java.applet.Applet { static { int
numPieces; numPieces = 8; numPieces--; numPieces--;
numPieces -= 2; numPieces -=
4; System.out.println("Slices left = " + numPieces); }
}

Even this simple example shows that your program can start to look pretty hairy when it’s not nicely format-

ted. As you can tell, the original looks a lot better!

Barry Boone and Dave Mark Learn Java on the Macintosh 122

Lining Up the Curly Braces

Notice how in the original PieChart applet, the closing right curly brace always aligns with the line that begins with

the corresponding left curly brace? This makes it easy to see where related chunks of code begin and end. All the

statements within a block of code delineated by curly braces is first indented by three or four spaces or by a tab stop

(it doesn’t matter, just be consistent), and then aligned within that block. And as we already pointed out, each closing

right curly brace is placed on its own line.

You’ll find lots of other examples of indenting and white space usage in the appendices at the back of this

book and in the sample programs on the CD-ROM. Of course, these are all rules of thumb and are not requirements of

the language. You might want to find your own formatting style, but keep in mind the style showed here is what most

Java programmers use when they develop software.

Review

This chapter introduced the concepts of variables and operators. You learned how to declare a variable and assign a

value to it. You also learned how to perform arithmetic operations, such as addition, subtraction, multiplication, and

division, and you learned about the operators +=, -=, *=, and /=.

The only types of variables you’ve worked with so far have been ints. ints hold whole numbers, or inte-

gers. Soon, you’ll be introduced to other data types that are more appropriate to use for floating-point or fractional

values. You’ll also learn about operators that answer questions such as: Is one variable greater than another? Are two

variables equal?

You’ve also considered programming style. You can use white space, blank lines, and comments to help

make certain you can decipher your own code when you return to it at a later date!

Barry Boone and Dave Mark Learn Java on the Macintosh 123

What's Next?

Now that you’ve seen how to use variables, it's time to discuss how you can implement behavior. This means creating

methods. Chapter 7 shows the basics of creating methods; in Chapter 8, you’ll learn how to write methods that do

some very sophisticated things, such as make decisions and “loop” through a sequence of statements. In Chapter 9,

you’ll see how to associate the same methods and variables you’re learning about now with your own custom objects.

Barry Boone and Dave Mark Learn Java on the Macintosh 124

CHAPTER 7 Introduction to Methods

Now we turn out attention to actually making our applets do something! In order to reach that point, we’ve got to

journey across one more bridge. When you do, you’ll reach the land of methods. The first part of this chapter

describes how to create and work with methods. In the second part, we’ll use this knowledge to start programming

our applets.

Creating a Method

Methods are one of the building blocks of objects and classes. All of the behavior associated with your Applet class

and the classes used by your Applet class is defined by methods.

A method is a chunk of source code that accomplishes a specific task. Methods identify themselves by

names. For example, you might have a method that contains the set of instructions describing what should appear in

an applet’s window. You might call this method paint(). Or you might write a method for the circle objects we dis-

cussed earlier that would calculate the circle’s area. This method might be called calculateArea(). A NASA

Space Shuttle program, a Tic-Tac-Toe program, and a business program might have methods called fireThrust-

ers(), determineNextMove(), and calculatePayroll(), respectively. Each of these methods would

contain the instructions necessary to perform its specific task.

Detail

Throughout this book, we’ll refer to methods by placing a pair of parentheses after their names. This will help to dis-

tinguish between method names and variable names. For example, radius() would refer to a method, while

radius would refer to a variable.

Barry Boone and Dave Mark Learn Java on the Macintosh 125

Each method defines a chunk of code that performs a specific task. Methods work together, so that a method

handling a certain task can ask another method to perform its task. When the other method is done executing, it

returns control back to the first method.

Let’s look at a simple example before studying the details. Here is a set of instructions that displays the col-

ors of the rainbow in the Java Output window, one line at a time:

System.out.println(“red”);
System.out.println(“orange”);
System.out.println(“yellow”);
System.out.println(“green”);
System.out.println(“blue”);
System.out.println(“indigo”);
System.out.println(“violet”);

This code will work fine, especially if we’ll only ever run through this code in one spot in our program. But

what if our program needs to write out the colors of the rainbow in two different places? In that case, we’d end up

duplicating this code. That would be wasteful in terms of space and programming effort. It would be much better to

group these seven statements together into one bundle and execute this chunk of code whenever we needed to.

We can do that exact sort of thing by turning these seven lines of code into their own method. Here’s an

example of a method that writes out the seven colors of the rainbow:

void writeColors() {
 System.out.println(“red”);
 System.out.println(“orange”);
 System.out.println(“yellow”);
 System.out.println(“green”);
 System.out.println(“blue”);
 System.out.println(“indigo”);

Barry Boone and Dave Mark Learn Java on the Macintosh 126

 System.out.println(“violet”);
}

We’ll refer to this method as writeColors(). The method definition starts with a keyword void, which

will cover in just a moment. You can see the method name, writeColors, is followed by a left and right parenthe-

sis, which we’ll go over in just a sec also. Then, a left curly brace indicates the start of the method. All of the state-

ments that make up the method follow this left curly brace. After all the method’s statements, the method indicates

where it ends by using a right curly brace.

Now, whenever you want to write all the colors of the rainbow to the Java Output window, you can invoke

this method from someplace in your code. Invoking a method means executing its instructions. You can do this in Java

by writing:

writeColors();

This single line makes all seven statements in the writeColors() method execute, which makes the Java

Output window fill up with rainbow color names.

Invoking a Method

Invoking writeColors() is depicted in Figure 7.1.

Barry Boone and Dave Mark Learn Java on the Macintosh 127

FIGURE 7. 1 Invoking writeColors() is straightforward.

Figure 7.1 shows your method turning control over to the method named writeColors(). When

writeColors() is done executing its statements, it returns control back to the spot in your method where you

invoked writeColors(). For example, look at these three lines of code:

System.out.println(“Here are the colors of the rainbow:”);
writeColors();
System.out.println(“When was the last time you saw a rainbow?”);

These three statements would write the following to the Java Output window:

Here are the colors of the rainbow:
red
orange
yellow
green
blue
indigo
violet
When was the last time you saw a rainbow?

your method writeColors()
return control to

turn control over to writeColors()

write the seven colors of the rainbow
to the Java Output window

your code
your method

Barry Boone and Dave Mark Learn Java on the Macintosh 128

Using Variables

Just as you used variables in a static initializer in the previous chapter, you can also use variables in your methods.

Here’s an example of a method that finds the area of a triangle.

void triangleArea() {
 int area;
 int base;
 int height;

 base = 10;
 height = 20;

 area = (base * height) / 2;
}

This method, named triangleArea(), uses the variables base and height to hold the triangle’s data

and area to hold the result of the calculation.

Variable Scope

In Java, every variables is said to have a scope, or range. A variable’s scope defines where in the program you have

access to a variable. In other words, if a variable is declared inside one method, can another method refer to the same

variable? The answer is no!

Java defines variable scope as follows: A variable declared inside a method is local to that method and may

be referenced only inside that method. (If you ever hear programmers referring to a local variable, this is what they

mean most often: A variable declared inside a method and only accessible inside that method.)

Barry Boone and Dave Mark Learn Java on the Macintosh 129

That is, outside the method that defines the variable, the variable doesn’t appear to exist! This means you

cannot declare a variable inside one method, then refer to that same variable inside another method. Here’s an exam-

ple that will never compile:

public class Triangle extends java.applet.Applet {

 void displayArea() {
 int area;
 int base;
 int height;

 base = 5;
 height = 6;
 findArea();

 System.out.println(“The area is “ + area);
 }

 void findArea() {
 area = (base * height) / 2;
 }

This would compile fine if the variables declared inside of the method displayArea were accessible to the

method findArea(). However, they are not. findArea() knows nothing about variables declared in another

method. So, the compiler will complain about undeclared variables if you do attempt to compile this.

If you do declare variables named area, base, and height inside findArea(), these would be consid-

ered different variables altogether. A variable named base in displayArea(), for example, would know nothing

about a variable named base in findArea(). That is, changing base in findArea() would not affect base in

displayArea(), and each method could use their own version of the local variable named base independently of

the other.

Barry Boone and Dave Mark Learn Java on the Macintosh 130

Communicating Between Methods

The question arises, then, how methods can communicate with each other. How can one method tell another method

to use a particular value in a caluclation? How can a method return the result of a calculation to the method that

invoked it? Java, of course, provides a way to do this. Instead of sharing local variables, you pass data between meth-

ods.

Some methods require you to supply them with data when you invoke them. Whether you have to supply

data or not depends on how the method is defined. When a method requires data, it is because it needs help to do its

thing. Values you might provide include numbers to be used in calculations or messages that should appear on the

screen. In the case above, findArea() could be defined as taking the values for the area and height. That would

enable displayArea() to pass findArea() the values to use in the calculation.

Some methods return a result to the code that invoked it. Again, whether a method returns a result or not

depends on how it is defined. Results returned by a method might include the value of a calculation or whether the

method was successful or not in carrying out its task. In our triangle example, findArea() could return the area it

calculated back to displayArea(). That would enable displayArea() to use findArea() to perform the

calculation and display the result provided by findArea().

In the case of writeColors(), this method does not return a value, nor does it need any values from the

code invoking it to write out the seven rainbow colors. This was a simple method, and we left unanswered the mean-

ing of the keyword void as well as the empty parentheses after the method name. Now that we’ve gotten our feet

wet, let’s start looking at the details of invoking and writing methods.

Whether you supply any data to the method you invoke or whether the method returns a result depends on

how the method you invoke has been defined. If you do supply some data to the method, and if the method does return

a result, invoking a method would look like Figure 7.2:

Barry Boone and Dave Mark Learn Java on the Macintosh 131

FIGURE 7. 2 Your method can invoke another method. This other method might use some data you supply to

calculate and return a result.

For another example, you might have a method that finds the average of two numbers called findAver-

age(). This type of method would be quite different from writeColors(). First of all, it would be useful to be

able to supply findAverage() with the two numbers for which we want to find the average. Second of all, it

would be great if findAverage() returned the result of this calculation back to the method that invoked it.

From the previous chapter, you already know how to perform the calculation that finds the average of two

numbers. You would use variables and operators, very similar to the triangle example, like this:

int average;
average = (num1 + num2) / 2;

This code does not yet show the variables num1 and num2 being defined and assigned values, but we’ll get

to that in a moment. For now, just know they are int values that have been initialized to the values for which we

want to find the average. To turn this code into its own method, you can wrap this code in a method definition. Here’s

an outline of what the method definition might look like (we’ll turn this into Java code in a moment):

your method another method
return a result

supply some data

use the data supplied by your code
calculate a result

your code

Barry Boone and Dave Mark Learn Java on the Macintosh 132

define a method that returns an int and accepts two ints {
 calculate the average of the two ints
 return the average
}

At any time, you can find the average of two numbers by invoking this method. This would occur as depicted

in Figure 7.3:

FIGURE 7. 3 Invoking a method to find the average of two numbers.

Take a look at how you would invoke this method in Java. In this example, we’re finding the average for two

numbers, 10 and 20.

int average = findAverage(10, 20);

As you can see, we’re supplying two numbers to findAverage(). We supply the values to findAver-

age() inside the parentheses, separating the values by using a comma (,). Remember, when we invoked write-

Colors() previously, we just used an empty set of parentheses, like this:

your method findAverage()

return the average

supply two numbers

use the numbers supplied by your code
calculate the average of these two
 numbers

invoke findAverage()
assign the average

 to a variable

Barry Boone and Dave Mark Learn Java on the Macintosh 133

writeColors();

because writeColors() did not take any values. That is, writeColors() was self-sufficient; it had

all the information it needed to write out the colors of the rainbow. findAverage(), however, needs to know

which values it should use in its calculation.

Somehow, findAverage() is calculating the average of these two numbers (though notice our own code

does not need to concern itself with how this is accomplished). Once the average is determined, findAverage()

returns this value. We assign the value it returns, in this case 15, to our own variable, which we’ve named average.

We do this assignment using the assignment operator, =, just as if we were assigning a number instead of invoking a

method. That is:

int average = 15;

and

int average = findAverage(10, 20);

are both perfectly valid statements in Java, as long as findAverage() returns an int value.

Barry Boone and Dave Mark Learn Java on the Macintosh 134

Defining a Method

Now to write the method that finds the average. We already know what the body of the method will be—that is, what

the chunk of code will look like that performs the calculation. We’ve already written this code, but here it is again:

int average;
average = (num1 + num2) / 2;

The way that we return a value from a method is to use the keyword return, followed by the value we’d

like to return. So, to return the value contained in the variable named average, we would write:

return average;

To return a number directly, we can just write out the number. For example, this example shows the value 0

being returned.

return 0;

If findAverage() did not receive any data when it was invoked, it would be defined like this:

int findAverage() {

Barry Boone and Dave Mark Learn Java on the Macintosh 135

 int average;

 average = (num1 + num2) / 2;
 return average;
}

As with writeColors(), all of the method’s statements are contained between a left curly brace and a

right curly brace. The method definition indicates that it returns an int value, as you can tell by the keyword int

preceding the method name. With writeColors(), we used the keyword void to indicate writeColors()

did not return a value at all.

This would be a complete method definition, except for one thing: We have not yet declared or initialized the

variables num1 and num2. If findAverage() did not provide a way to set num1 and num2—for example, by

always using the same values, say 10 and 30—then we could write our findAverage() method as follows:

int findAverage() {

 int num1 = 10;
 int num2 = 30;
 int average;

 average = (num1 + num2) / 2;
 return average;
}

This would compile and run just fine. However, this would not make findAverage() particularly flexible

or useful. Rather, we would prefer to invoke findAverage() as we did in the previous section, supplying the val-

ues for num1 and num2 ourselves, not leaving them “hard-coded” to 10 and 30 in the findAverage() method

itself. To accomplish this, we place the variable definitions between the parentheses after the method name, like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 136

int findAverage(int num1, int num2) {

 int average;

 average = (num1 + num2) / 2;
 return average;
}

Now, this method definition indicates that it accepts two int values when it is invoked, and that it also

returns a value of type int. You can see how this definition matches up to an invocation of this method, such as:

int result = findAverage(10, 20);

The value 10 is assigned to the variable num1, and the value 20 is assigned to the variable num2. Inside of

findAverage(), the calculation for the average of these two numbers takes place and the result is assigned to the

variable named average. Then, the value of average (in this case, 15) is returned by findAverage(). The

calling code assigns this returned value to the variable it named result.

Detail

Notice that we’ve defined the variable result and used it in a statement all on one line. This is perfectly valid in

Java. Also, we have not yet learned what to do with values that are fractional. For example, if we found the average of

1 and 2, the calculation would yield 1.5. We’ll learn how to deal with these types of values in Chapter 12.

You must always be certain to match up the way you invoke a method with the method’s definition. If the

method takes three values (or parameters in programmer parlance), you should supply these three parameters when-

Barry Boone and Dave Mark Learn Java on the Macintosh 137

ever you invoke the method. Anything else would cause the compiler to complain and not compile your program. For

example, given a method like this:

int findAverage(int num1, int num2, int num3) {
 int average = (num1 + num2 + num3) / 3;
 return average;
}

You would need to supply three values when you invoked it, like this:

int result = findAverage(10, 20, 30);

That is, if findAverage() took three parameters, invoking it by:

int result = findAverage(10, 20);

wouldn’t cut it.

Ways to Use return

There are several ways to use return. If your method does not require you to return a value, you can exit a method

immediately by using this statement:

Barry Boone and Dave Mark Learn Java on the Macintosh 138

return;

This returns control back to the code that invoked this method right away, without executing the rest of the

method’s code after the return statement. You should only use this type of return statement, without a value, if

your method is declared as not returning a value (that is, if it is declared as void). You’ll receive an error from the

compiler if you try to use this plain return statement in a method that indicates it returns a value, as in a method

declared as:

int addTheseNumber(int num1, int num2) {
 int sum = num1 + num2;
}

This definition for addTheseNumbers() indicates it will return a value of type int—but then the

method forgets to return a value using the return statement! The compiler will complain about this. Here are two ver-

sions of valid return statements for addTheseNumbers(). The first is:

return (num1 + num2);

This statement first adds num1 to num2 and returns the result, without the need for declaring a variable

named sum. You can also write the same thing like this:

return num1 + num2;

Barry Boone and Dave Mark Learn Java on the Macintosh 139

Notice that the second version did not include any parentheses; either of these forms is fine.

Designing with Methods

What’s the advantage of creating methods? With methods, you can create chunks of code that perform specific tasks.

This is a great help to software development, because it enables you to think about parts of your programs in high-

level sections rather than always thinking in terms of the details.

You might be beginning to see how you can use methods in your own programs. If you wanted to ask the

user for two numbers, find the average for these two numbers, and then display the result, you can segment your own

program into four methods, each performing a particular task:

askUserForNumber1();
askUserForNumber2();
findAverage();
displayAverage();

This is diagrammed in Figure 7.4.

Barry Boone and Dave Mark Learn Java on the Macintosh 140

FIGURE 7. 4 One method invoking four other methods.

You could also segment this further. For example, the two methods askUserForNumber1() and

askUserForNumber2() are probably very similar. Rather than duplicating code between them, you can collect

the similar code into a single method, perhaps called getInput(). Now, askUserForNumber1() and

askUserForNumber2() can each invoke getInput() to handle the common details. Figure 7.5 expands on

Figure 7.4 to take this into account.

FIGURE 7. 5 Creating a method called getInput() shared by two other methods.

askUserForNumber1()

askUserForNumber2()

findAverage()

displayAverage()

askUserForNumber1()

askUserForNumber2()

findAverage()

displayAverage()

getInput()

Barry Boone and Dave Mark Learn Java on the Macintosh 141

Taking Part in Your Applet’s Life-Cycle

So you’ve slogged through the beginning part of this chapter, learning the basics of methods. You’ve learned how to

write methods and how to invoke them, how to pass parameters to them and how to return values. Now it’s time for

the payoff. In this section, you’ll learn how to tap into the dialog that takes place between your applet and the Web

browser. (We’ll talk about the browser in this chapter, but really we mean the environment in which your applet is

running, which will be an Applet Viewer if you are developing in CodeWarrior.)

What does the browser say to the applet? What can you (and should you) do when the browser talks to your

applet? The short answer is that the browser controls what happens in the life of your applet, and you should do the

things appropriate to a particular event in your applet’s life. The way that a browser informs an applet of a particular

stage of its life is by invoking a method. Aha! This is why we needed to understand methods before we got to this

point!

Applets have a life. It’s true. It’s just that their lives are lived out in the computer. Applets are born; applets

live; they awaken; they sleep; and they pass on. Before we step through the applet’s life, however, there is one detail

about applets that we haven’t covered yet and that it’s time for you to know about.

Applet Classes and Instances

When we created our applets so far, we made them like this:

public class MyApplet extends java.applet.Applet {
}

Working with this class definition makes it appear that when we run an applet, we are working with the

applet class. This is true, but only up to a point. What’s actually happening is this. First, the class is loaded into the

Barry Boone and Dave Mark Learn Java on the Macintosh 142

browser. Then, any static initializer code is executed, as we’ve seen. Next, and most importantly, the browser creates

an object based on your applet class. That is, the browser instantiates (creates an instance of) your applet class. At

this point, your applet is born. Once this is accomplished, the browser begins trying to invoke instance methods for

your applet object. This is illustrated in Figure 7.6.

FIGURE 7. 6 The browser (or Applet Viewer) creates an instance of your applet class and begins to interact with

this object.

There is a different instance method corresponding to each stage of an applet’s life. If you don’t supply a

method for a particular applet phase in life, that’s fine. The browser doesn’t care; it goes on its merry way. However,

supplying a method is your big chance to insert your own behavior into your applet and make your applet unique.

Here is the sequence of events that make up the life of an applet.

browser encounters the applet
tag in an HTML document

browser downloads the class file for the applet

browser creates an instance of the applet

browser begins a dialog with the new
applet instance to move the applet
through its life-cycle

applet class

applet object

browser

HTML

<applet>

browser executes any static initializers

Barry Boone and Dave Mark Learn Java on the Macintosh 143

The Applet Life-Cycle

First, an applet is born. This occurs when the applet is loaded into the browser and instantiated. As soon as the applet

has been instantiated, the browser invokes the applet’s init() method.

After the applet has been initialized, the browser starts it going. The browser invokes the applet’s start()

method.

If the user changes to a Web page other than the one that contains the applet, the applet goes to sleep. The

browser invokes the applet’s stop() method when this occurs. If the user turns back to the original Web page that

did contain the applet, the applet wakes up, when the browser invokes its start() method again.

Finally, at some point when the applet is no longer needed, it goes away. This would occur if the user quit the

browser, for example. At this point, the browser invokes the applet’s destroy() method.

Figure 7.6 shows the life-cycle of an applet.

FIGURE 7. 7 The life-cycle of an applet.

initialize the applet

stop executing the applet

quit the browser

begin executing the applet

init()

start()

destroy()

stop()

browser begins a dialog with the new
applet instance to move the applet
through its life-cycle

Barry Boone and Dave Mark Learn Java on the Macintosh 144

Hooking In

You don’t have to be a mere spectator to these events. Remember, you define your own applet class. All you have to

do to respond to these method invocations is to supply the appropriate method, defined as Java expects it to be

defined. Here are the method definitions for each of the four life-cycle methods discussed above.

public void init() {
}

public void start() {
}

public void stop() {
}

public void destroy() {
}

As you can see by these method definitions, the methods do not take any values as parameters and do not

return a value.They must be declared as public. Since the applet class as well as these methods are declared as

public, these methods are able to be invoked from anywhere. (As you’ll see in Chapter 10, only methods defined

like this can be invoked from anywhere; other methods have restrictions.) For these four life-cycle methods, this abil-

ity to be invoked from anywhere enables the browser to invoke these methods when it needs to tell the applet to enter

a new phase in life.

You can decide to implement any of these, none of these, or all of these, according to the needs of your

applet. Mix and match as you please. As earlier examples have shown, you don’t need to supply any of these methods

for your applet if you don’t want to.

Barry Boone and Dave Mark Learn Java on the Macintosh 145

What should you do with init()? Or start()? Or any of them? Why would you implement one of

these? Which can you safely ignore? Here are the things that you might think about doing with each of these four

methods.

• init() This method is invoked only once in the applet’s life—the very first time the user runs the

applet. You might want to initialize your applet’s user interface by creating windows, buttons, and other graphical

elements. For example, the SimpleDraw applet provides an init() method to create the shape and color selec-

tion lists. init() is probably the method you’ll use the most.

• start() This method is invoked every time the browser starts up your applet. For example, if the

user turns to the Web page containing this applet, start() will be invoked. If the user then turns to another page

and then turns back, start() will be invoked again. This is different from init(), which is only invoked the

very first time. If you are performing any animation or playing any sounds, you might want to start these going

inside the start() method.

• stop() This method is invoked every time the browser stops your applet. There will be one

stop() invocation for every start(). You can take this time to halt any animation or sound that you might

have begun in start().

• destroy() This method is invoked only once—at the very end of an applet’s life. There will be one

destroy() invocation for every init(). When the browser unloads the applet—for example, if the user quits

the browser—this method will be invoked. You might take this time to free any resources you’ve allocated in the

system. It’s very likely that you’ll hardly ever write a destroy() method.

There are a number of other methods that you can write for your applet that will be invoked in other situa-

tions. These include methods that let you know things like when the user clicked the mouse, when the user resized

your applet, or when the user typed in text from the keyboard. You’ll see a number of these other applet methods as

you progress.

Barry Boone and Dave Mark Learn Java on the Macintosh 146

Sample Programs

The following three sample programs illustrate the basics of methods that we’ve covered in this chapter.

LifeCycle.µ

Let’s take a look at the applet’s life-cycle as it unfolds when we run an applet. When you run an applet in a browser,

the applet might bounce back and forth between the methods start() and stop(). If the user turns away from the

Web page containing the applet, the browser will invoke the applet’s stop() method. However, the browser will not

yet destroy the applet. If the user turns back to the Web page containing the applet, the browser will invoke the

applet’s start() method again. Only when the user quits the browser (or the browser unloads the applet for some

reason of its own) will the applet ever receive destroy().

Since we’re running the applet in the Applet Viewer, we can’t really simulate this behavior of stopping the

applet and restarting it. But we can come close. At least we can see the progression from init() to start() when

we run the applet, and then on to stop() and destroy() when we shut it down.

To see this, go to the folder 07.01 - life cycle in the Learn Java Projects folder. Make this project

in the usual way (double-click the project file so that LifeCycle.µ becomes the current project, then select Make

from the Project menu). Drop the file LifeCycle.html onto the Metrowerks Java icon. The applet will start up

inside the Applet Viewer, and you’ll see messages in the Java Output window indicating that the browser did indeed

invoke init() and start(). This is shown in Figure 7.8.

Barry Boone and Dave Mark Learn Java on the Macintosh 147

FIGURE 7. 8 The LifeCycle applet after it has started running. (Notice that the Applet Viewer is still running, so the

applet has not yet received stop() and destroy().

Now, close the Applet Viewer. This will end the LifeCycle application. The Applet Viewer will invoke the

applet’s stop() and destroy() methods. You can see these messages appear in the Java Output window, as

shown in Figure 7.9.

FIGURE 7. 9 After closing the Applet Viewer, the applet goes away. The applet completes the rest of its life-cycle

methods by invoking stop() and destroy().

Barry Boone and Dave Mark Learn Java on the Macintosh 148

Check out the source code by opening LifeCycle.java. The LifeCycle applet provides a method for

each of the four stages in the applet’s life. It implements init(), start(), stop(), and destroy(). All that

the LifeCycle applet does with these methods is write a line to the Java Output window to let you know that they were

invoked. Of course, you can do much more complicated things in these methods, from creating sophisticated user

interfaces to starting animation and other multimedia effects. All we do here, however, is indicate that the Applet

Viewer is in fact communicating with the applet to let it know what stage in life it has reached.

InitMethod.µ

By using the life-cycle methods as hooks into your applet, you can customize your applet by invoking other methods.

Go to the folder 07.02 - init in the Learn Java Projects folder and double-click the project file Init-

Method.µ to see an applet that illustrates this.

The applet defined here provides an init() method to invoke its own, custom methods. The progression

from the init() method to the custom methods is illustrated in Figure 7.10.

FIGURE 7. 10 Executing your own methods from one of the life-cycle methods.

init()

setUpGUI()

makeWindow1()

makeWindow2()

browser tells your
applet to
initialize itself

this gives you a
chance to invoke
methods you’ve
written to perform
other tasks

Barry Boone and Dave Mark Learn Java on the Macintosh 149

Make the project, then drop the HTML file in this folder onto the Metrowerks Java application, and you’ll

see the Java Output window reflect the progression of methods shown in Figure 7.10. Let’s take a quick look at the

source code to see how these methods are implemented.

Stepping Through the Source Code

The intent of this applet is to illustrate how you might combine your own methods with methods invoked for you by

Java. For example, when you prepare a user interface by creating windows, text fields, buttons, and so on, you only

want to create these user interface objects once and then just hang onto them for the life of the applet. The init()

method is a good place to create a user interface, since init() is only executed once during the life of an applet.

Open up the file InitMethod.java to browser the source code. Looking at this applet, you can see that it

defines an init() method. The init() method invokes setUpGUI() after writing a message to the Java Output

window.

 public void init() {
 System.out.println(“init()”);
 setUpGUI();
 }

setUpGUI() relies on two other methods, called makeWindow1() and makeWindow2(). These cus-

tom methods all write messages to the Java Output window, though they don’t do anything else yet. You can see, how-

ever, how you can invoke your own methods at different times in the applet’s life—in this case, when the applet is first

loaded into the system. You’ll use this technique all the time when writing your own applets.

Barry Boone and Dave Mark Learn Java on the Macintosh 150

Average.µ

You learned about parameters and return values in this chapter, so let’s take a look at an applet that uses methods that

take parameters and return values. Go to the folder named 07.03 - average in the Learn Java Projects folder.

Make the project after double-clicking Average.µ, then drop the file Average.html onto the Metrowerks Java

icon. You’ll see the three lines appear in the Java Output window as illustrated in Figure 7.11. This applet uses a

method that finds the average of three numbers. We’ve invoked this method three times and use Sys-

tem.out.println() each time to show the returned value in the Java Output window. Let’s take a look.

FIGURE 7. 11 Displaying the average of three sets of numbers in the Java Output window.

Stepping Through the Source Code

Open Average.java to view the Java source code. Take a look at the top four lines of the start() method.

 public void start() {

 int average;

 average = findAverage(10, 20, 30);
 System.out.println(average);

Barry Boone and Dave Mark Learn Java on the Macintosh 151

After declaring an int variable, start() invokes findAverage(). findAverage() takes three

parameters, and these values are supplied as 10, 20, and 30. Since findAverage() returns an int value, the result

of this method invocation is assigned to the variable average. The next line displays this result in the Java Output

window.

After this, start() invokes findAverage() two more times, each time passing it a different set of

parameters. findAverage() responds each time by performing the calculation for the average based on the

parameters supplied to it and returns the result. Each time, the new result is assigned to average and displayed in

the Java Output window.

 average = findAverage(-400, 182, 213);
 System.out.println(average);

 average = findAverage(9901, 20201, 41);
 System.out.println(average);

 }

The method findAverage() is defined as follows:

 int findAverage(int num1, int num2, int num3) {
 return (num1 + num2 + num3)/3;
 }

findAverage()’s three int parameters are declared as num1, num2, and num3. From the method dec-

laration, you can see that findAverage() returns an int value. This means it must provide a return statement

Barry Boone and Dave Mark Learn Java on the Macintosh 152

that returns an int. findAverage() uses some of the arithmetic operators you saw in Chapter 6 to calculate the

average for the three parameters. It then returns the result of this calculation.

The first time start() invokes findAverage(), num1 is equal to 10, num2 is equal to 20, and num3

is equal to 30. The second time start() invokes findAverage(), num1 is equal to -400, num2 is equal to 182,

and num3 is equal to 213. And the third time? You can probably guess by now by looking back at the start()

method and seeing how it was invoked; num1 is equal to 9901, num2 is equal to 20201, and num3 is equal to 41.

Review

This chapter explained how to define and invoke methods. You learned that methods often invoke other methods, and

you now know how methods can communicate with each other by passing parameters and returning values.

You also know what happens when the browser (or Applet Viewer) loads your applet class and begins to run

your applet. The browser creates an instance (that is, an object) based on your Applet class. The browser then begins

to try to invoke its live-cycle methods (init(), start(), stop(), and destroy()) so that the applet can do

things like arrange its user interface or shut down when it is no longer on the screen. By supplying these methods for

your applet, you can make your applet do the things you want it to do, when you want it to do them.

Barry Boone and Dave Mark Learn Java on the Macintosh 153

What's Next?

Now that you know how to write chunks of code called methods, let’s turn our attention to making these methods

control what your program does. This means writing methods that make decisions, choose to execute one block of

code over another block, and repeat certain statements to perform more complex operations. Chapter 8 covers these

topics by looking at “flow control.” Armed with this knowledge, you’ll be able to add sophisticated behavior to your

objects in Chapter 9.

Barry Boone and Dave Mark Learn Java on the Macintosh 154

CHAPTER 8 Controlling Your
Program's Flow

The previous chapter showed you how to write and invoke methods. That was great, but so far all of our methods have

been a straight-ahead, sequential progression: The computer executed the first statement, then the second, then the

third, and so on, and when it reached the end of the method it returned.

But there’s much more to writing methods than that! One of the powerful features of all programming lan-

guages is the ability to control the flow through your program. For example, you can write code that will execute only

if a certain condition is met. You can write code that loops back to an earlier statement and begins again. You can

write all sorts of fancy programs by using flow control; that’s what this chapter is all about.

Boolean Values

Before we start this chapter, there’s one more data type that we need to cover, because we’ll start to make reference to

it here. This data type is called boolean. A boolean value can take only one of two values: true or false. Here’s an

example:

boolean javaIsFun;

javaIsFun = true;

Barry Boone and Dave Mark Learn Java on the Macintosh 155

You might also say:

javaIsFun = false;

With boolean values, there are no other possibilities, such as “sometimes” or “occasionally.” It’s either true

or false. That’s it. (In Java, the values true and false are part of the language.)

If you don’t set the boolean to anything, its value is false, as in:

boolean dinosaursArePurple;

At this point, dinosaursArePurple has the value of false. (Which is the case, isn’t it?)

You’ll soon see that boolean values have many uses in Java. This simple data type allows for the creation of

some very sophisticated programs!

By the Way

What kind of word is “boolean,” anyway? This term was derived from the name of a 19th century mathematician

named George Boole. Boole determined the rules involving operands that could only take the values of true or false.

It was more than a century later before his rules were applied to the field of computer science where they were found

to be crucial to computer and software design.

We’ve written a number of simple methods over the last two chapters. Now it’s time to go further. Here, we'll

learn a few advanced ways to implement your methods that draw upon the computer’s abilities to test for certain con-

Barry Boone and Dave Mark Learn Java on the Macintosh 156

ditions. After the computer has performed a test, say by testing if one number is less than another number, the com-

puter can execute different steps depending on the outcome of a test.

This chapter borrows heavily from Chapter 6 of Learn C on the Macintosh, by Dave Mark. The two chapters

are not identical, however, since there are a number of differences between C and Java. But legions of C programmers

have successfully learned all about flow control with Learn C on the Macintosh; who are we to tinker with success?

Flow Control

The programs you’ve written so far have all consisted of a straightforward series of statements, one right after the

other. Every statement is executed in the order it occurred.

Flow control is the ability to define the order in which your program’s statements are executed. Java provides

several keywords you can use in your program to control your program’s flow. One of these is the keyword if.

The if Statement

The keyword if allows you to choose among several options in your program. In English, you might say something

like this:

If it’s raining outside I’ll bring my umbrella; otherwise, I
won’t.

In the previous sentence, you’re using “if” to choose between two options. Depending on the weather, you’ll

do one of two things. You’ll bring your umbrella or you won’t bring your umbrella. Java’s if statement gives you this

same flexibility. Here’s an example:

Barry Boone and Dave Mark Learn Java on the Macintosh 157

public class Tester extends java.applet.Applet {

 public void init() {

 int myInt = 5;

 if (myInt == 0)
 System.out.println(“myInt is equal to zero.”);
 else
 System.out.println(“myInt is not equal to zero.”);
 }
}

This applet, named Tester, defines an init() method. This method declares myInt to be of type int and

sets the value of myInt to 5. Next, we use the if statement to test whether myInt is equal to 0. If myInt is equal

to 0 (which we know is not true), we’ll print one string. Otherwise, we’ll print a different string. As expected, this pro-

gram prints the string “myInt is not equal to zero.”

An if statement can come in two ways. The first, known as plain old if, fits this pattern:

if (boolean expression)
 statement

An if statement will always consist of the word if, a left parenthesis, a boolean expression, a right paren-

thesis, and a statement. (We’ll define both “expression” and “statement” in a minute.) This first form of if executes

the statement if the boolean expression in parentheses is true. An English example of the plain if might be:

Barry Boone and Dave Mark Learn Java on the Macintosh 158

If it’s raining outside, I’ll bring my umbrella.

Notice that this statement tells us what will happen only if it’s raining outside. No particular action will be

taken if it is not raining.

The second form of if, known as if-else, fits this pattern:

if (boolean expression)
 statement
else
 statement

An if-else statement will always consist of the word if, a left parenthesis, a boolean expression, a right

parenthesis, a statement, the word else, and a second statement. This form of if executes the first statement if the

boolean expression is true and executes the second statement if the boolean expression is false. An English example

of an if-else statement might be:

If it’s raining outside, I’ll bring my umbrella; otherwise, I
won’t.

Notice that this example tells us what will happen if it is raining outside (I’ll bring my umbrella) and if it

isn’t raining outside (I won’t bring my umbrella). The example programs presented later in the chapter demonstrate

the proper use of both if and if-else.

Our next step is define our terms.

Barry Boone and Dave Mark Learn Java on the Macintosh 159

Expressions

In Java, an expression is anything that has a value. There are two kinds of expressions: numeric expressions, which

have numeric values, and boolean expressions, which can only have the values of true or false.

Numeric Expressions

Variables that represent numbers, such as variables of type int, are a type of numeric expression, since a variable

will always have a value. (Remember, Java initializes your numeric variable to 0 for you if you don’t assign it a

value.) Here are some examples of numeric expressions:

myInt + 3

(myInt + anotherInt) * 4

myInt++

An assignment statement is also an expression. Can you guess the value of an assignment statement? The

value of an assignment statement is the value of its left side. Check out the following code fragment:

myInt = 5;
myInt += 3;

Both of these statements qualify as expressions. The value of the first expression is 5. The value of the sec-

ond expression is 8 (because we added 3 to myInt’s previous value).

Barry Boone and Dave Mark Learn Java on the Macintosh 160

Boolean Expressions

Earlier, we defined the if statement as follows:

if (boolean expression)
 statement

We then said that the statement gets executed if the expression is true. Let’s look at Java’s concept of truth.

Everyone has an intuitive understanding of the difference between true and false. I think we’d all agree that

the following statement is false:

5 equals 3

We’d also agree that the following statement is true:

5 and 3 are both greater than 0

This intuitive grasp of true and false carries over into the Java language. So, a boolean expression is an

expression that can be evaluated in terms of truth or falsehood. Notice that boolean expressions are different than

numeric expressions. You cannot write Java code like this:

int myInt = 27;

Barry Boone and Dave Mark Learn Java on the Macintosh 161

if (myInt) // this won’t work!
 System.out.println(“myInt is not equal to 0”);

This is not allowed in Java, and the compiler will tell you in no uncertain terms. The compiler will complain

that the line of code:

if (myInt)

is a numeric expression. The Java compiler requires the expression in the if statement to evaluate to true or

false. Before we see how to turn this line of code into a boolean statement that Java will accept, let’s take a look com-

parative operators.

Comparative Operators

Java expressions have a special set of operators, called comparative operators. Comparative operators compare their

left sides with their right sides and produce a value of either true or false, depending on the relationship of the two

sides.

For example, the operator == determines whether the expression on the left is equal in value to the expres-

sion on the right. In the following expression, myInt evaluates to true if myInt is equal to 5 and to false if myInt

is not equal to 5:

Barry Boone and Dave Mark Learn Java on the Macintosh 162

myInt == 5

Here’s an example of the == operator at work:

if (my Int == 5)
 System.out.println(“myInt is equal to 5”);

If myInt is equal to 5, the boolean expression myInt == 5 evaluates to true and Sys-

tem.out.println() gets executed. If myInt isn’t equal to 5, the boolean expression evaluates to false and

System.out.println() is skipped. Just remember, the key to triggering an if statement is a boolean expres-

sion that evaluates to true.

Table 8.1 shows some other comparative operators. You’ll see some of these operators in the example pro-

grams later in this chapter.

Back in the last section, we saw some code that would not compile in Java, because the expression in the if

statement was not a boolean expression:

TABLE 8.1 Some comparative operators.

Operator Resolves to true if...

== left side is equal to right

<= left side is less than or equal to right

>= left side is greater than or equal to right

< left side is less than right

> left side is greater than right

!= left side is not equal to right

Barry Boone and Dave Mark Learn Java on the Macintosh 163

int myInt = 27;

if (myInt) // this won’t work!
 System.out.println(“myInt is not equal to 0”);

Knowing what we now know about the comparative operators, how can we fix this code? One way to make

this work is instead of writing:

if (myInt)

you can write:

if (myInt != 0)

The expression myInt != 0 is now a boolean expression that has a true or false value: Either myInt is

equal to 0 or it is not. The operator != means “is not equal to.”

Logical Operators

Our next set of operators, collectively known as logical operators, are modeled on the mathematical concept of truth

tables. If you don’t know much about truth tables (or are just frightened by mathematics in general), don’t panic.

Everything you need to know is outlined in the next few paragraphs.

Barry Boone and Dave Mark Learn Java on the Macintosh 164

The first of the set of logical operators is the ! operator. The ! operator turns true into false and false into

true. Table 8.2 shows the truth table for the ! operator.

If the boolean expression is true, applying the ! operator to the same expression yields the value false. If the

expression is false, applying the ! operator to the same expression yields the value true. The ! operator is commonly

referred to as the NOT operator; !A is pronounced “Not A”.

Here’s a piece of code that demonstrates the ! operator:

boolean myFirstBoolean, mySecondBoolean;

myFirstBoolean = false;
mySecondBoolean = ! myFirstBoolean;

First, we declare two booleans. We assign the value false to the first boolean, then use the ! operator to

turn the false into a true and assign it to the second boolean. This is very important. Take another look at Table

8.2. The ! operator converts true into false and false into true.

The previous chunk of code translated mySecondInt from false to true. Now, if we encounter the

code:

if (mySecondBoolean)

TABLE 8.2 The truth table for the ! operator

(boolean expression) (!boolean expression)

true false

false true

Barry Boone and Dave Mark Learn Java on the Macintosh 165

 System.out.println(“mySecondBoolean must be true”);

System.out.println() will get executed and the message stating “mySecondBoolean must be

true” will appear on the screen. Now take a look at this piece of code:

if (!mySecondBoolean)
 System.out.println(“mySecondBoolean must be false”);

This time, System.out.println() will get executed if mySecondBoolean is false. Do you see

why? If mySecondBoolean is false, then !mySecondBoolean must be true.

The ! operator is a unary operator. Unary operators operate on a single expression (the expression to the

right of the operator). The other two logical operators, && and ||, are binary operators. Binary operators, such as the

== operator and all the other comparative operators presented earlier, operate on two expressions, one on the left side

and one on the right side of the operator.

The && operator is commonly referred to as the AND operator. The result of an && operation is true if, and

only if, both the left side and the right side are true. Here’s an example:

boolean hasCar, hasTimeToGiveRide;

hasCar = true;
hasTimeToGiveRide = true;

if (hasCar && hasTimeToGiveRide)
 System.out.println(“Hop in - I’ll give you a ride!”);
else
 System.out.println(“I’ve either got no car, no time, or

Barry Boone and Dave Mark Learn Java on the Macintosh 166

neither”);

This example uses two variables. One indicates whether the program has a car, the other whether the pro-

gram has time to give us a ride to the mall. All philosophical issues aside (Can a program have a car?), the question of

the moment is, Which System.out.println() statement will fire? Since both sides of the && were set to true,

the first System.out.println() will be invoked. If either one (or both) of the variables were set to false, the

second System.out.println() would be invoked. Another way to think of this is that we’ll get a ride to the

mall only if our friendly program has a car and has time to give us a ride. If either of these is not true, we’re not get-

ting a ride. By the way, notice the use here of the second form of if: the if-else statement.

The || operator is commonly referred to as the OR operator. The result of an || operation is true if either

the left side or the right side, or both sides, of the || are true. Put another way, the result of an || is false if, and only

if, both the left side and the right side of the || are false. Here’s an example:

boolean nothingElseOn, newEpisode;

nothingElseOn = true;
newEdpisode = true;

If (newEpisode || nothingElseOn)
 System.out.println(“Let’s watch Start Trek!”);
else
 System.out.println(“Somehing else is on or I’ve seen this
one.”);

This example uses two variables to decide whether we should watch “Star Trek” (your choice: Classic Trek,

TNG, DS9, or Captain Kate). One variable indicates whether anything else is on right now, and the other tells you

whether this episode is a rerun. If this is brand new episode or if nothing else is on, we’ll watch “Star Trek.”

Barry Boone and Dave Mark Learn Java on the Macintosh 167

Here’s a slight twist on the previous example:

boolean nothingElseOn, itsARerun;

nothingElseOn = true;
itsARerun = false;

if ((!itsARerun) || nothingElseOn)
 System.out.println(“Let’s watch Start Trek!”);
else
 System.out.println(“Somehing else is on or I’ve seen this
one.”);

This time, we’ve replaced the variable newEpisode with its exact opposite, itsARerun. Look at the

logic that drives the if statement (you don’t need to be Spock or Tuvok to figure it out!). We’re combining itsARe-

run with the ! operator. Before, we cared whether the episode was a new episode. This time, we are concenred that

the episode is not a rerun. See the difference?

Both the && and the || operators are summarized in Table 8.3. If you look in the folder Learn Java Projects,

you’ll find a subfolder named 10.01 - truth tester. The file truthTester.java contains the three

examples we just went through. Take some time to play with the code. Take turns changing the variables from true

to false and back again. Use this code to get a good feel for the !, &&, and || operators.

TABLE 8.3 Truth table for the && and || operators.

expression A expression B

expression A &&

expression B

expression A ||

expression B

true true true true

true false false true

false true false true

false false false false

Barry Boone and Dave Mark Learn Java on the Macintosh 168

Compound Expressions

All of the examples presented so far have consisted of relatively simple expressions. Here’s an example that combines

several operators:

int myInt;

myInt = 7;

if ((myInt >= 1) && (myInt <= 10))
 System.out.println(“myInt is between 1 and 10”);
else
 System.out.println(“myInt is not between 1 and 10”);

This example tests whether a variable is in the range between 1 and 10. The key here is the expression:

(myInt >= 1) && (myInt <= 10)

This expression lies between the if statement’s parentheses and uses the && operator to combine two

smaller expressions. Notice that the two smaller expressions are each surrounded by parentheses to avoid any ambi-

guity. If we left out the parentheses, the expression might not be interpreted as we intended:

myInt >= 1 && myInt <= 10

Barry Boone and Dave Mark Learn Java on the Macintosh 169

Once again, use parentheses for safe computing.

Statements

At the beginning of the chapter, we defined the if statement as:

if (expression)
 statement

We’ve covered expressions pretty thoroughly. Now, we’ll turn our attention to the statement.

At this point in the book, you probably have a pretty good intuitive model of the statement. You’d probably

agree that this is a statement:

myInt = 7;

But is this one statement or two?

if (isCold)
 System.out.println(“Put on your sweater!”);

Barry Boone and Dave Mark Learn Java on the Macintosh 170

The previous code fragment is a statement within another statement. The System.out.println()

resides within a larger statement, the if statement.

The ability to break your code out into individual statements is not a critical skill. Getting your code to com-

pile, however, is critical. As we introduce new types of statements, pay attention to the statement syntax. And pay spe-

cial attention to the examples. Where do the semicolons go? What distinguishes this type of statement from all other

types?

As you build up your repertoire of statement types, you’ll find yourself using one type of statement within

another. That’s perfectly acceptable in Java. In fact, every time you create an if statement, you’ll use at least two

statements, one within the other. Take a look at this example:

if (myVar >= 1)
 if (myVar <= 10)
 System.out.println(“myVar is between 1 and 10”);

This example uses an if statement as the statement for another if statement. This example invokes Sys-

tem.out.println() if both if expressions are true—that is, if myVar is greater than or equal to 1 and less than

or equal to 10. You could have accomplished the same result with this piece of code:

if ((myVar >=1) && (myVar <=10))
 System.out.println(“myVar is between 1 and 10”);

The second piece of code is a little easier to read. There are times, however, when the approach demon-

strated in the first piece of code is preferred. Take a look at this example:

Barry Boone and Dave Mark Learn Java on the Macintosh 171

if (myVar != 0)
 if ((1/myVar) < 1)
 System.out.println(“myVar is in range”);

One thing you don’t want to do in Java is divide an int value by 0. Any int divided by 0 will cause Java to

halt your program. In the example above, the first expression in this example tests to make sure that myVar is not

equal to 0. If myVar is equal to 0, the second expression won’t even be evaluated! The sole purpose of the first if is

to make sure that the second if never tries to divide by 0. Make sure that you understand this point.

Java is pretty smart about what to evaluate. Imagine what would happen if we wrote the code this way:

if ((myVar != 0) && (1 / myVar) < 1))
 System.out.println(“myVar is in range”);

As it turns out, the left half of the && operator evaluates to false, the right half of the expression will never be

evaluated, and the entire expression will evaluate to false. Why? Because if the left operand is false, it doesn’t matter

what the right operand is; true or false, the expression will evaluate to false. Be aware of this as you construct your

expressions.

Detail

While int values will cause Java to stop your program if you divide them by 0, this is not true with floating-point

values! In Java, floating-point values understand the concept of infinity, and it is perfectly legal to divide Java’s float-

ing-point values by 0. You’ll learn more about floating-point values soon.

Barry Boone and Dave Mark Learn Java on the Macintosh 172

Curly Braces Revisited

Earlier, you learned about the curly braces ({ }) that delimit the beginning and ending of classes and methods. These

braces also play an important role in statement construction. Just as parentheses can be used to group terms of an

expression together, curly braces can be used to group multiple statements together. Here’s an example:

boolean onYourBack;
onYourBack = true;

if (onYourBack) {
 System.out.println(“flip over”);
 onYourBack = false;
}

In the example, if onYourBack is true, both of the statements in curly braces will be executed. A pair of

curly braces can be used to combine any number of statements into a single superstatement, also known as a block.

You can use this technique anywhere a statement is called for.

Curly braces can be used to organize your code, much as you’d use parentheses to ensure that an expression

is evaluated properly. This concept is especially appropriate when dealing with nested statements. Consider this code,

for example:

if (myInt >= 0)
 if (myInt <= 10)
 System.out.println(“myInt is between 0 and 10.”);
else
 System.out.println(“myInt is negative”);

Barry Boone and Dave Mark Learn Java on the Macintosh 173

Do you see the problem with this code? It’s tricky, but think about this: Which if does the else belong to?

As written (and as formatted, which makes it tricky), the else looks as though it belongs to the first if. That is, if

myInt is greater than or equal to 0, the second if is executed; otherwise, the second System.out.println()

is invoked. Is this right?

Nope. As it turns out, an else belongs to the if closest to it (the second if, in this case). Here’s a slight

rewrite:

if (myInt >= 0)
 if (myInt <= 10)
 System.out.println(“myInt is between 0 and 10”);
 else
 System.out.println(“myInt is not between 0 and 10”);

One thing here is that formatting is nice, but it won’t fool the compiler. More importantly, this example

shows how easy it is to make a mistake. Check out this version of the code:

if (myInt >= 0) {
 if (myInt <= 10)
 System.out.println(“myInt is between 0 and 10”);
} else
 System.out.println(“myInt is negative”);

Do you see how the curly braces help? In a sense, they act to hide the second if inside the first if state-

ment. There is no chance for the else to connect to the hidden if.

Barry Boone and Dave Mark Learn Java on the Macintosh 174

Curly braces (as well as parentheses) are great for clarifying your code, and you should feel free to use them

wherever it helps make your code more readable. No one we know ever got fired for using too many parentheses or

too many curly braces.

Where to Place the Semicolon

So far, the statements we’ve seen fall into two categories. The first category is simple statements, and the second is

compound statements.

Simple Statements

Method invocations, such as

addTheseNumbers(10, 20);

and assignment statements, such as:

myBoolean = true;

are examples of simple statements. Always place a semicolon at the end of a simple statement, even if it is

broken over several lines, like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 175

System.out.println(“Connect the dots using only four lines:

* * *
* * *
* * *”);

Compound Statements

Statements made up of several parts—including, possibly, other statements—are called compound statements.

Compound statements obey some pretty strict rules of syntax. The if statement, for example, always looks like this:

if (expression)
 statement

Notice there are no semicolons in this definition. The statement part of the if can be a simple statement or a

compound statement. If the statement is simple, follow the semicolon rules for simple statements by placing a semi-

colon at the end of the statement.

if (x == 3)
 y = 4;

If the statement is compound, follow the semicolon rules for that particular type of statement.

if (x == 3)
 if (y == 2)
 z = 1;

Barry Boone and Dave Mark Learn Java on the Macintosh 176

The Loneliest Statement

A single semicolon qualifies as a statement, albeit a somewhat lonely one. For example:

if (bored)
 ;

This code fragment is a legitimate (and thoroughly useless) if statement. If bored is true, the semicolon

statement gets executed. The semicolon by itself doesn’t do anything but fill the bill where a statement was needed.

There are times where the semicolon by itself is exactly what you need.

The while Statement

The if statement uses the value of an expression to decide whether to execute or to skip over a statement. If the state-

ment is executed, it is executed just once. Another type of statement, the while statement, repeatedly executes a

statement as long as a specified expression is true. The while statement follows this pattern:

while (expression)
 statement

The while statement is also known as the while loop, because after the statement is executed, the while

loops back to reevaluate the expression.

Barry Boone and Dave Mark Learn Java on the Macintosh 177

FIGURE 8. 1 A diagram of the while loop. The while statement evaluates an expression. If the result of the

expression is true, the statement is executed, and then the expression is evaluated again. If the expression is false,

the statement is skipped and the program continues on.

Here’s an example of the while loop in action:

int i;

i=0;

while (++i < 3)
 System.out.println(“Looping: ” + i);

System.out.println(“We are past the while loop”);

This example starts by declaring a variable, i, to be of type int; i is then initialized to 0. Next comes the

while loop. The first thing the while loop does is evaluate its expression. The while loop’s expression is:

++i < 3

while (expression)

statementcontinue on...

truefalse loop back

Barry Boone and Dave Mark Learn Java on the Macintosh 178

Before this expression is evaluated, i has a value of 0. The prefix notation used in the expression (++i)

increments the value of i to 1 before the remainder of the expression is evaluated. The evaluation of the expression

results in true, since 1 is less than 3. Since the expression is true, the while loop’s statement, a single Sys-

tem.out.println() statement, is executed. Here’s the output after the first pass through the loop:

Looping: 1

Next, the while loops back and reevaluates its expression. Once again, the prefix notation increments i,

this time to a value of 2. Since 2 is less than 3, the expression evaluates to true, and the System.out.println()

is executed again. Here’s the output after the second pass through the loop:

Looping: 1
Looping: 2

Once the second System.out.println() completes, it’s back to the top of the loop to reevaluate the

expression. Will this never end? Once again, i is incremented, this time to a value of 3. Aha! This time, the expres-

sion evaluates to false, since 3 is not less than 3. Once the expression evaluates to false, the while loop ends. Control

passes to the next statement, the second System.out.println() in our example:

System.out.println(“We are past the for loop”);

Barry Boone and Dave Mark Learn Java on the Macintosh 179

The while loop was driven by three factors: Initialization, modification, and termination. Initialization is

any code that affects the loop but occurs before the loop is entered. In our example, the critical initialization occurred

when the variable i was set to 0.

By the Way

In a loop, you’ll frequently use a variable that changes value each time through the loop. In our example, the variable

i was incremented by 1 each time through the loop. The first time through the loop, i had a value of 1. The second

time, i had a value of 2. Variables that maintain a value based on the number of times through a loop are known as

counters.

Traditionally, programmers have given counter variables simple names, such as i, j, and k (as mentioned

earlier, this is an old FORTRAN convention). In the interest of clarity, some programmers use such names as

counter or loopCounter. The nice thing about names like i, j, and k is that they don’t get in the way; they

don’t take up a lot of space on the line. On the other hand, your goal should be to make your code as readable as pos-

sible, so it would seem that a name like counter would be better than the uninformative i, j, or k.

Once again, pick a style you are comfortable with and stick with it!

Within the loop, modification is any code that changes the value of the loop’s expression. In our example, the

modification occurred within the expression itself when the counter, i, was incremented.

Termination is any condition that causes the loop to end. In our example, termination occurs when the

expression has a value of false. This occurs when the counter, i, has a value that is not less than 3. Take a look at this

example:

int i;

i = 1;

Barry Boone and Dave Mark Learn Java on the Macintosh 180

while (i < 3) {
 System.out.println(“Looping: ” + i);
 i++;
}

System.out.println(“We are past the while loop”);

This example produces the same results as the previous example. This time, however, the initialization and

modification conditions have changed slightly. In this example, i starts with a value of 1 instead of 0. In the previous

example, the ++ operator was used to increment i at the very top of the loop. This example modifies i at the bottom

of the loop.

Both of these examples show different ways to accomplish the same end. The phrase “There’s more than one

way to eat an Oreo” sums up the situation perfectly. There will always be more than one solution to any programming

problem. Don’t be afraid to do things your own way. Just make sure that your code works properly and is easy to read.

The for Statement

Another way to control loops in your program is by using the for statement. The for statement is similar to the

while statement, following the basic model of initialization, modification, and termination. Here’s the pattern for

the for statement:

for (expression1; expression2; expression 3)
 statement

Barry Boone and Dave Mark Learn Java on the Macintosh 181

The first expression represents the for statement’s initialization. Typically, this expression consists of an

assignment statement, setting the initial value of a counter variable. This first expression is evaluated once, at the

beginning of the loop.

The second expression is identical in function to the expression in a while statement, providing the termi-

nation condition for the loop. This expression is evaluated each time through the loop, before the statement is exe-

cuted.

Finally, the third expression provides the modification portion of the for statement. This expression is eval-

uated at the bottom of the loop, immediately following execution of the statement.

Detail

All three of these expressions are optional and may be left out entirely. For example, here’s a for loop that leaves out

all three expression:

for (; ;)
 doSomethingForever();

Since this loop has no terminating expression, it is known as an infinite loop. Infinite loops are generally

considered bad form and should be avoided like the plague!

The for loop can also be described in terms of a while loop:

expression1;
while (expression2) {
 statement
 expression3;

}

Barry Boone and Dave Mark Learn Java on the Macintosh 182

By the Way

Since you can always rewrite a for loop as a while loop, why introduce the for loop at all? Sometimes, a pro-

gramming idea fits more naturally into the pattern of a for statement. If the for loop makes the code more readable,

why not use it? As you write more and more code, you’ll develop a sense for when to use the while and when to use

the for.

Here’s an example of a for loop:

int i;

for (i = 1; i < 3; i++)
 System.out.println(“Looping: ” + i);

System.out.println(“We are past the for loop.”);

This example is identical in functionality to the while loops presented earlier. Note the three expressions

on the first line of the for loop. Before the loop is entered, the first expression is evaluated (remember, assignment

statements make great expressions):

i = 1

Once the expression is evaluated, i has a value of 1. We are now ready to enter the loop. At the top of each

pass through the loop, the second expression is evaluated:

Barry Boone and Dave Mark Learn Java on the Macintosh 183

i < 3

If the expression evaluates to true, the loop continues. Since i is less than 3, we can proceed. Next, the state-

ment is executed.

System.out.println(“Looping: ” + i);

Here’s the first line of output:

Looping: 1

Having reached the bottom of the loop, the for evaluates its third expression:

i++

This changes the value of i to 2. Back to the top of the loop we go. Evaluate the termination expression:

i < 3

Barry Boone and Dave Mark Learn Java on the Macintosh 184

Since i is still less than 3, the loop continues. Once again, the System.out.println() does its thing.

The Java Output window looks like this:

Looping: 1
Looping: 2

Next, the for evaluates expression3:

i++

The value of i is incremented to 3. Back to the top of the loop again. Evaluate the termination expression:

i < 3

Lo and behold! Since i is no longer less than 3, the loop ends, and the second System.out.println()

in our example is executed.

System.out.println(“We are past the for loop.”);

As was the case with while, for can take full advantage of a pair of curly braces:

Barry Boone and Dave Mark Learn Java on the Macintosh 185

for (i = 0; i < 10; i++) {
 doThis();
 doThat();
 danceALittleJig();
}

In addition, both while and for can take advantage of the loneliest statement, the lone semicolon:

for (i = 0; i < 1000; i+++)
 ;

This example does nothing 1000 times. But the example does take some time to execute. The initialization

expression is evaluated once, and the modification and termination expressions are each evaluated 1000 times. Here’s

a while version of the loneliest loop:

i = 0;

while (i++ < 1000)
 ;

LoopTester.µ

Interestingly, there is an important difference between the for and while loops you just saw. Take a minute to look

back and try to predict the value of i the first time through each loop and after each loop terminates. Were the results

the same for the while and for loops? Hmmm.... You might want to take another look. Here’s a sample program

that should clarify the difference between these two loops. Look in the folder 07.02 - loop tester in the

Barry Boone and Dave Mark Learn Java on the Macintosh 186

Learn Java Projects folder. Compile the project by using the Make command, then run the applet by dropping the

file LoopTester.html onto the Metrowerks Java icon. The Java Output window will display output from a vari-

ety of loops, as shown in Figure 8.2.

FIGURE 8. 2 The output from LoopTester.µ, showing the output from three different loops.

Open the file LoopTester.java to view the source for this applet

The loopTester applet starts off in init() by defining a counter variable, i. It then sets i to 0 and enters a

while loop:

while (i++ < 4)
 System.out.println(“while: i=” + i);

The loop executes four times, resulting in this output:

Barry Boone and Dave Mark Learn Java on the Macintosh 187

while: i=1
while: i=2
while: i=3
while: i=4

Do you see why? If not, go through the loop yourself, calculating the value for i each time through the loop.

Remember, since we are using postfix notation (i++), i gets incremented after the test is made to see whether it is

less than 4. The test and the increment happen at the top of the loop, before the loop is entered.

Once the loop completes, we print the value if i again:

System.out.println(“After while loop, i=” + i);

Here’s the result:

After while loop, i=5

Here’s how we got that value. The last time through the loop (with i equal to 4), we go back to the top of the

while loop, test to see whether i is less than 4 (it no longer is), and then do the increment of i, bumping it from 4 to

5.

Okay, one loop down, two to go. This next loop looks as if it should accomplish the same thing. The differ-

ence is, we don’t do the increment of i until the bottom of the loop, until we’ve been through the loop once already.

Barry Boone and Dave Mark Learn Java on the Macintosh 188

for (i = 0; i < 4; i++)
 System.out.println(“first for: i=” + i);

As you can see by the output, i ranges from 0 to 3 instead of from 1 to 4:

first for: i=0
first for: i=1
first for: i=2
first for: i=3

After we drop out of the for loop, we once again print the value of i:

System.out.println(“After first for loop, i=” + i);

Here’s the result:

After first for loop, i=4.

As you can see, the while loop ranged i from 1 to 4, leaving i with a value of 5 at the end of the loop. The

for loop ranged i from 0 to 3, leaving i with a value of 4 at the end of the loop. So how do we fix the for loop so

that it works the same way as the while loop? Take a look at our third loop example:

Barry Boone and Dave Mark Learn Java on the Macintosh 189

for (i = 1; i <= 4; i++)
 System.out.println(“second for: i=” + i);

This for loop started i at 1 instead of 0 and it tests to wee whether i is less than or equal to 4 instead of

just less than 4. We could also have used the terminating expression i < 5 instead. Either one will work. As proof,

here’s the output from this loop:

second for: i=1
second for: i=2
second for: i=3
second for: i=4

Once again, we print the value of i at the end of the loop:

 System.out.println(“After second for loop, i=” + i);

Here’s the last piece of output:

After second for loop, i = 5

This second for loop is the functional equivalent of the while loop. Take some time to play with this code.

You might try to modify the while loop to match the first for loop.

Barry Boone and Dave Mark Learn Java on the Macintosh 190

The while and for statements are by far the most common types of Java loops. For completeness, how-

ever, we’ll cover the remaining loop, a little used gem called the do statement.

The do Statement

The do statement is a while statement that evaluates its expression at the bottom of its loop instead of at the top.

Here’s the pattern a do statement must match:

do
 statement
while (expression);

Here’s a sample:

i=1;

do {
 System.out.println(i);
 i++;
} while (i < 3);

System.out.println(“We are past the do loop.”);

The first time through the loop, i has a value of 1. System.out.println() prints a 1 in the Java Out-

put window, then the value of i is bumped to 2. It’s not until this point that the expression (i < 3) is evaluated.

Since 2 is less than 3, a second pass through the loop occurs.

Barry Boone and Dave Mark Learn Java on the Macintosh 191

During this second pass, System.out.println() prints 2 in the Java Output window; then the value of

i is bumped to 3. Once again, the expression (i < 3) is evaluated. Since 3 is not less than 3, we drop out of the loop

to the second System.out.println().

The important thing to remember about do loops is this: Since the expression is not evaluated until the bot-

tom of the loop, the body of the loop (the statement) is always executed at least once. Since for and while loops

both check their expressions at the top of the loop, it’s possible for either to drop out of the loop before the body of the

loop is executed.

Let’s move on to a completely different type of statement, known as the switch.

The switch Statement

The switch statement uses the value of an expression to determine which of a series of statements to execute.

Here’s an example that should make this concept a little clearer:

switch (theYear) {
 case 1066:
 System.out.println(“Battle of Hastings”);
 break;
 case 1492:
 System.out.println(“Columbus sailed the ocean blue”);
 break;
 case 1776:
 System.out.println(“Declaration of Independence”);
 System.out.println(“A very important document!”);
 break;
 default:
 System.out.println(“Don’t know what happened this year”);
}

Barry Boone and Dave Mark Learn Java on the Macintosh 192

The switch is constructed of a series of case statements, each based on a specific value of theYear. If

theYear has a value of 1066, execution continues with the statement following that case’s colon, in this example,

the line:

 System.out.println(“Battle of Hastings”);

Execution continues, line after line, until either the bottom of the switch (the right curly brace) or a

break statement is reached. In this sample code, the next line is a break statement.

The break statement comes in handy when you are working with switch statements and loops. The

break tells the computer to jump immediately to the next statement after the end of the loop or switch.

Continuing with the example, if theYear has a value of 1492, the switch jumps to the lines:

 System.out.println(“Columbus sailed the ocean blue”);
 break;

A value of 1776 jumps to the lines:

 System.out.println(“Declaration of Independence”);
 System.out.println(“A very important document!”);
 break;

Barry Boone and Dave Mark Learn Java on the Macintosh 193

Notice that this case has two statements before the break. There is no limit to the number of statements a

case can have: One is okay; 653 is okay. You can even have a case with no statements at all.

This example also contains a default case. If the switch can’t find a case that matches the value of its

expression, the switch looks for a case labeled default. If the default is present, its statements are executed.

If no default is present, the switch completes without executing any of its statements.

Here’s the pattern for the switch statement:

switch (expression) {
 case constant:
 statements
 case constant:
 statements
 default:
 statements
}

Detail

Why would you want a case with no statements? Here’s an example:

switch (myVar) {
 case 1:
 case 2:
 doSomething();
 break;
 case 3:
 doSomethingElse();
}

Barry Boone and Dave Mark Learn Java on the Macintosh 194

In this example, if myVar has a value of 1 or 2, the method doSomething() is invoked. If myVar has a

value of 3, the method doSomethingElse() is invoked. If myVar has any other value, nothing happens. Use a

case with no statements when you want two different cases to execute the same statements.

Think about what happens with this example:

switch (myVar) {
 case 1:
 doSometimes();
 case 2:
 doFrequently();
 default:
 doAlways();
}

If myVar is 1, all three functions will get called. If myVar is 2, doFrequently() and doAlways()

will get called. If myVar has any other value, doAlways() will get called all by itself. This is a good example of a

switch without breaks.

At the heart of each switch is its expression. Most switches are based on single variables, but, as we

mentioned earlier, assignment statements make perfectly acceptable expressions.

Each case is based on a constant. Numbers (such as 47 or -12,932) are valid constants. Variables, such as

myVar, are not. As you’ll see later, single characters (such as ‘a’ or ‘$’) are also valid constants. However, runs of

characters (such as “Gummy-bear”), called strings, are not.

If your switch uses a default case, make sure that you use it as shown in the pattern described. Don’t

include the word case before the word default.

Barry Boone and Dave Mark Learn Java on the Macintosh 195

break Statements in Other Loops

The break statement has other uses besides the switch statement. Here’s an example of a break used in a while

loop:

i = 1;

while (i <= 9) {

 playAnInning(i);
 if (itIsRaining())
 break;
 i++;
}

This sample tries to play nine innings of baseball. As long as the method itIsRaining() returns with a

value of false, the game continues uninterrupted. If itIsRaining() returns a value of true, the break state-

ment is executed, and the program drops out of the loop, interrupting the game.

The break statement allows you to construct loops that depend on multiple factors. The termination of the

loop depends on the value of the expression found at the top of the loop, as well as on any outside factors that might

trigger an unexpected break.

Detail

By far the most common way to use the break statement is in halting loops, and this is how you’ll use it most often.

You’ve already seen an example like the one below:

int i = 0;

Barry Boone and Dave Mark Learn Java on the Macintosh 196

while (i < 10) {
 if (haltLoop())
 break;
 System.out.println(“i = “ + i);
 i++;
}

System.out.println(“we’re out of the loop”);

If haltLoop() ever returns true, the break statement will execute, and the message “we’re out of the

loop” will be the next message to appear in the Java Output window.

But what happens if you have a nested loop (which is a loop inside of another loop)? What does the break

statement do then? Here’s an example of a nested loop:

int i = 0;
while (i < 10) {

 int j = 0;
 while (j < 10) {
 if (haltLoop())
 break;
 j++;
 }

 i++;
}

At first, i equals 0, and j goes from 0 through 9, falling out of the inner while loop when j reaches 10.

But we’re still inside the while loop controlled by i, so we go back to the top of this while loop. This time, i

equals 1, and we enter the inner loop controlled by j once more. Again, j ranges from 0 to 9, falling out of the loop

Barry Boone and Dave Mark Learn Java on the Macintosh 197

when j equals 10. Since we’re still inside the i loop, we go back to the top of the i loop; now, i equals 2; and so on.

We’ll continue on until i equals 10 and we fall out of the outer while loop controlled by i.

In the example above, if haltLoop() ever returns true, we only break out of the inner loop, controlled

by j. We fall back into the i loop, and continue on with the i loop, incrementing i, and entering the j loop again.

How can we break out of both the j loop and the i loop?

The way this is done is by giving a name, or label, to the statement that defines the i loop. Then, you can use

the break statement to request a break to the loop indicated by that label. Here’s a way to break out of both the

inner loop and the outer loop:

int i = 0;

iLoop: while (i < 10) {

 int j = 0;
 while (j < 10) {
 if (haltLoop())
 break iLoop;
 j++;
 }

 i++;
}

Notice this time we gave the outer loop the label iLoop, and the break statement referenced this name.

While the default behavior for the break statement is to break out of the immediate loop in which it is embedded, in

the example above, the break statement would break out of the loop that was named, which happened to be the

outer loop. If haltLoop() ever returns true in the example above, we would fall out of both the j loop and the i

loop right away and would move on with the rest of the code. For more information and examples, check out Java

Barry Boone and Dave Mark Learn Java on the Macintosh 198

Essentials for C and C++ Programmers, Barry Boone’s book published by Addison-Wesley, which describes a vari-

ety of sample programs that use break statements to control the flow through a program.

Detail

There’s another operator supplied by Java that affects flow control. This operator is not used very often, but you might

see it around. This operator is written as ?: (yes, you’re reading that right: it’s “question mark, colon”), and it allows

your program to do one of two things, depending on a boolean expression. Here’s the format:

boolean expression ? action if true : action if false

This is somewhat the same as:

if (boolean expression)
 action if true
else
 action if false

except that the ?: operator can be a little more compact at times. One thing this operator is particular useful

for is assigning a value to a variable based on a boolean expression. For example, you can assign a string object to a

new string instance, depending on the result of a boolean expression, like this:

int i = 5;
String s = i < 3 ? new String(“i < 3”) : new String(“i >= 3”);

Barry Boone and Dave Mark Learn Java on the Macintosh 199

In this case, the string s would hold the text “i >= 3” at the end of these two statements. Check out examples

on the Web at JavaSoft’s site and, again, turn to the Java Language Specifications for more information. You can also

look in Dave Mark’s Learn C on the Macintosh, published by Addison-Wesley, for some good examples and advice

concerning this operator.

Sample Programs

isOdd.µ

This program combines for and if statements to tell you whether the numbers 1 through 20 are odd or even and

whether they are an even multiple of 3. The program also introduces a brand new operator: the % operator. Go into the

Learn Java Projects folder, then into the 07.03 - is odd subfolder, and open the project IsOdd.µ.

Compile and run IsOdd.µ by selecting Make from the Projects menu and dropping the HTML file

IsOdd.html onto the Metrowerks Java icon. You should see something like the Java Output window shown in Fig-

ure 8.2.

Barry Boone and Dave Mark Learn Java on the Macintosh 200

FIGURE 8. 3 Running IsOdd.µ.

You should see a line for each number from 1 through 20. Each of the numbers will be described as either

odd or even. Each of the multiples of 3 will have additional text describing them as such. Here’s how the program

works.

Stepping through the Source Code

This program starts off with the usual class definition for an applet. This class, IsOdd, defines an init() method to

try out some of the flow control keywords we learned in this chapter. init() begins by declaring a counter variable

named i.

public class IsOdd extends java.applet.Applet {
 public void init() {
 int i;

Barry Boone and Dave Mark Learn Java on the Macintosh 201

Our goal here is to step through each of the numbers from 1 to 20. For each number, we want to check to see

whether the number is odd or even. We also want to check whether the number is evenly divisible by 3. Once we’ve

analyzed a number, we’ll use System.out.println() to display a description of the number in the Java Output

window.

As you might expect, the next step is to set up a for loop, using i as a counter initialized to 1. The loop will

keep running as long as the value of i is less than or equal to 20. This is the same as saying that the loop will exit as

soon as the value of i is found to be greater than 20. Every time the loop reaches the bottom, the third expression,

i++, will be evaluated, incrementing the value of i by 1. This is a classic for loop.

 for (i = 1; i <= 20; i++) {

Now we’re inside the for loop. Our goal is to display a single line for each number—that is, one line each

time through the for loop. If you check back to Figure 8.1, you’ll notice that each line starts with the phrase:

 The number x is

In that phrase, x is the number being described. That’s the purpose of using System.out.print()

rather than System.out.println(). With the System.out.print() version, rather than Sys-

tem.out.println(), the output does not skip to the next line after its displayed in the Java Output window. This

means we can keep on displaying text to the Java Output window, and it will be placed on the same line as before.

Barry Boone and Dave Mark Learn Java on the Macintosh 202

 System.out.print(“The number “ + i + “ is “);

Notice that this System.out.print() statement was not part of an if statement. We want this Sys-

tem.out.print() to display its message every time through the loop. The next sequence of Sys-

tem.out.print() statements are a different story altogether.

The next chunk of code determines whether i is even or odd, then uses System.out.print() to dis-

play the appropriate word in the Java Output window. Because the last message was written using Sys-

tem.out.print() rather than System.out.println(), the word “even” or “odd” will appear in the console

window on the same line as, and immediately following:

 The number x is

The next chunk of code introduces a brand new operator—%—a binary operator that returns the remainder

when the left operand is divided by the right operand. For example, i % 2 divides 2 into i and returns the remainder.

If i is even, this remainder will be 0. If i is odd, this remainder will be 1.

 if ((i % 2) == 0)
 System.out.print(“even”);
 else
 System.out.print(“odd”);

In the expression i % 3, the remainder will be 0 if i is evenly divisible by 3; otherwise, i will either be 1

or 2.

Barry Boone and Dave Mark Learn Java on the Macintosh 203

 if ((i % 3) == 0)
 System.out.print(“ and is a multiple of 3”);

If i is evenly divisible by 3, we’ll add the following phrase to the end of the current line:

 “ and is a multiple of 3”

Finally, we display a blank go to prepare for the next number in the loop by making the display start at to the

next line:

 System.out.println("");
 }
 }
}

The loop ends with a right curly brace.

NextPrime.µ

Our next program focuses on the mathematical concept of prime numbers. A prime number is any number whose

only factors are 1 and itself. For example, 6 is not a prime number, because its factors are 1, 2, 3, and 6. The number

5 is prime because its factors are limited to 1 and 5. The number 12 isn’t prime, because its factors are 1, 2, 3, 4, 6,

and 12.

Barry Boone and Dave Mark Learn Java on the Macintosh 204

Our next program will find the next prime number greater than a specified number. For example, if we set

our starting point to 14, the program would find the next prime, 17. We have the program set up to check for the next

prime after 19. Know what that is?

Go into the Learn Java Projects, into the subfolder 07.04 - next prime, and open the project Nex-

tPrime.µ. Compile NextPrime.java by selecting Make from the Project menu, then run the applet by dropping

NextPrime.html onto the Metrowerks Java icon. You should see something like the Java Output window shown in

Figure 8.4.

FIGURE 8. 4 Running NextPrime.µ. Buried at the end of the verbose messages in the Java Output window is

the line “The next prime after 19 is 23.”

As you can see, the next prime number after 19 is (drum roll, please...) 23. Here’s how the program works.

Stepping through the Source Code

As with the other recent applets, this applet defines an init() method to perform our test of the language.

public class NextPrime extends java.applet.Applet {

Barry Boone and Dave Mark Learn Java on the Macintosh 205

 public void init() {

We’re going to need a boatload of variables. They first four are defined as int. The fifth, isPrime, is a

boolean to keep track of whether we’ve found a prime or not.

 int startingPoint, candidate, last, i;
 boolean isPrime;

We’ll start at 19. You can set startPoint to whatever you’d like to and recompile and rerun this program

to find other primes. The variable candidate will hold the current candidate we are considering. Is candidate

the lowest prime number greater than startingPoint? By the time we are done, it will be!

 startingPoint = 19;

Since 2 is the lowest prime number, if startingPoint is less than 2, we know that the next prime is 2.

By setting candidate to 2, our work is done.

 if (startingPoint < 2) {
 candidate = 2;
 }

If startingPoint is 2, the next prime is 3, and we’ll set candidate accordingly.

Barry Boone and Dave Mark Learn Java on the Macintosh 206

 else if (startingPoint == 2) {
 candidate = 3;
 }

If we got this far, we know that startingPoint is greater than 2. Since 2 is the only even prime number

and since we’ve already checked for startingPoint being equal to 2, we can now limit our search to odd num-

bers only. We’ll start candidate at startingPoint, then make sure that candidate is odd. If it isn’t, we’ll

decrement candidate. Why decrement instead of increment? If you peek ahead a few lines, you’ll see that we’re

about to enter a do loop and that we bump candidate to the next odd number at the top of the loop. By decrement-

ing candidate now, we’re preparing for the bump at the top of the loop, which will take candidate to the next

odd number greater than startingPoint.

 else {

 candidate = startingPoint;
 if (candidate % 2 == 0) /* Test only odd numbers */
 candidate--;

This loop will continue stepping through consecutive odd numbers until we find a prime number. We’ll start

isPrime off as true, then check the current candidate to see whether we can find a factor. If we do find a fac-

tor, we’ll set isPrime to false, forcing us to repeat the loop.

 do {

 isPrime = true; // Assume glorious success
 candidate += 2; // Bump to the next number to test

Barry Boone and Dave Mark Learn Java on the Macintosh 207

Now we’ll check to see whether candidate is prime. This means verifying that candidate has no fac-

tors other than 1 and candidate. To do this, we’ll check the numbers from 3 to the square root of candidate to

see whether any of them divides evenly into candidate. If not, we know we’ve got ourselves a prime!

The way we find the square root of a number in Java is to use a class method defined by the Math class (the

Math class is supplied by Java, which you’ll learn more about in Chapter 10). This method actually returns a floating

point number (naturally enough, since the square root of any given number may not be an integer). However, we only

want an integer, since we are finding the last number to check for a factor. What we want is to truncate the floating

point number, dropping any fractional portion, and simply use the integer portion.

The way we achieve this in Java is by casting. We want to cast the floating point value to an integer. We can

do this by writing (int) in front of the expression for the floating point number. You’ll learn much more about float-

ing point numbers and casting in Chapter 12.

 last = (int)Math.sqrt(candidate);

By the Way

So why don’t we check from 2 up to candidate - 1? Why start with 3? Since candidate will never be even,

we know that 2 will never be a factor. For the same reason, we know that no even number will ever be a factor.

Why stop at the square root of candidate? Good question! To help understand this approach, consider the

factors of 12, other than 1 and 12. They are 2, 3, 4 and 6. The square root of 12 is approximately 3.46. Notice how this

fits nicely in the middle of the list of factors. Each of the factors less than the square root will have a matching factor

greater than the square root. In this case, 2 matches with 6 (2 * 6 = 12) and 3 matches with 4 (3 * 4 = 12). This will

Barry Boone and Dave Mark Learn Java on the Macintosh 208

always be true. If we don’t find a factor by the time we hit the square root, there won’t be a factor, and the candidate

is prime.

Take a look at the top of the for loop. We start i at 3. Each time we hit the top of the loop (including the

first time through the loop), we’ll check to make sure that we haven’t passed the square root of candidate and that

isPrime is still true. If isPrime is false, we can stop searching for a factor, since we’ve just found one!

Finally, each time we complete the loop, we bump i to the next odd number.

 /* Loop through odd numbers only */
 for (i = 3; (i <= last) && isPrime; i += 2) {

Each time through the loop, we’ll check to see whether i divides evenly into candidate. If so, we know

that it is a factor, and we can set isPrime to false.

 if ((candidate % i) == 0)
 isPrime = false;
 }
 } while (! isPrime);
 }

Once we drop out of the do loop, we use a System.out.println() statement to display both the start-

ing point and the first prime number greater than the starting point.

 System.out.println("The next prime after " + startingPoint
+ “ is " + candidate);

 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 209

If you are interested in prime numbers, play around with this program. See if you can modify the code to dis-

play all the prime numbers from 1 to 100. How about the first 100 prime numbers?

Review

This chapter covered many of the details of implementing your methods. You learned how to branch based on certain

conditions, how to execute one set of statements instead of others, and how to loop through your code. Mastering the

information in this chapter involves learning many new Java keywords and new ways of thinking about problems.

The comparative operators covered here that you’ll use most often include <, >, ==, and !=. (As you

learned, these are the less than, greater than, equal to, and not equal to operators, respectively.) You now know you

can use these operators in conjunction with keywords to control the flow through your program. The keywords you

learned in this chapter include if, else, for, while, do, switch, case, and break. Take the time to make sure

you understand how each of these works. If you would like some more examples, check out the appendices for more

references and example code.

What's Next?

You’ve covered many of the important aspects of creating a method (storing data in variables, branching, looping, and

working with operators). In Chapter 9, we’ll take all this to the next level by creating objects from our classes. You’ll

see all your effort to learn about variables and methods pay off with objects. You’ll create objects to implement the

different parts of your application. You’ll define variables for your objects and give your objects specific values that

make each object unique, and you’ll give your objects behavior using methods.

Barry Boone and Dave Mark Learn Java on the Macintosh 210

Barry Boone and Dave Mark Learn Java on the Macintosh 211

CHAPTER 9 Objects

So far, the applets in this book did not need to create their own objects. We’re about to change all that. Starting with

this chapter, we’ll create objects based on our classes and use these objects in our applets.

Even though you haven’t created any objects yourself, you have been working with objects all along. In par-

ticular, as you have learned, the browser makes an instance of your applet class when it runs your applet. We’ll also

explore methods and variables in much more depth here by learning how to make methods and variables part of your

objects.

The Purpose of Objects

Let’s review what the purpose of an object is before diving into the details of an object. Objects define the different

parts of your application. You create new objects based on classes. By defining classes and creating objects, you can

write programs that reflect the “real world” and model the problem at hand.

For example, remember our payroll program discussion from Chapter 4? One of the elements of this applet

is likely to be an employee. You might create objects to represent the employees in your program. Each employee

object might keep track of three pieces of information: An employee number, the employee’s hourly wage, and the

number of hours the employee has worked so far this month. You would create an Employee class that defined what

each employee object looked like. This is depicted in Figure 9.1.

Barry Boone and Dave Mark Learn Java on the Macintosh 212

FIGURE 9. 1 A schematic of a class called Employee

In your program, you could create a specific instance, or object, based on this Employee class to hold the

particular values for a given employee. For example, if your company had two employees, employee number 1 might

have an hourly wage of $20 and might have worked 40 hours so far this month. Employee number 2 might have an

hourly wage of $18 and perhaps worked 100 hours so far this month. This is depicted in Figure 9.2.

FIGURE 9. 2 Objects created from the Employee class store the specific information for a particular employee.

This makes each employee unique.

Figure 9.2 shows that the Employee class specifies the data that each employee object will have, but it does

not provide any values. Instead, the individual employee objects maintain the values that makes each employee

unique. As your company grows, you can create new employee objects from the Employee class, using the Employee

Employee class

employee number
hourly wage
hours worked

Employee class

employee number
hourly wage
hours worked

employee object

employee number = 2
hourly wage = $18
hours worked = 100

employee object

employee number = 1
hourly wage = $20
hours worked = 40

create objects
to maintain
the data for
individual
employees

Barry Boone and Dave Mark Learn Java on the Macintosh 213

class like a template or a cookie cutter, as we covered in Chapter 4. Once you create a new employee object, you can

fill in the values that make that employee unique. For example, a new employee just joining the company would need

an object dedicated to the new employee. This would be the third object we created so far. This new object would

maintain its own unique values, such as: employee number 3, an hourly wage of $10, and 0 hours worked so far this

month.

One of the great things about classes is that, in addition to specifying the data that objects will hold, they

also specify the behavior that objects will have. Often, an object’s behavior involves manipulating an object’s data in

some way, perhaps by performing a calculation. For example, we could create a method that allowed employee

objects to calculate the employee’s income for the month. In the Java program, this new method would be defined in

the class definition. Remember from Chapter 4, objects look to their classes to see what behavior they are capable of.

Our new method might be called earnedIncome(). This method might multiply the number of hours worked by

the employee’s hourly wage to arrive at the earned income for a given employee for that month.

Now, if we invoked employee number 1’s earnedIncome() method, earnedIncome() would access

the data for employee number 1. It would find that its hourly wage was equal to 20 and that its hours worked so far

this month was equal to 40. earnedIncome(), then, would perform the multiplication and return a value of 800. If

we invoked employee number 2’s earnedIncome() method, earnedIncome() would access the instance vari-

ables for employee number 2. It would find that its hourly wage was equal to 18 and that its hours worked so far this

month was equal to 100. earnedIncome(), then, would perform the multiplication using its own, unique data and

return a value of 1800. This is depicted in Figure 9.3.

Barry Boone and Dave Mark Learn Java on the Macintosh 214

FIGURE 9. 3 Each employee object responds to a method invocation according to itw own unique data.

The purpose of objects, then, is to allow you to design and implement your programs in a way that models

the “real world” as much as possible. Here, for example, employees maintain their own data and can determine how

much they should be paid each month. Your applets will become a collection of objects that store data and know how

to behave. What’s more, your objects will sometimes create other objects and interact with them to get the job done.

For example, an applet that acted as a payroll program would create employee objects and interact with them to keep

track of the employees in the company. As another example, the SimpleDraw program you saw earlier is an applet

that creates circle and square objects.

Since you’ll often need to create new objects when writing your own applets, it’s high time you learned how

to create new objects based on your classes. Let’s turn to this topic next.

How to Create Objects

To create a new object from a class, you use a command called new. Here’s an example. Let’s say you have an empty

class, called Circle, defined like this:

employee object

employee number = 2
hourly wage = $18
hours worked = 100

employee object

employee number = 1
hourly wage = $20
hours worked = 40

$800

$1800

earnedIncome()

earnedIncome()

Barry Boone and Dave Mark Learn Java on the Macintosh 215

class Circle {
}

To create an instance of this class, you could write a line of code like this:

new Circle();

This statement returns a new object. This might remind you a little bit of a method invocation, except for the

keyword new preceding Circle(). Typically, you would assign this new object to a variable. To declare a variable

that can hold an object of a particular type, you use the class name as the data type of the variable. For example, to

declare a variable called myCircle that will hold an object that’s an instance of class Circle, you would write:

Circle myCircle;

Then, when you create the new object, you would assign it to the variable myCircle, like this:

myCircle = new Circle();

You could also declare the variable, create the object, and assign the new object to the new variable all in one

line, like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 216

Circle myCircle = new Circle();

Definition

What you are doing with the code new Circle() is invoking a class’s constructor. A constructor is a special

method that initializes an object. Java provides a default constructor for your classes, so you don’t have to define one

yourself to create objects based on your classes. However, you can if you want to, and Chapter 13 explains how you

would go about doing this. Creating your own constructor allows you to initialize an object when it is first created.

Just as some methods take parameters, some constructors take parameters, too. Sometimes, you’ll pass

parameters to a constructor to initialize the object when you create it. For example, Java supplies a type of class called

a String. A string object maintains some text, such as “Goodbye Yellow Brick Road” or “Red 5, do you read? This is

Green leader, over.” . You can create a new string instance like this:

String s = new String();

This statement declares a variable named s that will hold a string object. It then creates a new string object

using the new command and invokes the String class’s default constructor. The resulting object is assigned to s.

This creates a perfectly good string, except for one thing: This string wouldn’t contain any text. Yet, that’s

the whole point of strings! Instead of creating a string without any text, you almost always will want to supply this

text to the string’s constructor. You supply this data as a parameter to the constructor, just as you supply parameters to

methods. You would supply the text for the string when you create the string like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 217

String s = new String(“What I Did on my Summer Vacation”);

As you can see, just place the constructor’s parameter between the parentheses following the constructor

invocation. As with method, if there’s more than one parameter, separate the parameters using commas.

Instance Variables

As you learned in the previous two chapters, variables allow you to keep track of the data used in your methods. For

example, to define a method that finds the perimeter of a triangle, you could write:

int findPerimeter() {
 int side1 = 5;
 int side2 = 12;
 int side3 = 13;

 return (side1 + side2 + side3);
}

This method defines three variables. The variables side1, side2, and side3 hold the length of each side

of a specific triangle. This method returns the length of the triangle’s perimeter. This example shows how variables

can be used inside of a method to store data, as you’ve seen already.

To store data inside of an object, you can do the same kind of thing—that is, like methods, objects can define

variables to keep track of their own data.

Barry Boone and Dave Mark Learn Java on the Macintosh 218

Defining Instance Variables

Here’s an example of a triangle class that defines three variables for its instances.

class Triangle {
 int side1;
 int side2;
 int side3;
}

When you create an instance of this class, you set aside enough memory to store the three int values named

side1, side2, and side3 that are listed in the class definition. Figure 9.4 shows creating a triangle object based

on the Triangle class.

FIGURE 9. 4 Making an instance of class Triangle creates an object with enough storage for its three sides.

At first, the three instance variables will have the value 0. (This is the default value for int variables.) How-

ever, you can access these variables, assign values to them, and retrieve their values whenever you want to. This lets

you create a triangle object, for example, and then immediately assign values to it, such as side1 = 3, side2 =

4, and side3 = 5. The next section shows you how. We’ll cover how to access instance variables by also discuss-

ing instance methods.

class Triangle
create a new instance

new Triangle();
instance of class Triangle

side1 = 0
side2 = 0
side3 = 0

Barry Boone and Dave Mark Learn Java on the Macintosh 219

Instance Methods

We wrote methods in the last two chapters for an applet. These methods started out as the applet life-cycle methods,

init(), start(), stop(), and destroy(). But we also showed how init() could, for example, invoke a

method we wrote ourselves called setUpGUI(). We also showed how to define our own method that took parame-

ters and returned a value, called findAverage(). Just as we defined new methods for the applet, we can define

new methods for any other class, as well.

Let’s build on the triangle example we started in the last section. You’ve already seen that for a method to

access variables that it defines, all it has to do is refer to the variables by name. For example, we saw a method a few

pages back called findPerimeter() that looked like this:

int findPerimeter() {
 int side1 = 5;
 int side2 = 12;
 int side3 = 13;

 return (side1 + side2 + side3);
}

This method simply referred to side1, side2, and side3 to get at the values they defined. Is there a big

difference between methods accessing their own variables and objects accessing their own variables? Not at all! For a

triangle object to access its own instance variables, all it has to do is, like the method, refer to the variable by name.

For example, if triangles defined a method named findPerimeter(), findPerimeter() could look like this:

class Triangle {
 int side1;

Barry Boone and Dave Mark Learn Java on the Macintosh 220

 int side2;
 int side3;

 int findPerimeter() {
 return (side1 + side2 + side3);
}

As you can see, the method findPerimeter() is able to access the instance variables in the same object

in which it is defined. This is important! They key point here is that findPerimeter() accesses the instance vari-

ables for its particular object. If you created two triangle objects and assigned each object its own data, invoking that

object’s findPerimeter() method would yield the results appropriate for that object.

For example, if you created a triangle object and gave its sides the values 6, 8, and 10, then invoking find-

Perimeter() for that triangle would return 24. If you created another triangle object and gave its sides the values

4, 4, and 4, then invoking findPerimeter() for that triangle would return the value 12.

Using Instance Variables and Methods in Other Objects

You now know how to access instance variables and invoke behavior—as long as you only ever have one object! For

example, what we’ve shown so far works great for a program consisting solely of an applet class. We can define

instance variables for our applet and define new methods. These new methods can access the instance variables to set

or retrieve their values, just as our methods did when the variables were defined in the methods themselves.

The true power of instance variables and instance methods is when we can work with a whole bunch of

objects at once. For example, a Trigonometry applet might build up a library of triangles. It would be great to have

our applet refer to these different triangles and access different triangles’ data and invoke different triangles’ methods.

We can’t just refer to a triangle object’s variables or methods by name alone from our own applet, because, first of all,

the computer wouldn’t know we wanted the triangle’s variables and methods rather than our applet’s, and second of

all, the computer wouldn’t know which triangle object we were referring to! If we are going to create a whole bunch

Barry Boone and Dave Mark Learn Java on the Macintosh 221

of separate objects, we need a way of distinguishing triangle 1’s variables from triangle 2’s variables, and triangle 1’s

methods from triangle 2’s methods. In other words, if we want to ask triangle 1 for its perimeter, we want to make

sure that findPerimeter() uses the values for triangle 1 and not some other triangle.

Java provides a way to do this. Java uses a dot (.) to associate a variable or a method with a given object. The

best way to illustrate this is with an example.

Let’s write an applet called Trig that, in its init() method, creates two triangles, assigns values to them,

and then finds the perimeter for each triangle. Here’s the definition for the Triangle class:

class Triangle {
 int side1;
 int side2;
 int side3;

 int findPerimeter() {
 return side1 + side2 + side3;
 }
}

Now, let’s create objects out of this class and use them in our applet’s init() method. Here’s the top part

of this method which creates two triangle objects.

public class Trig extends java.applet.Applet {
 init() {
 Triangle t1;
 Triangle t2;

 t1 = new Triangle();
 t2 = new Triangle();

Barry Boone and Dave Mark Learn Java on the Macintosh 222

Now we’d like to set the values for t1’s instance variables. We associate an instance variable to a particular

object by using a dot, like this:

 t1.side1 = 3;
 t1.side2 = 4;
 t1.side3 = 5;

Now, t1’s instance variables are set to 3, 4, and 5. Similarly, to assign values to t2’s instance variables, we

can write:

 t2.side1 = 5;
 t2.side2 = 10;
 t2.side3 = 10;

At this point, the triangle referenced by t2 holds the values 5, 10, and 10 for its sides. Each instance’s vari-

able names are the same (side1, side2, and side3), but we refer to a different object when we use the dot nota-

tion. Now, t2 contains different values in its instance variables than t1. If we wanted to access t1’s instance variable

named side1, we could refer to it by writing t1.side1. If we wanted to refer to t2’s instance variable named

side3, we could refer to it by writing t2.side3.

For the last part of our Trig applet, we need to find the perimeter for each triangle by invoking each triangle’s

findPerimeter() method. From the discussion above on accessing instance variables in other objects, you can

probably already guess how to invoke methods in other objects: Just connect the object with the method invocation by

a dot. Here’s the remainder of the code:

 int result1 = t1.findPerimeter();
 int result2 = t2.findPerimeter();

Barry Boone and Dave Mark Learn Java on the Macintosh 223

 }
}

In this example, t1.findPerimeter() would return the value 12 (because t1’s sides are equal to 3, 4,

and 5), and t2.findPerimeter() would return the value 25 (since t2’s sides are equal to 5, 10, and 10). The

variable result1, then, would be assigned 12, and result2 would be assigned 25.

Referring to Yourself

As you saw, you don’t have to connect an instance variable or an instance method with an object when you’re access-

ing it from the same object in which these variables and methods are defined. For example, you saw how the Triangle

class defined an instance method called findPerimeter() that just referenced its instance variables directly.

This usually works just fine, but here’s a scenario that would cause the compiler to not understand what we

wanted. Imagine that we define a method that initializes the triangle’s sides. Perhaps we have a method definition that

begins:

void initTriangle(int side1, int side2, int side3) {

Are these parameter names referring to the same instance variables defined by the triangle? No. Parameter

names are separate from the triangle’s instance variable names. Does that mean we can write code for our initTri-

angle() method like this:

void initTriangle(int side1, int side2, int side3) {
 side1 = side1;
 side2 = side2;

Barry Boone and Dave Mark Learn Java on the Macintosh 224

 side3 = side3;
}

and expect the instance variables to be assigned with the values in the parameters? No again. The compiler

will think we’re assigning the parameter back to its original value. If we write a method like this, the instance vari-

ables will never be assigned the values we pass to initTriangle(). If we could specify the object, as we did

when referring to variables and methods in other objects, we could indicate that we wanted to assign the parameter

side1 to the instance variable side1, the parameter side2 to the instance variable side2, and the parameter

side3 to the instance variable side3. In other words, you want to write code that expresses this idea:

(this object).side1 = side1;
(this object).side2 = side2;
(this object).side3 = side3;

So how do we refer to our own object? Java provides a way to do this through the use of a special variable

called this. Java defines the variable named this for every instance method. You can use this variable whenever

you want to. Here’s how we’d solve the problem presented above:

void initTriangle(int side1, int side2, int side3) {
 this.side1 = side1;
 this.side2 = side2;
 this.side3 = side3;
}

The variable named this is defined for you by Java. The this variable lets you clarify which object a vari-

able or method belongs to. this is sometimes described as representing the current object. The current object is

the one responding to a method invocation.

Barry Boone and Dave Mark Learn Java on the Macintosh 225

For example, in the example code given a little while ago, we created two triangle objects. The first was

assigned to the variable t1; the second was assigned to the variable t2. If we invoke t1’s findPerimeter()

method, then when findPerimeter() is executing, this is equal to the object represented by t1. t1 is said to

be the current object, the one responding to the method invocation. Similarly, if we invoke t2’s findPerime-

ter() method, then when findPerimeter() is executing, this is equal to the object represented by t2, and

t2 is said to be the current obect.

Sample Programs

We’ll look at a simple program in this section and slowly extend it to illustrate instance variables and instance meth-

ods. The code here will all relate to the employee example we touched on earlier.

Employee1.µ

For our first example of instance methods and instance variables, open up the folder 09.01 - employee 1 in the

Learn Java Projects folder. Make the project by double-clicking the file Employee1.µ and selecting Make from

the Project menu. Run the program by dropping the file Employee1.html onto the Metrowerks Java icon.

When you do, an empty applet will appear and the Java Output window will look like what’s in Figure 9.5.

Barry Boone and Dave Mark Learn Java on the Macintosh 226

FIGURE 9. 5 The output from Employee1.

This applet displays some information in the Java Output window for a particular employee. As you can see,

after all the initialization gobbledy-gook, this program displays three lines:

hourly wage = 10
hours worked = 20
earned income = 200

Let’s see what’s happening with this code.

Stepping Through the Source Code

Open up Employee1.java either by double-clicking this file name in the project window or by double-clicking

the file icon. Once you get it open, you’ll see this file defines an applet called Employee1. You might notice that the

source code for this applet defines two life-cycle methods—init() and start()—and one other method, called

earnedIncome(). This applet also defines two instance variables, called hourlyWage and hoursWorked.

Here’s how it all works.

Barry Boone and Dave Mark Learn Java on the Macintosh 227

At the start of the applet, the applet defines two instance variables.

public class Employee1 extends java.applet.Applet {

 int hourlyWage;
 int hoursWorked;

The applet will use these variables to store and retrieve data. The applet then defines its first instance

method, a custom method called earnedIncome(). This method does not take any parameters, but it uses the the

two instance variables to perform a calculation.

 int earnedIncome() {
 return hourlyWage * hoursWorked;
 }

Notice how this instance method can just refer to the instance variables by name. The variables belong to the

object (that is, the applet object), so it’s no problem accessing them from this instance method also defined for the

applet object.

Next, the applet provides an init() method. When the applet is first initialized by the Applet Viewer, it’s

init() method is invoked, and it sets the values of its instance variables. It sets hourlyWage to 10 and hour-

sWorked to 20.

 public void init() {
 hourlyWage = 10;
 hoursWorked = 20;

Barry Boone and Dave Mark Learn Java on the Macintosh 228

 }

Remember, if we don’t set the instance variables, they will have the default value of 0. Again, in init(),

we can just refer to these instance variables directly, since init() is an instance method.

The third method, start(), is invoked by the Applet Viewer after init(). The start() method

defines a local variable named earnedIncome. This method begins by displaying the values of the instance vari-

ables hourlyWage and hoursWorked.

 public void start() {
 int earnedIncome;

 System.out.println("hourly wage = " + hourlyWage);
 System.out.println("hours worked = " + hoursWorked);

As you can tell from the Java Output window, hourlyWage and hoursWorked contain the values we set

in the init() method. These values will stay with the object until we change them. Since we assigned these values

to an instance variable, they are accessible from any instance method defined for the same object. As you can see, this

is one way to use the same variables in different methods.

The last thing this method does is to invoke the current object’s (that is, this applet’s) earnedIncome()

method. Since we want to invoke the method for this object, we can do so just by writing:

 earnedIncome = earnedIncome();

This statement assigns the return value of earnedIncome(), the method, to earnedIncome, the local

variable. The compiler is able to distinguish between the method name and the variable name.

Barry Boone and Dave Mark Learn Java on the Macintosh 229

If we wanted to invoke a method for a different object, we would have had to prefix the method name with a

variable containing the object, followed by a dot. However, earnedIncome() is defined for the same object whose

code is currently executing (that is, the applet), and invoking a method in the same object can be done without the

need for specifying the object.

Invoking earnedIncome() executes the method the applet defined at the top of this listing. earnedIn-

come() accesses the applet’s instance variables hourlyWage (which is 10) and hoursWorked (which is 20),

performs the multiplication (to get 200) and returns the result. The result is then displayed in the Java Output window.

 System.out.println("earned income = " + earnedIncome);
 }
}

Throughout this listing, we only used one object, so it was straightforward to use instance variables and

instance methods. The next example shows how different objects can communicate with each other by accessing each

other’s instance variables and instance methods.

Employee2.µ

For our second example, open up the folder 09.02 - employee 2 in the Learn Java Projects folder. Open

Employee2.µ. Run the program, after making the project, by dropping the file Employee2.html onto the

Metrowerks Java icon. Again, an empty applet will appear, but this time the Java Output window will display infor-

mation for three different employees:

Employee 1:
hourly wage = 10
hours worked = 20
earned income = 200

Employee 2:

Barry Boone and Dave Mark Learn Java on the Macintosh 230

hourly wage = 18
hours worked = 38
earned income = 684

Employee 3:
hourly wage = 12
hours worked = 52
earned income = 624

The display indicates that each employee contains its own data. Now we’re beginning to use objects to their

full advantage! Let’s step through the source code and see how we did this.

Stepping Through the Source Code

Open up Employee2.java either by double-clicking this file name in the project window or by double-clicking

the file icon. There are two class definitions in this file. The first is for the applet, named Employee2. The second is

for a class simply called Employee that maintains payroll information for a particular employee.

The top part of this code contains the applet. The applet defines three instance variables, which it will use to

track of three different employees.

public class Employee2 extends java.applet.Applet {

 Employee e1;
 Employee e2;
 Employee e3;

Unlike in the previous example, this applet does not maintain the specifics of an employee’s payroll informa-

tion. Instead, the applet uses the Employee object to maintain this information. In the init() method, the applet

creates three different employees and assigns each of the employee objects returned by the constructor to the three

Barry Boone and Dave Mark Learn Java on the Macintosh 231

instance variables e1, e2, and e3. The applet then assigns values to instance variables defined for the employee

objects. First, the applet sets the instance variables for the employee object assigned to e1; then, the applet sets the

instance variables for the employee object assigned to e2; finally, the applet sets the instance variables for the

employee object assigned to e3.

 public void init() {
 e1 = new Employee();
 e1.hourlyWage = 10;
 e1.hoursWorked = 20;

 e2 = new Employee();
 e2.hourlyWage = 18;
 e2.hoursWorked = 38;

 e3 = new Employee();
 e3.hourlyWage = 12;
 e3.hoursWorked = 52;
 }

By using the variables e1, e2, and e3, the applet can reference the instance variables for specific employee

objects. Notice that the applet is setting the instance variables in an object different than itself!

In the start() method, the applet displays messages indicating it is about to show the employees’ payroll

information. The applet then invokes the instance method displayInfo(), which is defined for the employee

objects. The applet first invokes this instance method for e1, then for e2, and then for e3.

 public void start() {
 System.out.println("");
 System.out.println("Employee 1:");
 e1.displayInfo();

Barry Boone and Dave Mark Learn Java on the Macintosh 232

 System.out.println("");
 System.out.println("Employee 2:");
 e2.displayInfo();

 System.out.println("");
 System.out.println("Employee 3:");
 e3.displayInfo();
 }
}

Again, by prefixing e1, e2, and e3 to the instance method, the applet can invoke an instance method for a

employee object.

The Employee class defines two instance variables and two instance methods. The instance variables are for

hourlyWage and hoursWorked. As you saw earlier in the listing, the applet object sets these values for each of

the three employee objects it creates.

class Employee {
 int hourlyWage;
 int hoursWorked;

The first instance method for the Employee class provides the calculation for earned income. This instance

method can simply access the instance variables directly, since the instance variables are defined in the same class as

this method.

 int earnedIncome() {
 return hourlyWage * hoursWorked;
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 233

The displayInfo() method displays the instance variables hourlyWage and hoursWorked, and

invokes the instance method earnedIncome().

 void displayInfo() {
 int earnedIncome;

 System.out.println("hourly wage = " + hourlyWage);
 System.out.println("hours worked = " + hoursWorked);

 earnedIncome = earnedIncome();
 System.out.println("earned income = " + earnedIncome);
 }
}

Since each object maintains its own data, invoking displayInfo() for e1 yields output according to the

values stored in e1. Looking back, you can see that the applet stored 10 in e1’s hourlyWage instance variable and

20 in e1’s hoursWorked instance variable. When the applet invokes e1’s displayInfo() instance method, e1

starts by displaying its instance variables (10 and 20). When e1 invokes its own instance method earnedIn-

come(), earnedIncome() accessed the same instance variables, 10 and 20, and returns 200. displayInfo()

then displays this result.

The same things occur for e2 and e3. Each object responds to an instance method by using the values in its

own particular instance variables. So, when the applet invokes e2’s displayInfo() method, e2’s data is dis-

played. When the applet invokes e3’s displayInfo() method, e3’s data is displayed.

Barry Boone and Dave Mark Learn Java on the Macintosh 234

Employee3.µ

 For our third example, open up the folder 09.03 - employee 3 in the Learn Java Projects folder. Open

Employee3.µ and after making the project, run the program by dropping the file Employee3.html onto the

Metrowerks Java icon. Once more, an empty applet will appear. The Java Output window will look like what you saw

in the previous sample. That is, it will contain employee information that looks like this:

Employee 1:
hourly wage = 10
hours worked = 20
earned income = 200

Employee 2:
hourly wage = 18
hours worked = 38
earned income = 684

Employee 3:
hourly wage = 12
hours worked = 52
earned income = 624

Let’s turn to the source code and see what’s up.

Stepping Through the Source Code

Open up Employee3.java either by double-clicking this file name in the project window or by double-clicking

the file icon.

The purpose of this code is to show how this can be used to refer to an object’s own instance variables. The

code here is almost identical to the previous sample, except in the way the applet initializes the employees and in the

method provided by the Employee class to perform this initialization.

Barry Boone and Dave Mark Learn Java on the Macintosh 235

First, the applet now defines its init() method like this:

 public void init() {
 e1 = new Employee();
 e1.initialize(10, 20);

 e2 = new Employee();
 e2.initialize(18, 38);

 e3 = new Employee();
 e3.initialize(12, 52);
 }

The Employee class defines the initialize() instance method to help the applet set the instance vari-

ables in an employee object. Here’s how the employee’s initialize() method begins:

 void initialize(int hourlyWage, int hoursWorked) {

Since the instance variables are also named hourlyWage and hoursWorked, we need a way to differen-

tiate between the instance variables and the parameters. The way we do this is by using the variable named this.

 this.hourlyWage = hourlyWage;
 this.hoursWorked = hoursWorked;
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 236

Now, the compiler will know which value to assign to which variable. By using this, we can indicate that

the values in the parameters hourlyWage and hoursWorked should be assigned to the current object’s instance

variables hourlyWage and hoursWorked, respectively.

Class Variables and Methods

As described so far, the purpose of classes is to create objects, just as the purpose of cookie cutters is to create cook-

ies. However, like cookie cutters, classes also exist on their own. For example, you saw that classes stamp out objects,

as in Figure 9.6.

FIGURE 9. 6 Classes stamp out objects—but the classes have an existence, too!

While the emphasis of Figure 9.6 is that the Employee class is used to create objects, the figure also shows

that the Employee class exists in its own right. We can ask an employee object for its data or invoke an employee

object’s method; what happens if we try to do this kind of thing for the class?

Associating data and behavior with the class might make a lot of sense in certain situations. For example,

what if we wanted to keep track of the number of employees in the company? That piece of data doesn’t seem to

belong to any specific employee. The number of employees seems to belong to all of the employees in general—that

Employee class

instance variables
instance methods

employee object

its own unique values

employee object

its own unique values

create objects

Barry Boone and Dave Mark Learn Java on the Macintosh 237

is, this data seems to belong with the class. For the SimpleDraw applet, the user could draw all the circles he or she

desired, and each circle had its own unique position and color. But all circles were all the same size. The radius for the

circle was a property of circles in general, not of any particular circle. This value—the circle’s radius—might be bet-

ter kept in the Circle class itself in this case.

As you might expect, associating data and behavior with the class itself is possible to do in Java. A more

complete picture of a class might be to say that while a class defines instance variables and instance methods, it also

can define class variables and class methods. Figure 9.7 extends Figure 9.6 to take into account possible class vari-

ables and class methods defined in the Employee class.

FIGURE 9. 7 Notice that the Employee class can also define class variables and class methods in addition to

instance variables and instance methods.

Class Variables

Creating class variables and class methods is done almost identically to creating instance variables and instance meth-

ods. You write class variables and class methods the same way that you’ve been doing, except that you start these def-

initions with the keyword static. Remember back in Chapter 6, before you learned about methods, how you used

the keyword static to define code that executed when a class was first loaded? Just as the keyword static was

used to associate a chunk of code with a class, static can also be used to associate a variable or method with a

class.

Employee class

instance variables
instance methods

employee object

its own unique values

employee object

its own unique values

create objects

class variables
class methods

Barry Boone and Dave Mark Learn Java on the Macintosh 238

For example, here’s how the Triangle class could define a class variable:

static int totalAngles = 180;

This defines an int variable called totalAngles. Since we’ve declared it as static, it belongs to the

class itself. That is, totalAngles does not belong to any particular object, though each object can still refer to it

just by using to its name.

By the Way

Notice that we’ve also initialized the variable to a value. You can do this kind of thing with any type of variable, from

method variables to instance variables to class variables. You can always change the value later. As mentioned previ-

ously, if you don’t initialize an instance variable or class variable, Java assigns a default value to it. For int values,

this default value is 0.

If we were to define totalAngles without the keyword static, each triangle object would maintain a

separate value for totalAngles (that is, without the keyword static, you would have defined an instance vari-

able). The first triangle you create could change its instance variable named totalAngles to 190; the second trian-

gle could change its instance variable named totalAngles to 170; neither triangle’s instance variable would affect

the other.

By contrast, class variables are shared variables. That is, with a class variable, there is only one version of

it, and that version is maintained with the class. All objects belonging to a particular class can access that class’s

static variables. These objects can also change the value in the variable. In other words, a static variable is

shared among all the objects made from that class.

Barry Boone and Dave Mark Learn Java on the Macintosh 239

For example, you might imagine keeping track of the number of triangles you create in a Trig applet. Each

time you create a new triangle object, you might increment a class variable defined in the Triangle class. As with

instance variables, all you need to do to refer to the class variable is to use its name. For a class variable called num-

Triangles, each triangle object could increment it like this:

numTriangles++;

This is fine for accessing the class variable in an object based on the class that defined it, but how would you

access the class variable from some other object—say from the applet? The applet could not refer to numTrian-

gles, because numTriangles is undefined for the applet. We solved this same kind of problem for instance vari-

ables by prefixing the variable name that held the object to the instance variable name, placing a dot between them.

But since we don’t keep track of classes by using variables, how do we refer to the class variable for a particular

class?

The solution is to use the class name, rather than the name of a variable that refers to an object. For example,

to refer to the Triangle’s class variable numTriangles, you can write:

Triangle.numTriangles;

You can also use this notation if you need to distinguish between a class variable and a local variable that

both share the same name. (You’ll see an example of this in the upcoming sample programs.)

Barry Boone and Dave Mark Learn Java on the Macintosh 240

Class Methods

Just as you can have class variables, you can also have class methods. Class methods are good for associating behav-

ior with a particular class.

For example, you might have defined an instance method called addAngles() that adds up all the angles

in a triangle, perhaps to verify that they do indeed total 180 degrees. Your method might look like this:

int addAngles(int angle1, int angle2, int angle3) {
 return angle1 + angle2 + angle3;
}

Nothing in this method, as written, relies on a particular object. Noticing this, you might decide to associate

this method with the Triangle class. To do this, just prefix the word static in front of the method definition, and

voila, you have a class method.

static int addAngles(int angle1, int angle2, int angle3) {
 return angle1 + angle2 + angle3;
}

As with instance methods, an object made from the class defining the class method can invoke the method in

the usual way:

int total = addAngles(40, 60, 80);

Barry Boone and Dave Mark Learn Java on the Macintosh 241

You can also prefix the class method with the class’s name to invoke it from other classes, from other

objects, or to disambiguate it from other methods with the same name.

int total = Triangle.addAngles(40, 60, 80);

In addition to your own class instance variables and class methods, Java provides a lot of class methods and

class variables for you to use. For example, Java defines the mathematical value of pi as a class variable in a class

called Math. (You would access this by writing Math.PI.) Java defines a whole slew of colors as class variables in a

class called Color. (You can access these by writing Color.red, Color.blue, and so on.) You’ll learn about

these and others class variables and methods in upcoming chapters.

Class Methods Versus Instance Methods

Though class methods and instance methods might seem similar at first glance, there’s a crucial difference between

them: Class methods are not associated with a particular object. Therefore, class methods are not good to use in situ-

ations where you want to access an object’s data.

Similarly, the Java-supplied variable named this is not defined for class methods. That’s because when a

class method is executing, there’s no current object. The this variable only exists when there’s an object responding

to a method invocation, which is not the situation with a class method—it’s the class that’s responding to the method,

not a particular object.

For example, the class method addAngles() defined above would not be able to access a particular trian-

gle’s instance variable just by naming it, such as referring to side1 or even to this.side1. However, all is not

lost; if the class method can get access to a variable that holds an object (say in a variable called t1), then this method

can still refer to t1.side1.

Barry Boone and Dave Mark Learn Java on the Macintosh 242

Sample Programs

We’ll illustrate how to access class variables and class methods in two sample programs.

ClassVar.µ

For our example of using a class variable to store data with a class, open up the folder 09.04 - variable in the

Learn Java Projects folder. Before running the applet, take a look at this definition for a class variable and an

init() method:

 static int test = 20;

 public void init() {
 System.out.println(“test = “ + test);

 int test = 30;

 System.out.println(“test = “ + test);
 System.out.println(“ClassVar.test = “ + ClassVar.test);
 }

This is the class variable and init() method for the applet you’re about to run. What do you think each of

these three System.out.println() statements will display in the Java Output window? You can see that the

class variable starts out as 20, but what happens after we define a new local variable with the same name but set to a

different value? Once you feel you’ve made your best guess, double-click ClassVar.µ, make the project, then run

the program by dropping the file ClassVar.html onto the Metrowerks Java icon. An empty applet will appear,

and the Java Output will contain three lines that looks like this:

test = 20

Barry Boone and Dave Mark Learn Java on the Macintosh 243

test = 30
ClassVar.test = 20

How’d you do? Did you guess correctly? Let’s see what caused these lines to be displayed.

Stepping Through the Source Code

Open up ClassVar.java either by double-clicking this file name in the project window or by double-clicking the

file icon. There is only one simple class definitions in this file. This is for an applet named ClassVar.

public class ClassVar extends java.applet.Applet {

The first thing this applet does is define a class variable.

 static int test = 20;

You can see that it’s a class variable because of the keyword static. The applet initializes this class vari-

able to 20.

The applet then provides an init() method. This method first displays the value of its instance variable,

named test. This is what caused the first line that read “test = 20” to appear in the Java Output window.

 public void init() {
 System.out.println(“test = “ + test);

Barry Boone and Dave Mark Learn Java on the Macintosh 244

After this is displayed, the method defines a local variable called test—the same name as the class vari-

able! It then writes the variable test to the Java Output window. What gets displayed is the local variable, so “test =

30” appears in the Java Output window.

 int test = 30;

 System.out.println(“test = “ + test);

This brings up an interesting point. If parameters or local variables with the same name as instance variables

or class variables are used in a method, it’s the parameters and local variables that get preference. We can still access

the class variable, however, by prefixing the class name in front of the class variable name and separating the two with

a dot. In our case, we can do this by writing ClassVar.test.

 System.out.println(“ClassVar.test = “ + ClassVar.test);
 }

}

This time, the class variable appears in the Java Output window.

ClassMethod.µ

For an example of a class method, open up the folder 09.05 - method in the Learn Java Projects folder. Open

ClassMethod.µ and make the project. Run the program by dropping the file ClassMethod.html onto the

Metrowerks Java icon. An empty applet will appear, and the Java Output window will contain the line:

Barry Boone and Dave Mark Learn Java on the Macintosh 245

3 circles were created.

Let’s see what made this happen.

Stepping Through the Source Code

Open up ClassMethod.java either by double-clicking this file name in the project window or by double-clicking

the file icon. The applet starts by defining three local variables in the init() method to hold circle objects. (The

Circle class is defined in this file after the applet class.)

public class ClassMethod extends java.applet.Applet {

 public void init() {
 Circle c1, c2, c3;

The applet then creates three circle objects. Each time, it increments a class variable defined by the Circle

class.

 c1 = new Circle();
 Circle.numCircles++;

 c2 = new Circle();
 Circle.numCircles++;

 c3 = new Circle();
 Circle.numCircles++;

Barry Boone and Dave Mark Learn Java on the Macintosh 246

After the three circles are created, this code invokes a class method defined by the Circle class.

 Circle.displayNumCircles();
 }
}

Notice that for the class variable numCircles and class method displayNumCircles(), the applet

had to prefix the class name onto the variable and method name, since this variable and method were not defined for

the applet but for a different class (that is, for class Circle).

The Circle class starts by defining numCircles as a class variable.

class Circle {

 static int numCircles;

The class then defines the class method called displayNumCircles(). This method can access the

class variable named numCircles directly, without the need for prefixing numCircles with Circle and a dot

(though that would have worked, too).

 static void displayNumCircles() {
 System.out.println(numCircles + " circles were created.");
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 247

This class method can access the class variable by name because the class variable and the class method are

both defined in the same class. Since the applet incremented the class variable numCircles three times, this line

prints out “3 circles were created.”

Review

So now that you’ve explored objects, you should have a sense for what objects are used for and how to store data and

define behavior for your own objects. Variables were first discussed in Chapter 6, and now you’ve seen how to use

them in your objects. Methods were first discussed in Chapter 7, and now you’ve seen how to use methods in your

objects, as well. You learned about instance variables and instance methods, how to define them and use them, and

about a special variable supplied by Java called this.

You’ve also seen that classes themselves can define data and behavior. This is a good technique to use when

you have data or behavior that belongs to all of the objects of a certain class in general and does not really seem to

belong to any particular object. Class methods are different from instance methods, however, in that they are not asso-

ciated with a particular object and so do not have easy access to a particular object’s instance variables.

What's Next?

With a basic understanding of objects, it’s time to look at what classes Java provides for you. You can create objects

out of Java’s classes and use these objects in your own programs. Java organizes its classes into packages. Chapter 10

takes you on a brief tour of these packges and shows you how you can create packages of your own.

Chapter 10 also discusses a concept central to object-oriented languages such as Java: Inheritance. By using

inheritance, you’ll see how you can mix in your own custom data and behavior to extend the default behavior of the

Barry Boone and Dave Mark Learn Java on the Macintosh 248

classes what Java provides for you. You’ll also learn how you can use inheritance to organize your own classes into

hierarchies.

Barry Boone and Dave Mark Learn Java on the Macintosh 249

CHAPTER 10 Java’s Classes and
Inheritance

This chapter delves into one of the most powerful features of object-oriented programming. This feature is inherit-

ance, and it allows you to start with a class that’s already fully functioning and create your own class by extending it,

adding to its capabilities.

Since inheritance involves working with a predefined set of classes, we’ll also take a better look at what

classes Java supplies for you already and how you can use these classes in your own applets. In particular, we’ll look

at these classes with an eye towards what it means to inherit from the classes that Java provides.

What Is Inheritance?

We started programming in Chapter 5 by defining the simplest possible applet class:

public class MyApplet extends java.lang.Applet {
}

We found that we could compile and run this applet just fine, even though it didn’t appear to do much. Or did

it? Actually, this applet had some behavior of its own. You could resize the applet, for example. And the applet cer-

tainly started just fine. Something was responding the init() and start() methods that the Applet Viewer

invoked on this applet, even if we didn’t write any code ourselves to respond to these methods.

Barry Boone and Dave Mark Learn Java on the Macintosh 250

Where did this behavior come from? We certainly didn’t supply any behavior: Our class definition was

empty. What actually happened was that our applet’s default behavior came from Java’s Applet class. Whenever we

create our own applet, what we are really doing is starting with Java’s Applet class as a base and adding to it. This

idea is depicted in Figure 10.1.

FIGURE 10. 1 Building on the Applet class supplied by Java.

What is this combination of the Applet class and additional code? Taken together, this is a new class, an

extension to the Applet class, which we’ve called MyApplet in the code snippet above. The class MyApplet can do

everything that the Applet class can do, plus any additional code we write. For example, if we provide an init()

method for MyApplet that displays “Frech Roast” in the Java Output window, then MyApplet behaves just like the

Applet class, but it also does more: It displays “French Roast” when the applet initializes itself.

Why Is Inheritance Good?

As it turns out, Java allows you to extend any class, not just the Applet class. This means you can build your applica-

tion by extending what Java provides. The advantage of this is that you can start with something that already works.

In fact, Java’s classes already work great, and you can build on Java’s classes to write your own.

For example, perhaps you want to keep track of a collection of data in a particular way. Well, Java already

supplies a class that keeps track of a collection of data (this class is called a Vector, and you’ll work with Vectors in

Chapter 12). If you find that one of Java’s classes is almost good enough for what you want, but you want it to do

something more than it does by default, you can build on this class, extend it, and add your own behavior to it.

Applet class

additional code
added to the Applet class

Barry Boone and Dave Mark Learn Java on the Macintosh 251

As another example, maybe you want to provide behavior that performs arithmetic with imaginary numbers,

which, taken together with non-imaginary numbers, are also called complex numbers. If you’re not familiar with the

idea of complex or imaginary numbers, all you need to know to understand this example is that they are extensions to

the integer and fractional numbers you’re already familiar with. Java provides classes that provides behavior for num-

bers (one of these classes is called Integer). If you want to extend the behavior for this class, you can add your extra

code to the Integer class that allows you to work with complex numbers.

For a third example, perhaps you want to work with dates based on the Jewish or Chinese calendars. Java

already provides a Date class. Rather than writing all your own date functionality, you can extend what Java already

provides by writing your own code to work with other calendar systems.

 These classes, and many more, can save you all sorts of time and effort, because if you write your own

classes you can start with a base level of behavior and then add to it. In other words, you don’t have to start from

scratch. This is illustrated in Figure 10.2, which makes the concept in Figure 10.1 more generic.

FIGURE 10. 2 You can extend a base class with your own additional code.

How Inheritance Works

As you know, classes define variables and methods for their instances. For example, let’s say you have a class called

Dwelling, defined like this:

a base class

additional code
added to a base class

Barry Boone and Dave Mark Learn Java on the Macintosh 252

class Dwelling {
 int squareFeet;
 void knock() {
 System.out.println(“Knock, knock”);
 }
}

This class defines an instance variable called squareFeet. If you invoke a dwelling object’s knock()

method, it will display “Knock, knock” in the Java Output window. We’ve seen examples of this kind of thing already.

Now, what happens when we want to define a class called House? Maybe our house has a boolean

instance variable to indicate whether it has a fireplace or not. Do we have to start from scratch and repeat ourselves,

like this:

class House {
 int squareFeet;
 boolean hasFirePlace;
 void knock() {
 System.out.println(“Knock, knock”);
 }
}

This seems like a waste of code to repeat this definition, and in Java it would be. Since the House class is

just an extesion to the Dwelling class, you can just extend the Dwelling class and add the additional features that

make it a House class. Instead of what we wrote above, we could write our House class like this:

class House extends Dwelling {
 boolean hasFirePlace;
}

Barry Boone and Dave Mark Learn Java on the Macintosh 253

Very easy! Now house objects can do everything that dwelling objects can do, plus houses also know if

they have a fireplace or not. For example, if we have the above class definitions, we can write some code like this:

House h = new House();
h.knock();

and the words “Knock, knock” will appear in the Java Output window. How does this happen? When we

invoke the knock() method on the house object, Java first looks in the house object for this code. However, it

doesn’t find it there. So it looks in its superclass—the class that was extended to make the House class—which is

the Dwelling class. And there it is! The Dwelling class defines the instance method named knock(). Java

executes this method, and “Knock, knock” appears in the Java Output window. Figure 10.3 illustrates this sequence

of events.

code for the

code for the

knock() {

}

1) invoke knock()

2) knock() not found in House,
look for it in Dwelling

3) knock() is found in
Dwelling and its code is
executed

House class

Dwelling class

Barry Boone and Dave Mark Learn Java on the Macintosh 254

FIGURE 10. 3 Method invocations get passed up the class hierarchy (which is the structure of subclasses and

superclasses) until one of the classes provides the appropriate method.

This also implies that we can access the variable squareFeet by using an instance of class House. We

could write:

House h = new House();
h.squareFeet = 2200;

The House class doesn’t define squareFeet, of course; this instance variable is defined by Dwelling. But

House inherits everything that Dwelling has. We can therefore set the house’s squareFeet variable through code

like that shown above.

Some Terminology

The picture that most developers envision for this relationship between classes like Dwelling and House is that

Dwelling is at the top level, and House descends from Dwelling. This image is shown in Figure 10.4.

FIGURE 10. 4 A simple diagram programmers often use to convey a subclass and superclass relationship.

Dwelling

House

Barry Boone and Dave Mark Learn Java on the Macintosh 255

House is said to be a subclass of Dwelling, and Dwelling is a superclass of House. House is also a descen-

dent of Dwelling, and Dwelling is an ancestor of House. This whole process of extending classes is called inherit-

ance. House inherits from Dwelling. (As you can tell, some of this terminology comes from the idea of genetic

inheritance, where children take on the characterstics of their parents.) That is, House inherits all the traits of Dwell-

ing—all the methods and variables. House then can add some new methods and variables of its own that are com-

pletely unknown to the Dwelling class. (Notice that if we went back and added a new variable or method to the

Dwelling class and House still extended Dwelling, then House would also acquire the new variable or method in

Dwelling. Again, the House class does everything that Dwelling does, plus its own custom code.)

When to Use Inheritance

There are two great uses for inheritance that are closely related. First, you can use inheritance to extend a base set of

working code to make it do a little bit more. Second, you can organize your classes into hierarchies so that similar

classes can share as much code as possible.

Extending Classes

One of the most obvious examples of extending a class in Java is extending Java’s Applet class. By extending this

class, you can write applets that do things other than just display a blank window! Every applet around starts with the

base behavior of the Applet class and builds on it to create a new, custom class. The complexity of the applet you want

to create determines how much new code you need to add to Java’s Applet class.

Java also defines a class called Object. This class provides some very basic behavior, such as the ability to

create new objects and the ability to see if the object is equal to another object. By extending this base Object class,

you gain a core level of behavior that you’ll want all of your own objects to have, as well. (We’ll discuss the Object

class and its role in more detail in a few more pages.)

Barry Boone and Dave Mark Learn Java on the Macintosh 256

Finding Hierarchies

Sometimes, your classes might grow out of classes you’ve already defined. For example, perhaps you have defined a

class called Square, like this:

class Square {
 static int diameter = 20;

 Color color;
 int x;
 int y;

 void draw() {
 System.out.println(“draw the square”);
 }
}

The Square class defines a class variable called diameter. It defines instance variables to maintain a color

for the square, as well as a screen location for where the square should be drawn. The Square class defines a method

for drawing the square. For now, this method just writes a message to the Java Output window. (In Chapter 11, you’ll

see how to actually draw a square on the screen.)

Perhaps at some time later in your application’s development, you also find you need a Circle class, which

you want to define like this:

class Circle {
 static int diameter = 20;

 Color color;
 int x;
 int y;

Barry Boone and Dave Mark Learn Java on the Macintosh 257

 void draw() {
 System.out.println(“draw the circle”);
 }
}

It seems like there’s a lot of overlap here. Both shapes define instance variables that keeps track of their cur-

rent color and screen location. They also both define methods named draw(), though each shape type implements

draw() differently. Is there some way we could combine these two classes into a common class, and then extend

that common class to implement a square, and also extend the common class to implement a circle? There certainly

is; this is what inheritance is all about! Let’s create a class called Shape that groups together the common variables.

class Shape {
 static int diameter = 20;

 Color color;
 int x;
 int y;

}

Armed with the Shape class, we can now create the Circle and Square classes a little more compactly. Here’s

how we would create each:

class Square extends Shape {
 void draw() {
 System.out.println(“draw the square”);
 }
}

class Circle extends Shape {

Barry Boone and Dave Mark Learn Java on the Macintosh 258

 void draw() {
 System.out.println(“draw the circle”);
 }
}

Gone are the instance variables duplicated in both the Square and the Circle class definitions. Now all we

have to do is extend the Shape class and implement draw(). The Square has all the methods and variables of class

Shape, plus any variables and methods it defines on its own. The same goes for the Circle class. In the example here,

the Square and the Circle inherit the variables color, x, and y. The Square and Circle each make themselves unique

by drawing in different ways.

Creating class hierarchies is a powerful approach for developing your own software. If at some later time

you need to create rectangles, ellipses, pentagons, and other shapes, you can simply extend the Shape class, and

much of your work is done for you. Just as extending Java’s classes can speed up your application development,

extending your own classes can also speed up your application development.

Advanced Inheritance Topics

So far in this chapter we’ve covered the basics of inheritance. But the power of inheritance doesn’t end here. This sec-

tion describes a few more features of inheritance that help you control how classes and subclasses interact with each

other. For example, can you stop a subclass from inheriting a variable or method? Can you restrict access so only sub-

classes can access a variable or method? The answer to both questions is yes, and this section shows you how.

Barry Boone and Dave Mark Learn Java on the Macintosh 259

Private Variables and Methods

If you define an instance variable in a class definition, and you want to ensure that only methods defined by that class

can access that variable, you can define the variable using the keyword private. For example, you might define an

Employee class like this:

class Employee {
 private String ssn;
 int employeeNumber;
}

This would store the employee’s social security number in a private variable, but it would make available

a different employee number in a field that does not have this restriction. Now, the only methods that can access the

instance variable ssn are those defined by the Employee class. For example, if we make an instance of class

employee, like this:

Employee e = new Employee();

we cannot get to the variable ssn by writing e.ssn. Only the employee itself can do this. For example, we

might write an access method for the social security number and put it into the Employee class. This new access

method might rely on a boolean value that indicates whether the ssn should be made available or not.

class Employee {
 private String ssn;
 private boolean makeAvailable;
 int employeeNumber;

Barry Boone and Dave Mark Learn Java on the Macintosh 260

 String getSsn() {
 if (makeAvailable)
 return ssn;
 else
 return null;
 }
}

Now other objects can get to the ssn via the getSsn() method, as long as the employee object does not have

its makeAvailable variable set to false (of course, we’d still need some way to set the value of makeAvail-

able, which we’ve declared as private here).

Suppose we created a subclass of Employee, like this:

class RetiredEmployee extends Employee {
 Date retirementDate;
}

Even instances of RetiredEmployee could not access the variable ssn. Using the keyword private really

does make it private to the class defining it and stops this variable from being inherited by subclasses.

It’s also possible to make a method private. Methods that are private can only be invoked by methods

defined by that same class.

Barry Boone and Dave Mark Learn Java on the Macintosh 261

Protected Variables and Methods

In the example just given, suppose we thought it was okay if subclasses have access to ssn, but not other objects in

general. Java provides a way to do this through the keyword protected. If a variable or method is protected,

then any descendant can access it, but other objects in other parts of the class hierarchy cannot. So, our subclass of

Employee called RetiredEmployee could access ssn in the Employee class and could invoke protected methods

defined in the Employee class. So now inheritance is still occuring, but access is restricted to a class’s descendants.

Abstract Variables and Methods

Back in the example with the classes Shape, Circle, and Rectangle, we defined a draw() method for the Circle and

Rectangle, but we left it out of the Shape class. Unfortunately, taking this route leads us into a problem. Consider this

slightly simpler version of the classes Shape, Circle, and Square:

class Shape {
 int x;
 int y;

}

class Square extends Shape {
 void draw() {
 System.out.println(“draw the square”);
 }
}

class Circle extends Shape {
 void draw() {
 System.out.println(“draw the circle”);
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 262

One of the great advantages of creating a hierarchy like this is that we don’t need to define different variables

to hold different shape types. That is, instead of defining the variables:

Square s;
Circle c;

To hold a square and a circle, depending on what we need, we can just define a variable that holds a shape:

Shape s;

and use this variable with a circle object or a square object, as appropriate. However, with our variable s

defined to be a Shape instance, we run into a problem if we want to invoke the draw() method in the circle or

square. That’s because the Shape class does not define draw(). For example, we can write the following statement

without any problem:

Shape s = new Circle();

However, if we tried to then invoke the circle’s draw() method, like this:

s.draw();

Barry Boone and Dave Mark Learn Java on the Macintosh 263

the compiler would complain that draw() is not defined by the shape! We don’t want to actually provide a

draw() method for the shape. We just want the Shape’s subclasses, Circle and Square, to implement draw(). What

can we do?

What we can do is indicate in the Shape class that the subclasses will, in fact, implement this draw()

method, even though it’s not implemented in class Shape. The way we do that is by declaring the method, without

actually providing any code for the method, and by using the keyword abstract. Our new Shape class would look

like this:

abstract class Shape {
 int x;
 int y;

 abstract void draw();
}

Notice that we don’t provide any behavior for draw(). What’s more, we’ve added the abstract keyword

to the class itself! The rule in Java is that if the class defines an abstract method, it can never be instantiated. That

means the class itself must be abstract. Only subclasses implementing the draw() method can be instantiated.

Definition

Classes that can be instantiated are sometimes said to be concrete, which differentiates them from abstract classes,

which cannot be instantiated.

Now we’ve solved the problem of using the variable s to hold a circle and using s to invoke the circle’s

draw() method. The method is indeed defined for the Shape; it just doesn’t have any behavior associated with it.

Instead, the behavior is supplied by the subclasses.

Barry Boone and Dave Mark Learn Java on the Macintosh 264

Overriding Methods

Let’s go back to our example of a Dwelling and a House class. You might recall these classes looked like this:

class Dwelling {
 int squareFeet;
 void knock() {
 System.out.println(“Knock, knock”);
 }
}

class House extends Dwelling {
 boolean hasFirePlace;
}

If we created an instance of class House and invoked its knock() method, like this:

House h = new House();
h.knock();

the words “Knock, knock” would appear in the Java Output window. However, what if we wanted to provide

different behavior for the house? What if we wanted invoking the knock() method to ring the doorbell, and say,

“Ding dong,” instead? What we would need to do is override the knock() method.

A subclass can override a method to change the behavior of the method. For example, here’s how we could

define our House class if we wanted different behavior than the Dwelling class:

class House extends Dwelling {

Barry Boone and Dave Mark Learn Java on the Macintosh 265

 boolean hasFirePlace;
 void knock() {
 System.out.println(“Ding dong”);
 }
}

Now, when you invoked the house’s knock() method, it would write “Ding dong” to the Java Output win-

dow. However, instances of Dwelling would still respond to knock() by displaying “Knock, knock.”

A Special Variable for Inheritance: super

Sometimes, you want to add to the behavior you inherit from your superclass, not change it completely. Is there any

way we can perform the Dwelling’s knock() behavior in conjunction with our House’s knock() behavior? You

can do just such a thing by explicitly passing the method up the class hierarchy. This makes your superclass’s method

execute in addition to your own. For example, if we overrode knock() in the House class, the words “Ding dong”

would appear in the Java Output window. If we then passed knock() to our superclass, the Dwelling’s knock()

method would execute, and the words “Knock, knock” would also appear in the Java Output window. The way we

refer to our superclass is by using the word super. Here’s how we could rewrite the House class to do this:

class House extends Dwelling {
 boolean hasFirePlace;
 void knock() {
 System.out.println(“Ding dong”);
 super.knock();
 }
}

Using the super variable to refer to our superclass is similar to using the this variable to refer to our-

selves. This relationship is shown in Figure 10.5.

Barry Boone and Dave Mark Learn Java on the Macintosh 266

FIGURE 10. 5 The variable named this represents the current object. The variable named super represents its

superclass.

Testing Objects

We mentioned that a variable defined as holding instances of a certain class can actually hold instances of that class’s

subclasses, as well. For example, in our example with the classes Shape, Circle, and Square, we could define a vari-

able that could hold any of these by writing:

Shape s;

s could now hold an instance of class Shape or an instance of one of class Shape’s subclasses—Circle and

Square. A variable declared like this, however:

Circle c;

could only hold a circle. It would not be legal to assign c an instance of class Shape or Square.

this

super

Barry Boone and Dave Mark Learn Java on the Macintosh 267

Since it is possible for a variable like s to hold different types of objects, Java provides an operator to test the

object to see what class it inherits from. This operator is called instanceof and is used in the following format:

object instanceof ClassName

where object is a variable containing your object, and ClassName is the name of the class to see if it is

an instance of. instanceof will return true if the object is an instance of the supplied class name. It will also

return true if the object is an instance of one of its subclasses. For example, to see if an object is an instance of a

Circle, you can write:

if (myObject instanceof Circle)
 System.out.println(“myObject is an instance of Circle”);

Since instanceof evaluates to true if the object is an instance of one of the class’s subclasses, if myO-

bject really is a circle, instanceof will also evaluate to true if you write:

myObject instanceof Shape

Barry Boone and Dave Mark Learn Java on the Macintosh 268

Class Object

You’ve already seen that you can create your own hierarchies of classes, and you’ve read that Java provides lots of

classes that you can use in your own applets. Now to combine these two ideas: Java also provides entire class hierar-

chies that describe its own classes. These hierarchies of pre-existing classes provide a kind of scaffolding, or frame-

work, on which you can build your own applets.

Java defines a class called Object, and in Java’s class framework, the role of Java’s Object class is key. In

fact, Java’s Object class sits at the very top of Java’s entire class framework. Every one of Java’s classes can claim

class Object as its ancestor. Figure 10.6 shows a partial class hierarchy of Java’s class framework, with class Object

sitting at the root of everything.

FIGURE 10. 6 This diagram shows a simplified version of Java’s class hierarchy. Only some of the classes you

learned about so far are represented here. Still, you can see how all of these classes are descendents of class

Object.

Why is Java’s class Object so important? Because it provides the minimum level of behavior that all objects

in Java must provide. Whether you know it or not, you’ve been creating subclasses of class Object already! Of course,

Object

Applet

SystemMath Date

other classes
you haven’t
learned about
yet

Barry Boone and Dave Mark Learn Java on the Macintosh 269

since you’re creating subclasses of class Applet, your Applet subclasses, such as MyApplet, ultimately inherit from

class Object as well, as shown in Figure 10.7.

FIGURE 10. 7 As we’ve written previously, MyApplet is a subclass of Applet. Applet can also trace its ancestry

back to class Object (as can all classes).

Even a class like Circle, which we defined before like this:

class Circle {
 Color color;
 int x;
 int y;
}

inherits from class Object! How is this possible? We didn’t indicate that Circle extends class Object. None-

theless, Java turns such class definitions into:

class Circle extends Object{
 Color color;

Object

Applet

MyApplet

Barry Boone and Dave Mark Learn Java on the Macintosh 270

 int x;
 int y;
}

Java does this for you because you must provide the behavior that’s in class Object. Otherwise, you’d never

be able to create new objects, and Java would not be able to manage the objects in your computer’s memory. This

means that there’s no escaping Java’s class framework. You will always plug in somewhere. Either you will explicitly

inherit from one of Java’s classes, or Java will provide Object as your superclass for you.

By the Way

Since all of your own classes, as well as Java’s, can trace their ancestry back to class Object, evaluating this piece of

code:

myObject instanceof Object

will always evaluate to true.

Now that we’ve looked at inheritance, and now that you have a sense that Java provides classes for you, let’s

look at how Java organizes its classes. Rather than just provide you with a big collection of classes, Java collects its

classes into groups, called packages.

Barry Boone and Dave Mark Learn Java on the Macintosh 271

Packages

We’ve even been using two of Java’s packages so far, though we haven’t explained this yet. Let’s take a moment to

understand how Java organizes its classes into packages and how we can use these packages ourselves. Then you’ll

see how we’ve been using Java’s packages all along.

Java groups its many classes into six basic packages. Each package is focused on a particular feature set of

Java. There’s a package for developing user interfaces, there’s a package for communicating over the Internet, and so

on. We’ll look at these different packages in this section.

Using Packages

Classes within the same package can access each other’s variables and methods, as long as those variables and meth-

ods are not defined using the keywords private or protected, which changes the rules, as you’ve learned.

You’ve already seen how these restrict access to variables and methods.

When you create a new applet, all of the classes that are defined as part of that applet are placed in the same,

default package. However, this default package is separate from Java’s packages. The easiest way to use a class that’s

not in the same package as your own is to import it first. For example, if you want to use the Date class, which is in a

package called util, you can import it like this:

import java.util.Date;

This line of code says that you will use a class called Date, which is located in Java’s util package.

Barry Boone and Dave Mark Learn Java on the Macintosh 272

The other way to refer to a class that’s not in the same package is to spell out exactly which package that

class belongs to. That’s what we’ve been doing so far with the Applet class. We’ve been subclassing Applet, but we

can’t just say:

public class MyApplet extends Applet ...

unless we first import the Applet class or tell Java how to find the Applet class. That’s why we’ve been writ-

ing, instead:

public class MyApplet extends java.applet.Applet ...

This tells Java exactly which package to look in to find the Applet class (namely, the package defined by Java

called applet). If we wanted to, we could instead write:

import java.applet.Applet;
public class MyApplet extends Applet ...

You might have noticed that we have also been using a class called System. We’ve used this class extensively

to write messages to the Java Output window. The reason we did not have to import System is that it belongs to a

package called lang. Java’s entire lang package is imported for you automatically. This package contains many

classes that support Java’s basic features, so Java imports all the classes in this package without you needing to ask

for them.

Barry Boone and Dave Mark Learn Java on the Macintosh 273

If you want to import all the classes in a package explicitly (and you often do), you can use a wildcard nota-

tion by writing a asterisk (*). For example, there’s a package called util that provides some useful utility classes. To

import all of these for use by your program, you can write:

import java.util.*;

Note that all of your import statements must come at the top of your source file.

public Classes

The variables and methods in classes, and the classes themselves, are, by default, only available to other classes in the

same package. If you want to make a class, variable, or method available to classes in other packages, you need to

declare your class, variable, or method as public. This is why you needed to declare your applet class as public:

So that Java’s classes, defined in a different package, could invoke your applet’s methods. This is why the life-cycle

methods of init(), start(), stop(), and destroy() were declared as public. This was done so Java

could invoke these methods from the classes in its own packages.

What Classes are In Java’s Packages?

Java defines six major packages. Each package contains classes that provide a broad area of functionality. These

packages are:

1. lang The lang package contains classes that provide basic behavior for your applets and for

Java itself. These classes include Object, which is at the root of all class hierarchies, and System, which allows you to

write to the standard output. There are many other classes in this package as well, and you’ll be introduced to a lot of

them as you progress through this book.

Barry Boone and Dave Mark Learn Java on the Macintosh 274

2. awt The awt package contains classes that help you create a user interface. This package was

named awt because this is an acronym for “abstract windows toolkit.” The idea behind a windows toolkit is that it pro-

vides a way to create user interfaces components, such as buttons, text fields, and menus, and containers which orga-

nize these components. These components allow users to interact with your applet in a graphical way (that is, using

the mouse, by pointing and clicking), and they allow your applet to run in a graphical environment (such as the Mac

or Windows). The word “abstract” is meant to explain that the classes in this package are not specific to any particular

platform. That is, if you create a button on the Mac using the classes in this package, you can create a button for Win-

dows NT using the same classes in this package. We’ll touch more on this package in the next chapter, where we’ll

start creating user interfaces.

3. io The io package is used for receiving input and sending output. For example, you can use

the classes in this package to read data coming in over the Internet. You can also use the classes in this package to

access files on your computer’s hard drive.

4. net This package contains some very sophisticated classes that allow you to write Internet

applications with ease. For example, there are classes for dealing with Universal Resource Locators (URLs), sockets

to allow communication between a client and a server over the Internet, and other Internet and networking functions.

5. util The util package contains a bunch of miscellaneous classes that help with a variety of pro-

gramming tasks. There’s a class that is useful for working with dates, a class for mathematics features, such as trigo-

nometric calculations, a class for generating random numbers, and more.

6. applet The only class defined in this package is the Applet class. We’ll continue to explore the

features of this class in upcoming chapters.

All of these packages and the classes inside them are available for you to use as you see fit. You might even

want to use these classes just for the data and methods they define. For example, the Math class defines a value for pi

Barry Boone and Dave Mark Learn Java on the Macintosh 275

that you might want to use at some point. This variable, named PI, is a class variable. How do you think you access

it? You got it:

Math.PI

This just gives you a taste of what’s available. You’ll see many more examples of using Java’s classes as you

forge ahead.

Sample Programs

The two sample programs in this section explore overriding methods, accessing the code in an object’s superclass,

and using keywords to control access to variables and methods in class hierarchies.

Triangle.µ

For our first example, let’s return to our friend the triangle. Open the folder 10.01 - triangle in Learn Java

Projects. Open Triangle.µ, make the project, then run the applet by dropping Triangle.html on the Metrow-

erks Java icon. A number of messages will appear in the Java Output window, as shown in Figure 10.8.

FIGURE 10. 8 The messages written by the TriangleApplet to the Java Output window.

Barry Boone and Dave Mark Learn Java on the Macintosh 276

These messages relate to three triangles that we created in the code. At first, we checked to see if triangle 1

was equal to triangle 2 and triangle 3 by asking the triangle itself. Next, we checked to see if triangle 1 was equal to

triangle 2 and triangle 3 by asking the triangle’s superclass, the object. Notice the difference in the output. The trian-

gles reported that triangle 1 was equal to triangle 2, while the objects reported they were different. Let’s check out the

source code and see why this occurred.

Stepping Through the Source

The source code, located in TriangleApplet.java, defines two classes. The first is an applet, the second is a

class called Triangle. Let’s look at the Triangle class first.

The Triangle class starts by defining instance variables for a triangle’s base and height.

class Triangle {
 int base;
 int height;

The Triangle class then overrides a method that’s defined by class Object. This method is called equals(),

and it tests to see whether the object passed in as a parameter is equal to the object responding to this method invoca-

tion. If the object passed in is equal to the triangle, this method returns true. Otherwise, this method returns false.

Since equals() is defined as a public method in the Object class, we’ve also got to declare this method as pub-

lic here in the Triangle class. The equals() method that the Triangle class defines starts by defining a variable

called t.

 public boolean equals(Object obj) {
 Triangle t;

Barry Boone and Dave Mark Learn Java on the Macintosh 277

It then tests to see whether obj, the parameter passed in, is an instance of class Triangle.

 if (obj instanceof Triangle) {

If this parameter is a triangle, then we can go ahead and perform the special triangle test. First, in order to

work with the parameter as a triangle, we have to get it into a variable that we declared as a Triangle. We had to

declare it as an Object in the parameter list, because that’s how equals() is defined in class Object, and we’re over-

riding this method. We can’t change the method’s signature (it’s name and parameters), or Java will think we’re defin-

ing a new method. But now we need a Triangle. The way we get obj into a variable for triangles is by casting.

Casting is explained further in Chapter 12. Suffice it to say that we can assign this to a variable of type Triangle by

writing:

 t = (Triangle)obj;

Once Java recognizes this object as a triangle, we can acquire its base and height, which are instance vari-

ables of a triangle. If these are equal to the current object’s base and height, then we’ll consider these two objects to

be equal, and we’ll return true.

 if (t.base == base && t.height == height)
 return true;
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 278

For all other cases—that is, if the object is not an instance of class Triangle, or the base and height variables

were not equal—we’ll indicate that these two triangles are not equal by returning false.

 return false;
 }

The Triangle class also defines its own instance method called objectEquals(). The mission for this

method is to see what would have happened if we had not overridden equals(), but instead had left equals()

alone and let the Object class respond to this method using its own code. We can get to the Object’s equals()

method by using the variable named super. objectEquals() returns the result of the Object’s equals()

method.

 boolean objectEquals(Object obj) {
 return super.equals(obj);
 }

}

Now let’s turn our attention to the applet and see how the applet uses this Triangle class. The applet overrides

the init() method and defines three triangles. The first and second triangle are set to the same base and height; the

third triangle holds a different base and height.

public class TriangleApplet extends java.applet.Applet {

 public void init() {

Barry Boone and Dave Mark Learn Java on the Macintosh 279

 Triangle t1 = new Triangle();
 t1.base = 10;
 t1.height = 20;

 Triangle t2 = new Triangle();
 t2.base = 10;
 t2.height = 20;

 Triangle t3 = new Triangle();
 t3.base = 12;
 t3.height = 52;

Then we invoke each triangle’s equals() method. When comparing triangle 1 to triangle 2, the triangle’s

equals() method, not surprisingly, reports that these triangles are equal. Also not surprisingly, it reports that trian-

gle 1 and triangle 3 are not equal.

 System.out.println("The triangles say:");
 System.out.println("t1 == t2? " + t1.equals(t2));
 System.out.println("t1 == t3? " + t1.equals(t3));

But the code that’s in the Object class sees things differently. This code thinks that triangle 1 does not equal

triangle 2, and as far as the object is concerned, it’s right. These are different objects. The Object’s equals()

method also reports that triangle 1 is not equal to triangle 3, as we would expect.

 System.out.println("The objects say:");
 System.out.println("t1 == t2? " + t1.objectEquals(t2));
 System.out.println("t1 == t3? " + t1.objectEquals(t3));

 }

}

Barry Boone and Dave Mark Learn Java on the Macintosh 280

This example shows that overriding a method can change the behavior for an object. It also shows how to

invoke the code for an object that’s contained in the object’s superclass.

Next, we’ll look at some of the keywords you can use to define instance variables and instance methods, and

we’ll see how those affect access to these variables and methods.

AccessApplet.µ

Open 10.02 - access in the Learn Java Projects folder. Open AccessApplet.µ, make the project, then drop

the AccessApplet.html file onto the Metrowerks Java icon. The applet writes four lines to the Java Output win-

dow, as shown in Figure 10.9.

FIGURE 10. 9 The messages AccessApplet writes to the Java Output window.

The applet creates an object that represents a circle and an object that represents a square. It sets the data for

these objects, and then prints out this data. The Java Output window shows that the radius for both shapes is 20; it

then displays the colors for the shapes. The color for the circle is blue. This is indicated by the red and green compo-

nents having a value of 0, while the blue component has the maximum value possible (255). The color for the square

is white. This is indicated by the red, green, and blue components each having their maximum value (255). (You’ll

learn much more about colors in Chapter 11.)

Let’s look at the code and see how it’s set up to control and limit access to data within a class hierarchy.

Barry Boone and Dave Mark Learn Java on the Macintosh 281

Stepping Through the Source Code

Open AccessApplet.java and we’ll tip-toe through the source code. There are four classes in this file: AccessA-

pplet, Shape, Circle, and Square. Let’s start with the Shape, Circle, and Square, and come back to the applet itself.

The Shape, Circle, and Square are arranged in the hierarchy shown in Figure 10.10.

FIGURE 10. 10 Hierarchy of the Shape, Circle, and Square classes.

The Shape class maintains some information that the Circle and Square classes have in common. First, the

Shape class is defined as abstract. This is because it defines an abstract method named draw(). Therefore,

the Shape class can never be instantiated itself. Only subclasses of the Shape class that have implemented the

draw() method can be instantiated.

abstract class Shape {

The Shape class defines a class variable named radius. This variable is shared between both the Circle and

the Square, which are subclasses of class Shape that we’ll define next.

Shape

Circle Square

Barry Boone and Dave Mark Learn Java on the Macintosh 282

 static protected final int radius = 20;

Notice that this class variable is defined as protected. This means that the only classes that can access

this variable are the Shape class itself and the subclasses of the Shape class. The applet, for example, would not be

able to access this class variable. In other words, we are making this class variable “private” to this branch of the class

hierarchy. (We’ve also defined this variable as final, which means it cannot be changed. You’ll learn more about

final variables in Chapter 13.)

The next variable is an instance variable called color. This variable is defined as holding an instance of

class Color, which stores a color in Java. Notice that we’ve defined color to be private. This means that this vari-

able can only be accessed by instance methods defined by the Shape. Not even circle or square objects, which inherit

from class Shape, can access this variable.

 private Color color;

Next, we’ve defined two int variables, x and y. These variables keep track of a shape’s x and y locations on

the screen.

 int x;
 int y;

These variables are not declared as protected or private. This means that any method in any class in

the same package as the Shape can access these variables. For example, these variables can be accessed from the

applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 283

Next, we defined the abstract method named draw() that the Circle and Square classes will have to

implement.

 abstract void draw();

Since we made the color variable private, we next provide two methods to set and get the value for

color. The first method sets this instance variable.

 void setColor(Color color) {

Now, here’s the reason we made color private to the Shape class. The Shape class ensures that a

shape’s color (for whatever reason) can never be set to black. If other objects could access the color variable

directly, they could set this variable to any color they wanted to, including black. However, by forcing other objects to

go through the setColor() method to set the color for this variable, the Shape class can intercept any attempt to

set this color to black. setColor() handles such an attempt by setting the color to white, instead. Otherwise, it

allows color to be set to the new color.

 if (color == Color.black)
 this.color = Color.white;
 else
 this.color = color;
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 284

The Color class defines a whole bunch of class variables that define colors for Java. These variables are com-

mon colors such as black, white, blue, red, and so on. Since they’re class variables defined by the Color class, you can

access these colors by writing Color.black, Color.white, Color.blue, Color.red, and so on, as we’ve

done in the code above.

Since color is private, if we want other objects to be able to get at it, we also have to provide a method

to retrieve the color, as well as setting it.

 Color getColor() {
 return color;
 }

}

The Circle and Square classes are straightforward by comparison. The Circle class, for example, starts out

by indicating it is extending the definition of class Shape.

class Circle extends Shape {

Circle, then, is a subclass of class Shape; class Shape is a superclass of class Circle. (Since all classes inherit

from class Object, class Object is also an ancestor of class Circle; class Circle is a descendent of class Object.)

Circle implements the draw() method so that it does not have to be an abstract class and can be instan-

tiated.

Barry Boone and Dave Mark Learn Java on the Macintosh 285

 void draw() {

 It supplies two println() statements for this method. The first displays the radius for this shape.

Remember, this is a protected variable, which means subclasses can access it.

 System.out.println("Circle: radius = " + radius);

The next println() statement displays the color for the circle. It does this by accessing the color using

getColor(). The circle object dispatches this method to itself. Not finding it there, Java will look in its superclass,

which is class Shape, where it does exist. getColor() works as we described, returning the value of the private

variable named color in the Shape class. This sequence is shown in Figure 10.11.

FIGURE 10. 11 Method invocations propogating up the class hierarchy. In this example, getColor() is not found

in the Circle class, so Java seeks it out in the Shape class, where it is found and executed.

code for the

code for the

getColor() {

}

1) invoke getColor()

2) getColor() not found in Circle,
look for it in Shape

3) getColor() is found in
Shape and its code is
executed

Circle class

Shape class

Barry Boone and Dave Mark Learn Java on the Macintosh 286

With the color object returned by getColor(), we can use a method defined for color objects called

toString(). This method creates a string representing the color information for that color object. Putting this

inside of a println() statement makes this information appear in the Java Output window. This is the color infor-

mation for red, green, and blue that we saw when we ran the applet.

 System.out.println("Circle: color = " +
getColor().toString());
 }
}

Here’s the Square class, which is almost identical to the Circle class.

class Square extends Shape{
 void draw() {
 System.out.println("Square: radius = " + radius);
 System.out.println("Square: color = " +
getColor().toString());
 }
}

Now we can look at the applet itself. First, the applet imports the Color class so that we can use it in all the

classes in this file.

import java.awt.Color;

Barry Boone and Dave Mark Learn Java on the Macintosh 287

Then we defined an init() method for the applet. We start by creating instances of the Circle and Square

classes.

public class AccessApplet extends java.applet.Applet {

 public void init() {

 Circle c = new Circle();
 Square s = new Square();

We then use the setColor() method to set the color of the circle to blue and to try to set the color for the

square to black.

 c.setColor(Color.blue);
 s.setColor(Color.black);

However, you already know what will happen when we try to set the color to black; it will be set to white

instead! This is verified by what appears later in the Java Output window.

Next, the applet sets the x and y instance variables for the circle and square. Notice how we can access these

variables directly because the AccessApplet class is in the same package as the Circle and Square classes (by virtue of

being defined in the same file).

 c.x = 50;
 c.y = 60;

 s.x = 100;

Barry Boone and Dave Mark Learn Java on the Macintosh 288

 s.y = 200;

And finally, invoking the draw() method for the circle and square makes each object display its data in the

Java Output window.

 c.draw();
 s.draw();

 }

}

We’ll use classes very similar to the Shape, Circle, and Square classes defined here in a number of applets

coming up in the rest of this book.

Review

Inheritance allows you to extend existing classes. This allows you to start with a base level of code that already works

and then add to it to write your own, custom code. Inheritance also allows you to create class hierarchies, where you

can group together common code in superclasses to share between classes.

By using special keywords, such as private, protected, public, and abstract, you can obtain a

great deal of control over your class hierarchies. You can either let the default thing happen and have classes inherit all

of the variables and methods defined in their superclasses, or you can control which variables are inherited and which

are not.

Barry Boone and Dave Mark Learn Java on the Macintosh 289

Java defines its classes in six different packages. You must import a class defined in another package before

you use it, and you can only use public classes. (All of the classes in the lang package are imported for you auto-

matically.) Classes within the same package can freely communicate with each other. You can use a wildcard symbol

(*) to import all of the classes defined in a particular package.

What's Next?

At this point, you know enough to begin building a graphical user interface for your applet. In the next chapter, we’ll

paint in the applet and display user interface components such as text fields, buttons, and check boxes. We’ll even

learn enough to be able to tell when the user has interacted with them, such as when the user types in text or clicks a

button. So hang on and let’s have some fun!

Barry Boone and Dave Mark Learn Java on the Macintosh 290

CHAPTER 11 Creating a User Interface

The first ten chapters brought you up to speed on basic Java concepts. These chapters introduced you to the CodeWar-

rior Java development environment and stepped you through enough actual code that you’re probably itching to make

your applet look like something by now, by golly! Enough of these applets with empty windows! The good news is

that you now know enough to start putting together a user interface.In this chapter, we’ll create and arrange an

applet’s user interface. We’ll display shapes, print messages, create text fields, buttons, and choice lists, and we’ll start

interacting with the user by responding to mouse clicks and keyboard entry.

There are two ways that your applet can present a face to the world.

1. Your applet can draw, paint pictures, and display messages. Users generally cannot interact with drawn pictures

and messages—they’re just for display purposes.

2. Your applet can display user interface elements, such as buttons, text fields, and choice lists. Users interact with

these elements by clicking them, typing text into them, and selecting choices they present. These elements allow

users to work with your applet and control what it does.

Generally, you will use a combination of these two techniques when you make your applet appear the way

you want it to. For example, the SimpleDraw applet you worked with earlier is a prime example of using both these

techniques in one applet. SimpleDraw provides two choice lists to allow the user to select a shape type and a color.

Then this applet paints a shape on the screen when the user clicks the applet. SimpleDraw uses user interface ele-

ments and drawing techniques when presenting its face to the world.

This chapter explains how to go about arranging your applet’s display using both drawing techniques and

user interface elements. We’ll start with drawing, and then move on to creating and arranging interactive user inter-

face elements.

Barry Boone and Dave Mark Learn Java on the Macintosh 291

Drawing

Java provides a number of ways for you to draw in your applet. You can draw lines, dots, circles, and squares. You can

display images. You can draw in different colors. You can even display text in your applet by drawing it. When you

display text, you can also control the way the text looks by choosing its font and color.

The idea of “drawing” text might sound strange, but think of it as painting the text with a brush. The differ-

ence between “drawing” text and using a user interface element, such as a text field, to display text is that when you

draw text, the user cannot edit the text. By contrast, when you use a text field to display text, the user can edit the text

(unless you set the property of the text field to be read-only). This section will show you how to draw text; the next

section will explain how to create and display text fields to allow the user to enter text.

Drawing is centered around the paint() method. So, let’s start by looking at paint().

The paint() Method

Every time your applet needs to be redrawn, Java will invoke your applet’s paint() method. You can provide a

paint() method, or not provide one, as you desire. Up until now, we did not provide one. And what was the result?

We had an empty applet! Our applet did not provide any behavior when it was asked to paint itself, so it presented an

empty, gray window instead.

When does Java try to invoke your applet’s paint() method? This will occur whenever the user does

something that makes your applet’s display obsolete. For example, if the user resizes your applet, your applet’s dis-

play will no longer be current, and Java will invoke your applet’s paint() method. If the user is displaying another

window on top of your applet and then closes that window, Java will recognize that your applet must redisplay itself.

Again, Java will invoke your applet’s paint() method.

Barry Boone and Dave Mark Learn Java on the Macintosh 292

What happens if the program itself does something that makes the applet’s current display obsolete? For

example, what if the applet changes the color of a circle it’s displaying every ten seconds? If the applet wants to

repaint itself, it can ask for its paint() method to be invoked. The applet does this by invoking its own

repaint() method. Java then knows to invoke the applet’s paint() method.

Warning

You should never invoke your own paint() method directly, because Java keeps track of which parts of your applet

have been recently refreshed and which parts are “dirty.” If you invoke paint() directly, you circumvent Java’s

efforts to keep track of this information. However, if you invoke repaint(), Java can then keep tabs on what’s

going on, so this is definitely the safer method to invoke.

Here’s the definition for an empty paint() method:

public void paint(Graphics g) {
}

This method is declared as public and does not return a value, just like the life-cycle methods. However,

unlike the life-cycle methods, paint() takes one parameter. This is an object that’s created for you by Java. This

object is an instance of the Graphics class. Let’s take a look at what the Graphics class is all about and how you can

use the graphics object to perform drawing operations.

The Graphics Class

When Java invokes your paint() method, it passes you an instance of class Graphics. The simple way to under-

stand the Graphics class is to think of it as defining many methods for drawing. A graphics object can draw all sorts of

shapes and lines, and it can display text as well. But this ignores the question of where does your drawing go? If you

use a graphics object to draw a blue diamond, for example, where is this blue diamond drawn? The whole truth is that

Barry Boone and Dave Mark Learn Java on the Macintosh 293

a graphics object is more than just a collection of methods that draws on the screen. Every graphics object is also tied

to a particular user interface object. When you draw by invoking a graphic object’s method, the particular graphics

object you use determines where your drawing shows up. If you use a graphics object tied to your applet, your draw-

ing ends up in your applet. If you use a graphics object tied to a button, your drawing shows up in the button.

When you supply a paint() method for a user interface object, Java hands you a graphics object tied to

the object for which you’ve defined your paint() method. So for your applet’s paint() method, the graphics

object is tied to your applet. If you create your own subclass of Button called MyButton and you supply a paint()

method for MyButton, the graphics object passed to you in MyButton’s paint() method will be tied to the particu-

lar button that’s being painted.

As we mentioned, graphics objects allow you to draw shapes such as rectangles and ovals, lines such as

straight lines and arcs, images, and even text. The methods you’ll use the most when drawing with a graphics object

are:

• fillOval(), which draws a solid oval (you can draw a circle by setting the width and height of the oval to the

same value)

• fillRect(), which draws a solid rectangle (as with the oval, you can draw a square by setting the width and

height of the rectangle to the same value)

• drawLine(), which draws a line between two points

• drawArc(), which draws an arc within a rectangle, given an initial angle (0 is at the 3:00 position) and an end-

ing angle (positive angles make the arc draw in a counter-clockwise rotation)

• drawImage(), which draws the image you pass to it

• drawString(), which displays the text you pass to it

You can also use a graphics object to find out about the current state of graphics information. For example,

here are two useful methods for getting and setting useful graphics information:

Barry Boone and Dave Mark Learn Java on the Macintosh 294

• setColor(), which sets the color to use when drawing

• setFont(), which sets the font to use when displaying text

There are many more instance methods defined by the Graphics class. You can check out the documentation

for the classes for a complete list. You can also look at Chapter 15 for information on how to look up information

using the HTML files documenting Java’s packages.

Warning

In general, you should never try to create your own graphics object. Instead, use the one that Java provides for you in

the paint() method. Another way to get a graphics object is to ask Java for the one that’s tied to a particular user

interface component. You can do this by invoking the component’s getGraphics() method, which will return a

graphics object. If the component is not currently displayed on the screen, getGraphics() returns null.

Color

Java provides a class called Color. This class makes it unlikely that you’ll ever create any color objects yourself,

although it’s easy enough to do so. The beauty of Java’s Color class is that it defines a number of class variables that

already contain predefined color objects. These include most common colors, such as blue, red, yellow, green, orange,

black, white, and gray. These class variables are named after the colors they encode, so to get a color object that rep-

resents red, for example, you can simply refer to Color.red. To get a color that’s set for blue, you can use

Color.blue.

To create your own color, you need to supply the Color’s constructor with the red, green, and blue compo-

nents of your color. Each of these three color components ranges on a scale of 0 (no trace of this color is in the overall

color) to 255 (use this color at full intensity).

You’d need a color chart to figure out all the many colors you can create by ranging the red, green, and blue

components between 0 and 255. But here’s a sense of what’s happening. You can think of each of these colors (red,

Barry Boone and Dave Mark Learn Java on the Macintosh 295

green, and blue) as a spotlight. If none of them are on, you have darkness (black). If all of them are on, the total light

appears white. If only one spotlight is on, the light appears to be that color (red, green, or blue). If different spotlights

are on with different intensities, you can create every other color there is. (Your television and computer monitor use

this exact same technique to create colors, by the way.) Here are some examples.

If you had the blue component set to 255 and the red and green components set to 0, the resulting color

would be blue. If you had the red and green components set to 255, and the blue component set to 0, the resulting

color would be yellow (really). To get black, you would set all three components to 0. To get white, you would set all

components to 255. To get gray, you would set all components midway between 0 and 255: You’d set them to 127.

Here’s an example of creating a new color object that produces orange, which results from a combination of

red and green in different intensities, and no blue component:

Color myOrange = new Color(255, 200, 0);

As we said, you’ll usually just use a color object that’s been created for you and is maintained by the Color

class. You’ll use a color object when you draw. For example, to set the current drawing color, you use a method pro-

vided by the graphics object called setColor(). To set the current drawing color to pink, for example, you could

write setColor(Color.pink). Then, any lines, shapes, or text you drew using that graphics object would show

up in pink.

Fonts

When you want to use the graphics object to draw text, you’ll sometimes be concerned about what font your text

appears in. You can use the getFont() and setFont() methods provided by the graphics object to get and set

the current font, and you’ll use a font object, much as you used a color object above, to specify a particular font.

Barry Boone and Dave Mark Learn Java on the Macintosh 296

Java does not predefine a bunch of fonts, as it does with colors. However, it’s very easy to create a particular

font object. All you need to do is specify the name of the font, its style, and its point size when you invoke the con-

structor for the Font class.

These are pretty easy parameters as far as far as the font name and point size are concerned. The style is a lit-

tle tricker and we’ll get to that in a moment. You can refer to a font name within a string, as in “Helvetica,” “Courier,”

“Times Roman,” and so on. Typical point sizes are 10, 12, 14, and 18. The styles are provided by class variables

defined by the Font class. Here are the three you’ll use most often (it seems pretty clear what style each class variable

represents):

• Font.PLAIN

• Font.BOLD

• Font.ITALIC

For simple styles—for example, for a font that’s italic, or bold, or plain, you use a constant defined by the

Font class that represents this style. Here’s an example of creating a font that’s an italic Helvetica in size 14.

Font f = new Font(“Helvetica”, Font.ITALIC, 14);

In case you’re wondering,

the font looks like this.

If you want to combine italic and bold, you use the “logical or” operator that we touched on in a tech block

in Chapter 6. This combines the values represented by Font.ITALIC and Font.BOLD, and produces a value that

Java recognizes as meaning both. So, to do the same thing as above but also make the font bold, we would write:

Barry Boone and Dave Mark Learn Java on the Macintosh 297

Font f = new Font(“Helvetica”, Font.ITALIC | Font.BOLD, 14);

Which would make

the font look like this.

Java's User Interface Elements

Java provides a whole bunch of classes that define user interface elements. The way that you use these classes is by

creating instances of them and then arranging them inside your applet. This chapter will go about showing you how to

do this. Keep in mind that Java’s user interface elements work in any operating environemt—Windows NT/95,

Solaris, the Mac, and wherever else Java exists. Of course, we’ll use the Mac to develop our own user interfaces, but

the same code we develop on the Mac to present a user interface will work anywhere.

Some User Interface Components You Can Use

Java provides classes that implement all of the standard user interface elements you’ve come to expect from modern

software applications. These include:

• text fields, which allow the user to enter text using the keyboard

• choice lists, which present a drop-down list of choices for the user to select from

• buttons, which perform some action when the user clicks them

• check boxes, which allow the user to choose an option (if assigned to a check box group, only one check box will

be selected at a time)

Barry Boone and Dave Mark Learn Java on the Macintosh 298

• labels, which display some text for titles and information (but which the user cannot edit)

Figure 11.1 shows an example of an applet that displays these user interface elements. (You can find the

source code for this applet in the Learn Java Projects folder under 11.01 - components.)

FIGURE 11. 1 An applet that displays a choice (currently displaying “Apple”) a text field (currently blank), a button

(that says “Click me”) a label (that says “I am a label”) and three check boxes (Yes, No, and Maybe) in a check

box group.

Figure 11.2 shows how you can interact with these components, selecting a new choice, entering text into the

text field, and selecting a new check box (you can also click the button, though you can’t interact with the label).

Barry Boone and Dave Mark Learn Java on the Macintosh 299

FIGURE 11. 2 Here, the user has interacted with the user interface components in the applet. The user has clicked

the choice list and is currently holding down the mouse button. This makes the choices in the choice list visible,

allowing the user to slide the mouse cursor to the appropriate choice to select it. The user has also typed some text

into the text field and has selected a new check box. Selecting the new check box has unselected the previously

selected check box, which was “Maybe.” This occurred because these three check boxes are part of the same

group. If they did not belong to the same group, they would behave independently, and more than one check box

could be selected at the same time.

Java provides some other user interface components which we won’t go into here. These include menus,

scroll bars, and text areas, among others. Check out Appendix G for information on where to find examples of these

other components.

There is also another set classes that allows you to arrange these components in relation to each other and

group together related components. We’ll examine some of these classes, called layout managers and containers, later

in this chapter. For now, let’s take a look at each one of the user interface components displayed in the applet in Fig-

ure 11.1 to understand how we can go about creating them.

Creating New Elements

It’s fairly straightforward to create user interface components like the ones in the applet in Figure 11.1. All you have

to do is perform the following three steps:

1. Create a new instance of the appropriate component class.

2. Initialize the component so that it contains the choices you want.

3. Add the component to your applet’s display.

When you create a user interface, you most likely want to create it once, when your applet begins, and never

again. This means that most of the time, you will create your user interface in your applet’s init() method. That’s

Barry Boone and Dave Mark Learn Java on the Macintosh 300

what we’ve done for the applet in Figure 11.1. Let’s look at each of the four components we displayed in our simple

applet one at a time.

Buttons

One of the button’s constructors takes a string, which allows you to name the button when you create it. For example,

one way you can creat a button titled “Click me,” like we did in the applet just shown, is to write:

Button myButton = new Button(“Click me”);

Labels

Labels are created similarly to buttons. You can provide a string for the label when you create it. The difference

between buttons and labels is that you can interact with a button by clicking it; labels are for display only.

Button myLabel = new Label(“I am a label”);

Text Fields

To create an instance of class TextField, you can use a few different constructors. One of these specifies what text the

text field should contain initially. (The purpose of text fields is for users to type their own text into these fields.) When

you create a text field, you can also specify the width of the text field by indicating its number of columns. This is a

rough indication of how many characters the field can contain.

Barry Boone and Dave Mark Learn Java on the Macintosh 301

For example, to create a text field that initially contains the character 0 (zero) and can hold 8 characters

(approximately), you can write:

TextField tf = new TextField(“0”, 8);

Choices

Choices provide a selection list for the user to pick one of a few different strings. Creating the choice itself is easy

enough:

Choice c = new Choice();

To fill up the choice with the strings the user can select, you can use the choice’s addItem() method, like

this:

c.addItem(“First Choice”);
c.addItem(“Second Choice”);

and so on, for however many choices you have.

Checkbox

To create a check box, you can use one of two common constructors. The first creates a check box that’s not related to

any other check box:

Barry Boone and Dave Mark Learn Java on the Macintosh 302

Checkbox c = new Checkbox(“first choice”);

This would create a new check box that was initially unselected. (You can always select it from your own

code by invoking its setState() method and passing it true or false.)

If you created another check box, like this:

Checkbox c2 = new Checkbox(“second choice”);

and displayed both check boxes, the user would be able to turn them on or off (select them and unselect

them) indepently of each other. If you wanted them to be tied together, so that only one of these check boxes could be

selected at one time, you can create an exclusive choice check box. The way you do that is by creating an instance of

class CheckboxGroup, and assigning the mutually-exclusive check boxes to the same check box group. You assign

the check box group when you create the check box, and you also indicate whether the check box should be on or off

(by also passing the constructor the value true or false). For example, you can write:

CheckboxGroup group = new CheckboxGroup();
Checkbox c1 = new Checkbox(“first choice”, group, true);
Checkbox c2 = new Checkbox(“second choice”, group, false);

This would create two check boxes, and the check box group would make sure that only one of these was

selected at a time. At first, the check box in c1 would be on, and the check box in c2 would be off (notice the true

and false values passed to the constructor that indicate this).

Barry Boone and Dave Mark Learn Java on the Macintosh 303

Making the Components Appear

To make a user interface component part of the applet’s display, you can invoke the applet’s add() method and pass

it the component you want to add to the display. (We’ll look at what’s going on with the add() method in just a

moment.)

Putting this all together, here’s the full listing for the init() method for the applet we displayed in Figure

11.1.

import java.awt.*;

public class UIApplet extends java.applet.Applet {

 Button button;
 Choice choice;
 TextField textField;

 /** Create a user interface. */
 public void init() {

 Checkbox checkbox;
 CheckboxGroup checkboxGroup;
 Label label;

 // create a choice list
 choice = new Choice();
 choice.addItem("Apple");
 choice.addItem("Banana");
 choice.addItem("Cherry");
 add(choice);

 // create a text field
 textField = new TextField(10); // 10 columns wide
 add(textField);

 // create a button
 button = new Button("Click me");
 add(button);

Barry Boone and Dave Mark Learn Java on the Macintosh 304

 // create a label
 label = new Label("I am a label");
 add(label);

 // create 3 exlusive-choice checkboxes
 checkboxGroup = new CheckboxGroup();

 checkbox = new Checkbox("Yes", checkboxGroup, false);
 add(checkbox);
 checkbox = new Checkbox("No", checkboxGroup, false);
 add(checkbox);
 checkbox = new Checkbox("Maybe", checkboxGroup, true);
 add(checkbox);

 }
}

Later in this chapter we’ll show you how to detect when the user has interacted with these components.

Arranging User Interface Elements

So far, we’ve created components just fine, and we’ve even added them to our applet’s display so that they appeared

on the screen. We used the add() method to make them appear, but we haven’t really investigated what the add()

method is doing; we just trusted this method to arrange our user interface components for us and make sure they were

displayed. It’s time to look at what’s really going on here and what you can do to influence the arrangement of your

user interface elements.

Barry Boone and Dave Mark Learn Java on the Macintosh 305

Containers

Your components can’t just be displayed on their own, independently of the rest of your user interface. Instead, they

need to be contained in something. What you need to do is place your components into a subclass of Java’s Container

class. This idea is shown in Figure 11.3.

FIGURE 11. 3 All component objects must be placed within an instance of class Container or a subclass of class

Container.

As it happens, the Applet class itself is a subclass of class Container! This means that your applet class can

contain user interface components. Very convenient. This is what happened when we invoked the add() method for

the applet in the example in the previous section: the component we passed along as a parameter for add() was

added to the applet; the applet became the component’s container. This idea is shown in Figure 11.4.

container

component

component

component

applet

component

component

component

Barry Boone and Dave Mark Learn Java on the Macintosh 306

FIGURE 11. 4 Applets can contain components because applets inherit all the behavior of containers, since they are

subclasses of class Container.

Arranging Elements With Layouts

One thing we haven’t covered yet is how these components know where they should appear within a container. When

you use add() to add a user interface component to a container, where does the component go? That is, how does

the container know how to position the component? Does the container position objects left to right? top to bottom?

Do all the components end up on top of each other in the middle of the container?

The answer is, it depends. What it depends on is the layout manager assigned to the container in which

you’re placing the components. Java defines five different types of layout managers, and each one does something a

little bit different. We’ll list the five here, discuss two of them in a little more detail, and then use these two in the

Sample Programs at the end of this chapter.

The five layout managers supplied by Java are:

• FlowLayouts, which arrange components left to right until it must move to the next line to fit a new component

into the display. At the end, each line will be centered.

• GridLayouts, which arrange components in a rectangular grid the size that you specify.

• BorderLayouts, which arrange components on either the left, right, top, bottom, or center. BorderLayouts use

directions to indicate where to place a component. These directions are “East” for left, “West” for right, “North”

for top, and “South” for bottom. “Center” places the component in the center of the container.

• CardLayouts, which present different screen arrangements (or cards, as in cards in a deck) to the user.

• GridBagLayouts, which allow you to create sophisticated arrangements of objects on the screen. These arrange-

ments are grid-like, but almost more in the sense of a game of Tetris than in a strict grid, because user interface

components can take up more than one grid.

Barry Boone and Dave Mark Learn Java on the Macintosh 307

Let’s look at the first two types of layout managers in this list in a little more detail.

Flow Layouts

Flow layouts are perhaps the easiest layout to use. This is the default layout manager for applets. Flow layouts start

placing components at the top left of your container (if you’re adding components to your applet, then the flow layout

starts in the top left of your applet). As you add more components to this container, the flow layout will continue add-

ing components along the top, moving left to right. This is shown in Figure 11.5.

FIGURE 11. 5 FlowLayouts arrange components in a container left to right as they are added, starting along the top

of the container.

When the next component to be added no longer fits on that row, the flow layout manager begins a new row.

It then centers everything on the first row. This is shown in Figure 11.6.

container

component 1 component 2 component 3

Barry Boone and Dave Mark Learn Java on the Macintosh 308

FIGURE 11. 6 When the next component to be added won’t fit on the current row, the FlowLayout places it on the

next row, and centers everything on the first row.

New components are now added to the second row, moving left to right. New components will be added on

this second row until they no longer fit on the second row, at which time the flow layout manager begins a third row.

Again, everything on the second row is centered. When the container is finally displayed, all of the rows are centered.

Figure 11.7. shows what the final display would like for three rows of objects.

FIGURE 11. 7 A container with three rows of components that used a FlowLayout to arrange them.

The applet we created that displayed the choice, the text field, button, label, and three check boxes were

added to the applet using the applet’s default layout manager—a flow layout. If you resize the applet, the flow layout

container

component 1 component 2 component 3

component 4

container

component 1 component 2 component 3

component 4 component 5

component 6

Barry Boone and Dave Mark Learn Java on the Macintosh 309

will rearrange the components according to the rules we just covered. For example, Figure 11.8 shows what the applet

would look like if we decreased the width and increased its height.

FIGURE 11. 8 Changing the dimensions of the container (in this case, of the applet) causes the flow layout manager

to rearrange the components.

The reason that FlowLayouts are easy to use is that you don’t really have to worry about them. You just keep

adding your components to the container, and the FlowLayout takes care of arranging them.

Grid Layouts

Grid layouts can help you arrange your user interface elements in a precise grid. When you create a grid layout man-

ager, you can indicate the number of rows and columns you’d like the grid to have. Here’s an example of creating a

grid layout object that would arrange objects in a grid that’s 5 rows by 3 columns:

Barry Boone and Dave Mark Learn Java on the Macintosh 310

GridLayout layout = new GridLayout(5, 3);

To attach the grid layout manager to the container, you need to invoke that container’s setLayout()

method and pass this method the new layout manager. (You’d have to use the setLayout() method for any new

layout manager you assign to a container. For an applet, its default layout manager is a FlowLayout, so we didn’t

have to create our own.) For example, here’s how you can assign a new grid layout object in a variable called

layout to the applet inside the applet’s init() method:

setLayout(layout);

When you add new components to a container using a grid layout, the components are arranged row by

row, starting in row one, column one, then row one, column two, and so on through the number of columns. Then

the grid layout manager starts in the next row at column one, and so on, until all of the columns and rows are filled.

This is shown in Figure 11.9.

Barry Boone and Dave Mark Learn Java on the Macintosh 311

FIGURE 11. 9 The GridLayout progresses left to right, row by row. All the components end up occupying one cell

in the grid.

The sample programs provide examples of using a flow layout (which is the default for applets) and a grid

layout (which we’ll create especially to arrange a user interface in a precise grid within an applet).

User Interface Hierarchies

Applets make great containers. For the applets in this book, we’ll always use an applet as our container. However, one

of the flexible things about containers is that containers can container other containers. This allows you to build up

fairly complex user interfaces. This section touches on how you can go about doing this and what classes Java pro-

vides to help you.

While you can often just use a layout manager to arrange your components in your applet, sometimes your

user interface will be too complex to arrange inside of only one container. For example, imagine the front panel of a

stereo. If stereo designers just added each control to the stereo as they thought of them, the front panel of the stereo

might be a confusing jumble of options—something like what’s shown in Figure 11.10.

FIGURE 11. 10 The controls on a stereo might be confusing if they were arranged when the designer thought of a

new one.

There are lots of controls there, but if you group them together, they’re not so confusing. You might group

together dials for the volume, treble, and base. You might group together buttons to control your compact disc player.

volume

treble
base

play

eject

stop

pause
1 10

lo hi
lo hi

Barry Boone and Dave Mark Learn Java on the Macintosh 312

Each of the different sets of controls might be organized into separate collections, something like what’s

shown in Figure 11.11.

FIGURE 11. 11 The designer of this stereo interface brought order to chaos by grouping together related controls.

User interface controls in your applet are not much different than the controls on a stereo. If you have a com-

plex arrangement of items, you might decide to create containers to hold each group of items, and then add the differ-

ent containers to your applet, as shown in Figure 11.12.

FIGURE 11. 12 Here, the user interface designer has collected components into containers, and then has added the

containers to the applet. One way to do this, for example, is to use a GridLayout to arrange your containers within

your applet in a grid that’s two rows by one column.

volume treble base

playeject stoppause

1 10 lo hi lo hi

component

container

container

component

component component component

applet

Barry Boone and Dave Mark Learn Java on the Macintosh 313

To help you arrange items, Java provides some additional subclasses of class Container (in addition to the

Applet class). There include:

• Frames, which can display a title and a menu bar

• Panels, which act as generic containers

Check out Appendix G for where to look for more examples of using these containers in your own applets.

Events

Remember back in Chapter 4 when you played around with the SimpleDraw applet? In SimpleDraw, you clicked on

the applet, and a new square or circle appeared, drawn in the color that you selected from a choice list. Every time you

clicked the mouse on the applet, you generated an event. In Java, an event represents some action taken by the user.

Every time the user interacts with your applet, the user generates an event. For example, if the user clicks the mouse,

this generates an event. If the user types in characters using the keyboard, this generates an event. Java tells your pro-

gram about events generated by the user, and that allows your program to take the appropriate action to react to the

user.

How Java Informs You of Events

How do these events reach you? If the user is constantly clicking and creating new shapes, how do you hear about it?

Thinking about what you’ve learned about how Java works, you might be able to figure it out. For example, when

your applet needs to know about a new phase in life that it’s entering, the appropriate life-cycle method is invoked.

Similarly, when your applet needs to know about a new event, the appropriate event method is invoked.

Barry Boone and Dave Mark Learn Java on the Macintosh 314

How Events are Propogated

Java starts by informing the particular component that the user interacted with that an event occurred. Figure 11.13

shows a possible arrangement of objects on the screen and which component is initially told about the event.

FIGURE 11. 13 When an event first occurs, Java informs the component that the user interacted with that there was

an event.

If the button handles this event, then that’s the end of the event. But if the button does not handle the event,

Java sees if some other object wants it. The object that Java informs next is the user interface container in which the

button is placed. In Figure 11.13, we’ve placed the button inside a panel. So, next, Java informs the panel of the event

that occurred to the button. This is shown in Figure 11.14.

applet

button

panel

1) User clicks the button

2) Java informs the
button of this event

applet

button

panel

1) User clicks the button

2) Java informs the
button of this event

3) Java informs the
panel of this event

Barry Boone and Dave Mark Learn Java on the Macintosh 315

FIGURE 11. 14 If the button does not handle the event, Java tells its container—in this case, a panel—about the

event that occurred to the button.

If the panel handles this event, then that’s the end of the event. But if the panel does not handle the event, the

event goes to its container, which in the diagrammed example is the applet. This is shown in Figure 11.15.

FIGURE 11. 15 If the panel does not handle the event, Java tells its container—in this case, the applet—about the

event that occurred to the button.

At this point, either the applet handles the event or it doesn’t. There’s no where else for the event to go if the

applet does not handle the event here. The event will just kind of “disappear” if no one ever handles it.

One useful consequence of this event propogation is that you don’t have to go around subclassing every user

interface component there is to make it do what you want. Instead, you can subclass a container that groups together

many other objects, or you can simply use your applet that contains everything, and supply a method that will react to

an event that occurs to one of the components contained within your container or applet. Your method can detect

where the event occurred and to what component and can take the appropriate action based on what the user clicked

or entered with the keyboard. You’ll see examples of this in the sample programs coming up.

applet

button

panel

1) User clicks the button

2) Java informs the
button of this event

3) Java informs the
panel of this event

4) Java informs the
applet of this event

Barry Boone and Dave Mark Learn Java on the Macintosh 316

Event Methods

There are a variety of event methods that are invoked for different situations—in particular for mouse clicks, mouse

movements, and keystrokes. These are the methods you’re likely to deal with the most, and we’ll get to these in a

moment. Before we look at these, however, you need to know about a method called handleEvent().

The method handleEvent() is a method that’s always invoked for every type of event. This method

takes an object that’s created by Java. This object encodes the information for the event and is an instance of class

(drum roll, please...) Event! The event object you receive identifies the user interface component in which the event

occurred as well as what type of event actually occurred. The two instance variables that you might deal with when

using an event object are:

• target, which contains the user interface component that the user interacted with to trigger this event

• id, which contains an identifier for this event

The id variable can be one of a few different values, and Java supplies a whole bunch of these as class vari-

ables in the Event class. So, for example, you can check to see if the event’s id is equal to Event.MOUSE_DOWN

(that is, if the user clicked the mouse) or Event.SCROLL_PAGE_UP (which will be the case if the user scrolled up

by a page) or Event.KEY_ACTION (if the user pressed a key on the keyboard). There are many more values for the

wide variety of events that can occur; these are documented with the Event class.

If you choose to supply a handleEvent() method, you can use the event object that’s passed to you as a

parameter to identify what the user did and take the appropriate action. However, handleEvent() is not necessar-

ily the most convenient method to override, because handleEvent() is invoked for every little thing that happens.

If all you’re interested in is mouse clicks, it would be great to override a method that only deals with mouse clicks. In

fact, Java makes this possible. The default behavior for handleEvent() is to invoke other methods, depending on

the type of event the user generated. These other methods (and their parameters) are:

Barry Boone and Dave Mark Learn Java on the Macintosh 317

• mouseEnter (Event e, int x, int y), which indicates if the mouse enters the boundaries of a com-

ponent

• mouseExit (Event e, int x, int y), which indicates if the mouse leaves the boundaries of a compo-

nent

• mouseMove (Event e, int x, int y), which is invoked everytime the mouse moves across the screen

• mouseDrag (Event e, int x, int y), which is invoked when the mouse moves across the screen

while the mouse button is being held down

• mouseUp (Event e, int x, int y), which signals that the mouse button has been released

• mouseDown (Event e, int x, int y), which indicates that the mouse button has been pressed

• keyDown (Event e, int key), which is invoked whenver the user types in a new character using the key-

board (the parameter key indicates which key the user typed)

• action(Event e, Object obj), which is invoked for every action that occurs, such as a mouse click or

the user pressing enter (but not for every event, such as the user typing a keyboard character)

The x and y parameters indicate where the user clicked if the event was generated using the mouse. So, if

all you care about are mouse clicks, you might decide not to override handleEvent() and filter the events that

rush in like a tidal wave, and instead pan in the stream of special events, looking for the event in which you’re

interested. In other words, if you’re interested in mouse clicks, you have two choices:

1. You can override handleEvent() and check every event object’s id variable for a match to

Event.MOUSE_UP.

2. You can override mouseUp().

The same event object is passed along to the special event methods, so you can still check the target of the

event to make sure the event occurred in a component that you want to handle.

Barry Boone and Dave Mark Learn Java on the Macintosh 318

Earlier in this chapter, we arranged a user interface containing of a choice list, a text field, a button, a label,

and three check boxes. All we showed so far was the init() method that created these components. Now, let’s look

at what we might do if we wanted to detect which components the user selected.

We can do this by overriding the action() method for our applet. Since we saved the text field, button,

and choice objects in instance variables, we can compare these directly to the event’s target variable to see if one

of these is the component the user interaced with. Since we did not save the individual check boxes (though we could

have done so easily enough), we will check instead to see if the target object is in fact an instance of a check box.

Here’s the code:

public boolean action(Event e, Object arg) {

 if (e.target == textField)
 System.out.println("User entered text into the text field");

 else if (e.target == button)
 System.out.println("User clicked the button");

 else if (e.target == choice)
 System.out.println("User selected a new choice");

 else if (e.target instanceof Checkbox)
 System.out.println("User clicked a check box");

 else
 System.out.println("Unrecognized event");

 return super.action(e, arg);

}

At the end, we return what the superclass feels is appropriate for this action. We’ll look at other examples of

handling events in the sample programs.

Barry Boone and Dave Mark Learn Java on the Macintosh 319

One last thing. All of the event methods return a boolean value. This return value lets Java know if the

method handled the event or not. If you do handle the event yourself, you should return true. That stops the event

from propogating up to the next container. If you don’t handle the event, you should return false, so that Java can

see if any other object is interested in what the user did. You can invoke your superclass’s method and return the same

value that your superclass returns.

Sample Programs

We’ll look at a few different samples in this section, starting simply at first before building up more sophisticated user

interfaces. We’ll start with an applet that displays a message inside the applet itself.

PaintHello.µ

Open 11.02 - paint hello in the Learn Java Projects folder. Open PaintHello.µ, make the project, then

drop the file PaintHello.html onto the Metrowerks Java icon. When the applet appears, it will actually do some-

thing within the applet window itself! You won’t have to look to the Java Output window to see the results of running

this applet. What it does is display a greeting inside the applet. Figure 11.2 shows what the applet looks like.

Barry Boone and Dave Mark Learn Java on the Macintosh 320

FIGURE 11. 16 The applet PaintHello displays a greeting message inside the applet itself.

A friendly little applet, isn’t it? Let’s look at the source.

Stepping Through the Source

Open PaintHello.java. You’ll see there are only a few lines to this applet. The applet doesn’t override any

applet life-cycle methods, but it does define what happens when the applet paints itself.

This file starts by importing the Graphics class, which is in Java’s awt library. We need this class because an

instance of this class is passed to the paint() method as a parameter. We’ll use an instance method defined by

Graphics to write “Hello, applet!” to the applet.

import java.awt.Graphics;

The applet is defined in the usual way, by extending Java’s Applet class.

public class PaintHello extends java.applet.Applet {

We then provide the behavior for the paint() method. This method is invoked for you by Java whenever

your applet’s display needs to be refreshed. Java passes an instance of the Graphics class to paint().

 public void paint(Graphics g) {

Barry Boone and Dave Mark Learn Java on the Macintosh 321

We use an instance method defined by the Graphics class to display the text in the applet. This method,

drawString(), takes three parameters: The first is the string to display; the second is the horizontal position (mov-

ing from the left edge of the applet the specified number of pixels) to start writing the text; the third is the vertical

position (moving from the top edge of the applet the specified number of pixels) to place the text. The horizontal and

vertical positions indicate the bottom left of the text, as shown in Figure 11.17.

FIGURE 11. 17 Positioning text using the horizontal and vertical positions in drawString().

Here’s the code we’ll use in PaintHello:

 g.drawString("Hello, applet!", 80, 50);
 }

}

That’s all there is to it! drawString() “draws” the string into the applet.

For our next example, we’ll look at how to paint a shape into the applet.

x = 0,
y = 0 increasing x

increasing y

Text to display

left, bottom for text

Barry Boone and Dave Mark Learn Java on the Macintosh 322

SimpleDraw.µ, Version 1

Open 11.03 - paint circle in the Learn Java Projects folder. Open SimpleDraw.µ, make the project,

then run this applet as you’re used to, by dropping the file SimpleDraw.html onto the Metrowerks Java icon.

When the applet runs, you’ll see a red circle appear inside the applet. Figure 11.18 shows what this looks like (in

gray-scale, of course, though the circle really is red on the screen).

FIGURE 11. 18 Our first version of SimpleDraw simply paints a red circle in the center of the applet.

That’s all there is here. This applet is almost as simple as the applet that painted the string “Hello, applet!” in

the previous example. Let’s take a look.

Stepping Through the Source Code

Open the file SimpleDraw.java. This is your first exposure to the source code for the SimpleDraw applet you

played with in Chapter 4. Over this chapter and the next, we’ll build up this applet until it has all the functionality you

saw in Chapter 4.

Barry Boone and Dave Mark Learn Java on the Macintosh 323

Like the PaintHello applet, this applet also only overrides the paint() method. This applet needs two

statements to display the red circle. First, it must set the current drawing color to red; then it must draw the circle.

This file starts by importing the Applet class and the classes in the awt package. We actually only need two

classes in the awt package—Color and Graphics—but it’s common to make the entire awt package available to an

applet, so we’ll start adopting this technique for many of the sample applications.

import java.applet.Applet;
import java.awt.*;

Then we defined the Applet subclass, which we’ll call SimpleDraw.

public class SimpleDraw extends Applet {

Now to override the paint() method. You already know how to do this:

 public void paint(Graphics g) {

The paint() method will do two things. First, it will set the current drawing color. We’ll use an instance

method defined for graphics objects called setColor() to do this. We’ll supply one of Java’s predefined colors that

it makes available as a class variable in the Color class. This color will be red, and it’s kept in the class variable named

red that’s in the Color class.

 g.setColor(Color.red);

Barry Boone and Dave Mark Learn Java on the Macintosh 324

And finally, we’ll draw the circle. Java defines a method for graphics objects called fillOval(). This

method takes four parameters: the first two are the top left and top right of the oval; the second two are the width and

hieght of the oval. The pattern for fillOval() is:

fillOval(left, right, width, height);

This is shown in Figure 11.19.

FIGURE 11. 19 Drawing an oval using fillOval(). The first two parameters for fillOval() determine the

oval’s left and top; the second two parameters determine the oval’s width and height.

Here’s the code we’ll use in SimpleDraw:

 g.fillOval(115, 55, 40, 40);
 }

}

left, top

width

height

x = 0,
y = 0 increasing x

increasing y

Barry Boone and Dave Mark Learn Java on the Macintosh 325

By using the same value for the width and height of the oval, we’ve drawn a circle. The placement of the cir-

cle (at left = 115 and top = 55) was chosen to center the circle based on the dimensions of the applet supplied in the

HTML file, and also taking into account the diameter of the circle.

SimpleDraw.µ, Version 2

Now it’s time to react to user input events, such as mouse clicks. Enough of these passive applets! In this version,

we’ll move the painted circle to wherever the user clicks.

Open 11.04 - circle at click in Learn Java Projects and open SimpleDraw.µ. After making

the project, drop SimpleDraw.html onto the Metrowerks Java icon. Now start clicking away on the applet. The

red circle doesn’t just stay in one place, like it did in the previous applet. This time, it hops over to draw where you

clicked! Figure 11.20 shows where the circle appears when you click near the top right of the applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 326

FIGURE 11. 20 Our second version of SimpleDraw paints a red circle wherever the user clicks with the mouse.

This illustrates how applets can respond to user-generated events, such as mouse clicks.

This version of SimpleDraw might seem very similar to the previous one, but we’ve changed things around

quite a bit. Let’s look at what’s new.

Stepping Through the Source Code

Open SimpleDraw.java. There are two classes defined here, the applet and a class called Circle. The applet

defines three methods. Each of these methods overrides a method defined by the Applet class itself. The first method,

init(), creates a circle to start with. The method mouseUp() detects where the user has clicked. The method

paint() redraws the circle. For the Circle class, we defined two methods. The first draws the circle. The second ini-

tializes new circles.

The file starts out by importing the Applet class as well as the classes in the awt package. Again, we need the

Graphics and Color classes. We also need a class called Event that’s defined in awt.

import java.applet.Applet;
import java.awt.*;

The SimpleDraw applet defines an instance variable to keep track of the current circle.

public class SimpleDraw extends Applet {

 Circle c;

Barry Boone and Dave Mark Learn Java on the Macintosh 327

In the init() method, we create a circle, assign it to the applet’s instance variable named c, and initialize

the circle’s position to 50, 50 (that is, 50 pixels from the left and 50 pixels from the top of the applet). We have written

the Circle class so that when the circle redraws, it will offset itself so that 50, 50 becomes the center of the circle,

rather than the top-left. To initialize the circle’s position, we use an instance method supplied by the circle called

initialize(). (We’ll look at initialize() in a moment.)

 public void init() {
 c = new Circle();
 c.initialize(50, 50);
 }

Whenever the user clicks the applet with the mouse, Java will invoke a number of applet methods to tell the

applet that an event occurred. One of these methods is mouseUp(), and we can override this method to find out

where the user clicked, since this information is passed in as parameters. We’ll create a new circle, just as in init().

This time, however, we won’t hard-code the circle’s position to 50, 50. We’ll use the x and y values of the mouse click

determine this position.

 public boolean mouseUp(Event e, int x, int y) {
 c = new Circle();
 c.initialize(x, y);

Now that we’ve defined a new circle, we have to tell the applet to redraw itself. We can do this by invoking

repaint().

 repaint();

Barry Boone and Dave Mark Learn Java on the Macintosh 328

Since mouseUp() returns a boolean value, we have to return true or false. The return value indi-

cates whether this event has been handled or not, and indeed we have handled it. So, we can return true.

 return true;
 }

The paint() method asks the circle to redraw itself. We pass the graphics object to the circle to help it get

the job done.

 public void paint(Graphics g) {
 c.draw(g);
 }
}

The next step is to look at the Circle class. From the applet, we can see the Circle defines two instance meth-

ods: initialize() and draw(). Let’s take a look.

The Circle class starts out by defining three instance variables. These will be used to keep track of the cir-

cle’s color and center.

class Circle {
 Color color;
 int x;
 int y;

Barry Boone and Dave Mark Learn Java on the Macintosh 329

The draw() method is very similar to what you saw in the previous version of SimpleDraw in the applet’s

paint() method. draw() is our own custom method. It takes one parameter, the graphics object provided to the

applet by Java, and uses this graphics object set the current color and draw the circle. Notice that we offset the circle

by half the circle’s diameter (that is, by its radius) so that the x and y values become the center of the circle, rather

than the top left of the circle.

 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillOval(this.x - 20, this.y - 20, 40, 40);
 }

The initialize() method sets the instance variables for the circle. The circle’s color is always set to

red, and the x and y values are set to the position of the user’s mouse click (which is passed in to the initial-

ize() method as the x and y parameters).

 void initialize(int x, int y) {
 color = Color.red;
 this.x = x;
 this.y = y;
 }

}

Barry Boone and Dave Mark Learn Java on the Macintosh 330

SimpleDraw.µ, Version 3

So far, the SimpleDraw applet is doing a lot. Namely, it’s painting and responding to user input events. Now, let’s put

in a couple of user interface components to really start to give the user some control over the proceedings.

Open 11.05 - simple draw in Learn Java Projects. Open SimpleDraw.µ and make the project.

Drop SimpleDraw.html onto the Metrowerks Java icon. You’ll notice the applet that appears now has two choice

lists. The first provides the shape choices of “Circle” and “Square.” The second offers the color choices of “Red,”

“Green,” and “Blue.”

At first, the applet works just like in the previous version. The default shape is circle, and the default color is

red. The applet displays a red circle wherever the user clicks. This is shown in Figure 11.21.

FIGURE 11. 21 Our third version of SimpleDraw allows the user to define whether to draw a circle or a square, and

in what color, wherever the user clicks with the mouse. This illustrates creating user interface components and

displaying them in an applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 331

However, in this version, the user is not limited to red circles. By using the choice lists, the user can choose

to draw a green circle, or a blue square, or any combination of shape and color. Drawing a blue square is shown in

Figure 11.22.

FIGURE 11. 22 Here, the user has chosen to draw a blue square and has clicked in the applet to draw this shape.

Let’s look at the source.

Stepping Through the Source

Let’s look at the classes that define the shapes first, and then back-track to the applet. The Circle and Square classes

are organized similarly to the hierarchy we developed in the Sample Programs section in Chapter 10. You might recall

that we created an abstract Shape class to act as the superclass to a Circle and Square class. We’ll do the same thing

here.

The shape class defines common variables to the Circle and Square classes. These include the shape’s radius,

color, and x and y positions. Since the radius will not change, it can be declared to be a class variable that’s final.

Barry Boone and Dave Mark Learn Java on the Macintosh 332

abstract class Shape {
 static public final int shapeRadius = 20;

 Color color;
 int x;
 int y;

The Shape class also defines an abstract method called draw(). This means that the subclasses of

Shape—the Circle and the Square—will have to implement this method. By defining this method here, we enable the

draw() method to be invoked using variables declared as instances of class Shape, which we’ll want to do in the

applet.

 abstract void draw(Graphics g);
}

Declaring this abstract method meant we had to declare the class as abstract, as well. This prevents

us from instantiating the Shape class directly; instead, we’ll end up instantiating its subclasses, the Circle and Square.

The definitions for the Circle and Square classes can be fairly simple, and you’ve seen similar code already.

These classes only define one method, a new method called draw(). The Circle and Square set the current color to

what they’ve stored in their instance variable, and then draws the appropriate shape, centered at the x and y position in

their instance variables.

class Circle extends Shape {
 void draw(Graphics g) {
 g.setColor(this.color);

Barry Boone and Dave Mark Learn Java on the Macintosh 333

 g.fillOval(this.x - shapeRadius, this.y - shapeRadius,
shapeRadius * 2, shapeRadius * 2);
 }
}

class Square extends Shape{
 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillRect(this.x - shapeRadius, this.y - shapeRadius,
shapeRadius * 2, shapeRadius * 2);
 }
}

The file itself starts out in the usual way, by importing the Applet class and awt classes.

import java.applet.Applet;
import java.awt.*;

As before, the applet overrides three methods: init(), paint(), and mouseUp(), and we’ll look at

each of these methods in turn.

The applet starts by declaring three instance variables. The first enables the applet to keep track of the cur-

rent shape that the user has drawn. The next two keep track of the choice components that contain the shape and color

choices. (We’ll create these choices in the init() method.)

public class SimpleDraw extends Applet {
 Shape currentShape = null;
 Choice shapeChoice;
 Choice colorChoice;

Barry Boone and Dave Mark Learn Java on the Macintosh 334

The variable currentShape is set to null initially. This lets the paint() method know later on not to

try to draw a shape until the user has actually defined one.

User interface components are often created in the init() method. We’ll use this approach to create the

choices for the shape and color. Creating choice components are fairly straightforward. There is a simple, three-step

process:

1. Create a new choice object.

2. Use the method addItem() to add a string to the choice representing one of the choices.

3. Add the choice object to the container where it will appear (in this case, the container is the applet).

Here’s the init() method and the code to create the choices.

 public void init() {

 shapeChoice = new Choice();
 shapeChoice.addItem("Circle");
 shapeChoice.addItem("Square");
 add(shapeChoice);

 colorChoice = new Choice();
 colorChoice.addItem("Red");
 colorChoice.addItem("Green");
 colorChoice.addItem("Blue");
 add(colorChoice);
 }

The default layout manager for the applet is a FlowLayout. This is fine for what we want. A FlowLayout will

arrange the components going from left to right, starting at the top of the applet. If there is no more room to place a

component along the first row, the FlowLayout will start a second row. If it runs out of room on the second row, it will

Barry Boone and Dave Mark Learn Java on the Macintosh 335

start a third row. In the end, each row will be centered. With the applet sized as it is according to the width in the

HTML file, the two choices fit easily in the first row along the top of the applet.

The paint() method doesn’t do any drawing itself, but delegates that task to the shape. If there is a current

shape (that is, if the instance variable currentShape is not equal to null), then the paint() method invokes

that shape’s draw() method. We’ll pass the draw() method the graphics object so that it can set the current color

and draw the appropriate shape (a circle or square, depending on the object).

 public void paint(Graphics g) {
 if (currentShape != null)
 currentShape.draw(g);
 }

All that remains is to handle user input events. Again, all we have to do is override mouseUp(). Here’s our

approach. When Java tells us the user has just clicked the mouse, we’ll find out the current choice in the shape and

color choice components. Then we’ll find out the color to use, create the appropriate shape, and initialize the new

shape. Here we go:

 public boolean mouseUp(Event e, int x, int y) {
 Color color;
 String shapeString = shapeChoice.getSelectedItem();
 String colorString = colorChoice.getSelectedItem();

We’ll use the variable color to hold the color in which to draw the new shape. By using the method getSe-

lectedItem(), we’ve retrieved the string representing the user’s current choices as displayed in each of the choice

components.

Barry Boone and Dave Mark Learn Java on the Macintosh 336

Now let’s determine the color in which to draw this new shape. We need to obtain the appropriate color

object based on the string we retrieved from the choice object. What we need to do is test each string, see if it is one

of the three colors, and when we’ve identified the color represented in the string, assign the variable color to the

matching color.

 if (colorString.equals("Red"))
 color = Color.red;
 else if (colorString.equals("Green"))
 color = Color.green;
 else
 color = Color.blue;

(Notice at the end we could just assume the color would be blue if it wasn’t red or green.)

Now we do a similar thing with the shape. If the string in the shape choice is “Circle,” create a new circle.

Otherwise, the string must be “Square,” so we create a new square.

 if (shapeString.equals("Circle"))
 currentShape = new Circle();
 else
 currentShape = new Square();

Notice that we’re creating a Circle or Square instance and assigning it to an instance variable defined to hold

a Shape. Since circles and squares are subclasses of shapes, this is perfectly legal. If we did not use inheritance to cre-

ate a common shape superclass, we would need to have duplicate variables and code to handle the two different class

types. With one superclass, we can combine the variable and code into one.

Barry Boone and Dave Mark Learn Java on the Macintosh 337

Next, we initialize the values for the new shape (its color that we determined above, and the location of the

mouse click as passed into this method).

 currentShape.color = color;
 currentShape.x = x;
 currentShape.y = y;

All that’s left to do is issue a repaint() and return true, indicating we handled this event.

 repaint();

 return true;
 }

}

That’s all we’ll do with SimpleDraw for now. In the next chapter, you’ll learn how to keep track of all of the

shapes the user created—that is, each shape made with each click—and you’ll redraw all these shapes each time the

applet repaints.

Payroll.µ

The next applet, Payroll, shows how you can work with keyboard input. We’ll create three text fields and respond to

events generated by these text fields. We won’t do anything with the text the user entered until the next chapter, when

you’ll learn more about working with data. But we’ll start the Payroll applet here, arranging the user interface and

recognizing when the user has pressed enter in a text field.

Barry Boone and Dave Mark Learn Java on the Macintosh 338

Open 11.06 - payroll in Learn Java Projects , open Payroll.µ, make the project, and drop Pay-

roll.html onto the Metrowerks Java icon. The Payroll applet will appear. It’s user interface consists of two col-

umns and four rows. The first column on the left contains labels that identify what each row is about. The first three

rows on the left contain text fields that allow the user to type in integers using the keyboard. There is a label in the

fourth row, second column which is blank for now but will eventually be used to display the employee’s earned

income. This arrangement is shown in Figure 11.23.

FIGURE 11. 23 The Payroll applet arranges its display in a grid of two columns and four rows. The first column

displays labels to identify the components in the second column. The first three rows in the second column contain

text fields that the user can type into. The fourth row in the second column contains a label that will display the

employee’s earned income.

To enter text into one of these text fields, click the text field, enter a number, and press enter. Figure 11.24

shows what the applet looks like when the user has entered some data into it.

Barry Boone and Dave Mark Learn Java on the Macintosh 339

FIGURE 11. 24 When the user types a number into one of the text fields and presses the return key, the applet

detects the event and writes a message to the Java Output window.

At the moment, all this applet does is detect the event generated by pressing enter. When the applet detects

this event, it writes a message to the Java Output window indicating it has identified which text field the user entered

text into. Figure 11.25 shows a sequence of such messages.

FIGURE 11. 25 The messages displayed in the Java Output window when the user presses enter in each of the fields

in succession.

In the next chapter you’ll turn this applet into a fully functional database. Let’s work our way there by check-

ing out the source code for how these components were arranged.

Stepping Through the Source Code

The applet begins by importing the Applet class and the awt package, as usual.

Barry Boone and Dave Mark Learn Java on the Macintosh 340

import java.applet.Applet;
import java.awt.*;

The applet defines four instance variables to identify each of the components in the second column. These

components include the three text fields and the label that we’ll use later.

public class EmployeeApplet extends Applet {
 TextField textFieldEmployee;
 TextField textFieldWage;
 TextField textFieldHours;
 Label labelEarned;

We create the user interface in the init() method. Since we want an arrangement of four rows and two

columns, we set the layout manager for the applet to be an instance of class GridLayout. We initialize this instance so

that it is set to four rows, two columns.

 public void init() {

 // Arrange the user interface in a grid.
 setLayout(new GridLayout(4,2)); // 4 rows, 2 columns

Now we begin adding components to the applet. The layout manager will ensure that the components are

arranged row by row, first filling in column one, then column two, then column one for the next row, then column two,

and so on. For each row, we’ll create a label to identify the row. We’ll put this label in the first column. Then we’ll

create a new text field, set to be 20 columns wide, and we’ll add this text field to the applet. (The value of 20 columns

Barry Boone and Dave Mark Learn Java on the Macintosh 341

wide is fairly arbitrary, but this should be large enough to hold our values for the employee number, salary, and hours

worked.) The GridLayout will complete the row by putting the text field into the second column before moving to the

next row.

 // 1st row
 add(new Label("Employee number:"));
 textFieldEmployee = new TextField(20); // 20 columns wide
 add(textFieldEmployee);

 // 2nd row
 add(new Label("Hourly wage:"));
 textFieldWage = new TextField(20); // 20 columns wide
 add(textFieldWage);

 // 3rd row
 add(new Label("Hours worked:"));
 textFieldHours = new TextField(20); // 20 columns wide
 add(textFieldHours);

The fourth row is a little different, in that we place a blank label at the end.

 // 4th row
 add(new Label("Earned income:"));
 labelEarned = new Label();
 add(labelEarned);
 }

To detect input events, we’ll override the method called action(). As with mouseUp(), this method

returns a boolean indicating whether or not it handled the event. It takes two parameters. The first is an object rep-

Barry Boone and Dave Mark Learn Java on the Macintosh 342

resenting the input event. The second is an object representing the action that’s occurring, which we won’t use in this

method.

Here’s what we’ll do. We’ll use the instance variable named target in the event object to identify whether

the input event we’re handling occurred in one of the three text fields. Since we saved the text field objects in the

applet’s instance variables, this is an easy check to make. If one of these text fields does match up with the target of

the input event, we’ll write a simple message to the Java Output window to indicate we have identified the text field in

which the user pressed enter.

 public boolean action(Event e, Object arg) {

 if (e.target == textFieldEmployee) {

 System.out.println("Employee number");

 } else if (e.target == textFieldWage) {

 System.out.println("Hourly wage");

 } else if (e.target == textFieldHours) {

 System.out.println("Hours worked");

 }

To determine what value to return (true or false), we’ll pass this method up to our superclass and let the

default behavior take over.

 return super.action(e, arg);
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 343

}

Though we haven’t done so yet, we intend to make use of an object that maintains information for each

employee. Each employee object will maintain the employee’s number, hourly wage, and hours worked. Each

employee will also be able to calculate its own earned income. Here’s how we’ll define the Employee class to handle

these chores.

class Employee {
 int idNumber;
 int hourlyWage;
 int hoursWorked;

 int earnedIncome() {
 return hourlyWage * hoursWorked;
 }
}

Once you learn how to work with data in Chapter 12, we’ll be able to make this applet really come alive.

Review

This chapter showed you how to put together a user interface. You saw how to paint on the screen using a graphics

object. You learned what components Java makes available to you and how to use some of the more common compo-

nents to interact with the user. You learned how to arrange these components into containers, and you learned about

the role of layout managers in arranging your components inside of containers.

Barry Boone and Dave Mark Learn Java on the Macintosh 344

You also learned that your applet itself is a container, which allows you to add new components directly to

your applet. The applet uses a FlowLayout as its default layout manager, though you can also change this default to

another type of layout manager if you want to.

You learned about events, which are generated when the user interacts with your applet. By detecting when

the user moves the mouse or clicks a button, you can execute your own code to make things happen. For example, you

saw how to detect when the user clicks the mouse to create a new shape at the location of that mouse click.

What's Next?

We’re beginning to reach the limit of what we can do based on the data types we learned about so far. We need better

ways of working with data, organizing data, and keeping track of the objects we create. That’s what the next chapter

is all about. Once you work through Chapter 12, we’ll be able to complete the SimpleDraw and Payroll applets we

started here.

Barry Boone and Dave Mark Learn Java on the Macintosh 345

CHAPTER 12 Working With Data

You already learned about variables in Chapter 6, and you’ve been working with data since then in your methods and

objects. You’ve learned about int variables, which hold integers, and boolean variables, which hold true/false

values. This chapter provides more details about integers and booleans. It also discusses other types of data, such as

floating point numbers and characters. You’ll learn how you can turn the characters users type with the keyboard,

which are represented in Java as string objects, into numbers that you can store using an int variable. This is an

important type of conversion to be able to perform, because variables that expect to hold int values cannot hold

string objects. Performing this type of conversion also means being able to respond to error conditions, which you’ll

learn how to do here in Chapter 12.

In addition, this chapter introduces a number of classes supplied by Java that you can use to help manage the

data in your applets. These classes, Vectors and Hashtables, will enable us to finish the SimpleDraw and Payroll

applets we started in Chapter 11.

To kick off this chapter, let’s start with the types of data you’ve already seen and discuss more details about

storing integers.

Integer Data

In addition to the data type int, which you will use most often to store integers, there are three other data types that

also store integers. The difference between these different data types is the size of the number that they can maintain,

and correspondingly, the amount of memory in the computer they need to store their data. The larger the number, the

more memory they need in the computer.

Barry Boone and Dave Mark Learn Java on the Macintosh 346

byte

byte data types are integers that can range in value from -128 to 127. byte values take up the least amount of room

in the computer (they only require one byte, as you might have guessed).

When dealing with only a few integer variables in your entire program, it’s not that important to worry about

whether a particular variable takes up one byte of memory or a little bit more. But let’s say you’re General Motors,

and you are using the applet we discussed earlier to maintain payroll for your employees. If you need to keep track of

an integer value for each employee that will always fall within the range of byte values (-127 to 128), it might save

you a great deal of memory to use bytes instead of ints for your hundreds of thousands of employees.

Detail

A single byte represents a very small amount of memory in modern computers. For example, it’s likely that the hard

drive on your Mac holds many millions of bytes, perhaps five-hundred million or more (each meg of storage repre-

sents approximately one million bytes).

byte variables are declared by using the keyword byte, like this:

byte myByte;

You can use byte variables just like the int variables you’re already familiar with, assigning values to

them, using them in equations, and so on.

myByte = 5;
myByte *= 2;
System.out.println("The value of myByte is " + myByte);

Barry Boone and Dave Mark Learn Java on the Macintosh 347

This code snippet would display "The value of myByte is 10" in the Java Output window.

short

short data types take up twice the memory of byte values, though this is still not very much in terms of your com-

puter’s memory. To use a short value, just declare it using short as its data type:

short myShort;

long

long values take up a whopping eight bytes in your computer! (Which still is not that much, relatively speaking, but

it’s the largest integer size there is in Java.) long values are great for storing extremely large positive and negative

integers, but you should only use them when it’s possible you’ll be dealing with such a huge number. An int value

can be as large as 2,147,483,647 and as small as -2,147,483,648, and this usually works out just fine.

Detail

If you want to know how big and how small your numbers can be for a long, try running the following program:

public class MinMax extends java.applet.Applet {
 public void init() {
 System.out.println("max int is " + Long.MAX_VALUE);
 System.out.println("min int is " + Long.MIN_VALUE);
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 348

This uses a Java class called Long that provides behavior for long data types. This applet displays the larg-

est and smallest values that a long value can contain.

To use a long value, just declare your variable as a long:

long myLong;

int

Where do int values fit in? Variables declared as int take up four bytes. You’ll almost always use int values in

your own programs. These offer a great combination of holding large positive and negative numbers, as well as

requiring half the memory of long values.

Floating Point Data

Calculations involving integer values take place much faster in a computer than floating point calculations. However,

while integer values often get the job done, sometimes you’ll reach the limits of what an integer can offer. For exam-

ple, we’ve already seen some code snippets that would cause our data to be inaccurate if we used integers. One such

calculation involved finding the area for a triangle. Earlier, we defined a Triangle class like this:

class Triangle {
 int base;
 int height;
 int area() {
 return (base * height) / 2;

Barry Boone and Dave Mark Learn Java on the Macintosh 349

 }
}

If a triangle’s base was 5 and its height was 3, the area() method would return 7. But clearly, this is not

correct! The triangle’s area is really 7.5. What we need is a way to represent fractional values as well as integer val-

ues. What we need are floating point numbers.

By the Way

The term "floating point" refers to the way numbers requiring a decimal point can maintain a varying degree of accu-

racy in the computer. For example, if you divide 10 by 3, a floating point number can be 3.3, 3.33, 3.333, and so on,

up to the level of accuracy desired, and depending on the amount of storage allocated to that floating point number. In

other words, the decimal point "floats." Floating point numbers are different from fixed point numbers (which Java

does not define). Fixed point numbers always maintain the same level of accuracy (for example, two places after the

decimal point). Floating point numbers, which do not have this constraint of a fixed level of accuracy, are therefore

much more powerful and flexible.

There are two types of floating point numbers in Java. As with integer numbers, floating point numbers offer

a trade-off between the size of a number they can maintain and the amount of memory required to store that number.

float and double

The type of floating point number you may end up using the most is float. float values take up four bytes of

storage, just like int values. However, they can store incredibly large numbers. Up to a certain point, these numbers

are extremely accurate. However, for really large numbers, float values trade-off accuracy to keep up with how big the

number is actually getting.

For example, most numbers you’ll deal with, such 7.5 in our triangle example, or a value like 1/8th, which is

.125, are handled with complete accuracy. Numbers that range into the number of seconds that have elapsed since the

Barry Boone and Dave Mark Learn Java on the Macintosh 350

big bang, however, are less precise, though they are accurate as far as the order of magnitude is concerned. For exam-

ple, at 15 billion years and 5 seconds (to be exact), the number of seconds since the beginning of the big bang is

473,040,000,000,000,005. How would Java do with such a number? If you run this program:

public class BigBang extends java.applet.Applet {
 public void init() {
 float f = (float)473040000000000005.0;
 System.out.println("elapsed seconds is " + f);
 }
}

the Java Output window will contain the message:

elapsed seconds is 4.73040e+17

which is scientific notation for 4.73040 times 10 raised to the 17th power. Or put another way, it is 47,304

followed by 13 zeroes. This is pretty accurate—but what happened to the 5 at the end? Java had to drop off the five in

order to maintain the order of magnitude of the number. If you would like more information, check out Dave Mark’s

Learn C on the Macintosh, from Addison-Wesley.

double values take up eight bytes, and double variables can store much larger values than even a

float. Decimal numbers are long values by default. For example, if you have a number that you’ve written as

3.14, Java assumes this number is a long value.

Barry Boone and Dave Mark Learn Java on the Macintosh 351

Conversions

Floating point numbers are represented differently in the computer than integer numbers. With this in mind, what do

you think would happen if you tried to execute a code snippet like the one below?

int myInt;
float myFloat = 5;

myInt = myFloat;

This code seems reasonable enough, but the Java compiler would complain about this! This code is request-

ing that data stored in a variable that can maintain very large and accurate numbers (float) be assigned to a variable

that stores smaller and less-accurate numbers (int). The compiler will have none of this foolishness!

There is a way to assure the compiler that everything is all right, that it should go ahead and make the assign-

ment, even if it results in a loss in accuracy. This is done by casting. To cast between data types, you need to write the

data type that you’d like the value to become, in parentheses, in front of the value itself. For example, to perform the

above conversion from float to int, you can write:

myInt = (int)myFloat;

This tells the compiler to go ahead and make the conversion from a float value to an int, even if the

number loses accuracy by dropping a fractional value.

You can also cast objects in addition to data types. Here’s a quick example (you’ll see lots of examples of

this throughout this book, and we’ll provide some more later in this chapter):

Barry Boone and Dave Mark Learn Java on the Macintosh 352

double areaOfACircle(Shape s) {
 if (s instanceof Circle) {
 Circle c = (Circle)s; // cast a shape to a circle
 return c.radius * c.radius * Math.PI;
 } else
 return 0;
}

This code first checks to see if a shape that has been passed to it as a parameter is in fact a circle. If it is, this

shape object is cast to become a circle. We can then use this object just as we would use a circle, by accessing

instance variables and invoking methods. (This example also uses a class supplied by Java called Math to obtain the

value for pi.)

Division By Zero

Integer numbers and floating point numbers behave very differently at times. One such example is when dividing by

zero. Generally, dividing by zero is not something you would want to do on purpose. Mathematically, performing an

operation such as "10 divided by 0" is not defined. Usually, the result of such a division is taken to be infinity.

With integer values, if you perform a division by zero, Java will generate an error when your program exe-

cutes. This error will have the likely consequence of displaying a nasty-looking error message and halting your pro-

gram in mid-stride. This is definitely not what you want to have happen! If ever in doubt when performing division

with integers that might result in a division by zero, you might want to check first that this will not occur, as with code

that looks like this:

if (divisor > 0)
 ratio = dividend/divisor;

Barry Boone and Dave Mark Learn Java on the Macintosh 353

This assumes, of course, that divisor, dividend, and ratio are all declared as int values and that

divisor and dividend have been initialized before this code executes.

With floating point values, however, dividing by zero will not cause Java to generate an error. Instead, Java

supplies a meaning to division by zero for floating point values: The result in Java for such a division is infinity. If you

want to, you can just go ahead and perform division with floating point numbers:

ratio = dividend/divisor;

If divisor is equal to 0, ratio will be positive infinity if dividend is positive, and negative infinity if

dividend is negative. Java defines a special variable called Float.POSITIVE_INFINITY and another called

Float.NEGATIVE_INFINITY that represents these values.

Boolean Data

We covered boolean data (true/false values) in the previous chapters. There are just a couple of details to recap

here.

You cannot convert between a number, such as an int or a float, and a boolean value. This is impor-

tant to know, especially if you have tried your hand at programming in some other language such as C. In C, for

example, you can assign numbers to boolean values. If the number is 0, the boolean value will be false. If the

number is anything other than 0, the boolean value will be true. In Java, this kind of thing just isn’t possible.

Instead, if you want to use a number to determine whether a boolean variable should contain the value true or

false, you have to use the number in an expression that evaluates to true or false, such as:

boolean isZero = (myInt == 0);

Barry Boone and Dave Mark Learn Java on the Macintosh 354

In this example, the expression myInt == 0 is evaluated first. This yields a result that is true or false,

depending on the value of myInt. If myInt is equal to zero, this expression will evaluate to true, and isZero

will be true. If myInt is anything other than 0, such as 1, this expression will evaluate to false, and isZero

will be false.

Also, if you declare a boolean variable but do not assign a value to it, its default value will be false.

Character Data

There’s a special data type you can use to store characters, such as ’a’, ’b’, or ’$’. This data type is needed because

characters, clearly, are not numbers. The way you define a character data type is by using the keyword char, like

this:

char myChar;

You can assign values using single quotes (unlike double quotes which are used with strings). For example,

to assign the character ’x’ to myChar, you could write:

myChar = ’x’;

Barry Boone and Dave Mark Learn Java on the Macintosh 355

Normally, you’ll use string objects to store text, but sometimes it’s more convenient to use char variables.

For example, each time the user hits a key on the keyboard, Java generates an input event. This event supplies your

applet with the character the user typed by passing your applet a variable declared as char.

An example of when you might use a char in your own program is when storing a selection of choices.

Let’s say you’re keeping track of the size of a pizza ordered over the Web. You want to know whether the individual

ordered a small, medium, or large. Rather than keeping track of "magic numbers" in an int variable, where you

might use 1 to represent small, 2 to represent medium, and 3 to represent large, you could instead define a char vari-

able and use ’S’ for small, ’M’ for medium, and ’L’ for large. Now, just glancing at the data stored in this variable

makes it clear what the user has ordered.

In case you’re curious: in Java, char variables take up 2 bytes.

Objects

As you know, variables can refer to objects in addition to maintaining values such as integers and floating point num-

bers. You’ve already seen examples of variables that refer to objects. All you have to do to declare an object that refers

to an object is to use the class name as the data type, such as:

Triangle t1;

or

Employee jpFinch; // from How to Succeed in Business...

Barry Boone and Dave Mark Learn Java on the Macintosh 356

The first example would be able to maintain an object that was an instance of class Triangle (or an instance

of a subclass of class Triangle). The second example would be able to maintain an object that was an instance of class

Employee (or an instance of a subclass of class Employee).

There is one more thing to say at this point about variables that refer to objects. You know that the default

value for a number is 0, but what about the default value for an object? If you have a variable for an object that does

not actually refer to an object yet, it is set to the value null. This allows you to do things like test to see whether a

variable is initialized to an object or not. For example, say you have a triangle applet containing a method that

searches for a particular triangle. This method might be called searchForTriangle() and might be defined to

return a triangle object, like this:

Triangle searchForTriangle() {
 // Code to search for a triangle goes here.
}

What happens if searchForTriangle() doesn’t find the triangle it’s searching for? One option in this

situation is for searchForTriangle() to return the value null. This method would do so with a statement that

was written like this:

return null;

The code that invoked this method might be prepared for a possible null value and could written as fol-

lows:

Barry Boone and Dave Mark Learn Java on the Macintosh 357

triangle myTriangle;

myTriangle = searchForTriangle();
if (myTriangle != null) {
 // We found the triangle. Do something here.
}

This code shows that after searching for the triangle, we only execute the code that uses myTriangle if

myTriangle has been initialized to the triangle we were searching for.

Strings

We’ve been working with strings since we first started writing programs in this book. Everything written between

double quotes is a string in Java, and Java even supplies a class to manage the text inside a string. Java’s class is

called, naturally enough, String, and it is defined in the lang package.

By encoding text in the String class, you can manipulate and work with text very easily. The String class

supplies a number of methods for manipulating and searching for text within a string and for comparing different

strings to one another.

Creating Strings

Creating a string is easy to do in Java. We already have seen examples of this in Chapter 8 when illustrating how to

pass parameters to constructors. Here’s the standard way to create a new string:

Barry Boone and Dave Mark Learn Java on the Macintosh 358

String belushi = new String("Hamburger, hamburger, hamburger");

Here, the string named belushi would maintain the data for the characters supplied in double quotes.

Warning

Strings are read-only! This means that if you do not supply text for a string when you create it, the string will never

have any text, because you can’t write to it. You can only read the text it contained when it was first created. There-

fore, you’ll almost always supply text when you create a new string. If you want to change a string after you’ve cre-

ated it, you should use an instance of class StringBuffer instead of String. The StringBuffer class is described later in

this chapter.

System.out.println() Explained

Now, you’ve reached a point in your studies of Java where you know enough to understand one of the very first Java

statements you learned in this book:

System.out.println("Hello, world!");

We left it at more or less a mystery as to how this statement got its message to the Java Output window (that

is, to the standard output). Let’s clear up this little mystery and explain this line of code once and for all.

The primary thing you’re doing in this line of code is invoking an instance method named println().

This method takes one parameter, a string. When you pass quoted text as a parameter for a string, Java creates a string

object for you. So, defining a method like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 359

public void println(String s) {
 // print code goes here
}

and invoking println() like this:

println("Hello, world!");

creates an object of class String with the text "Hello, world!" and assigns this new string to the parameter s

in the println() method.

The println() method is defined for instances of the class PrintStream (which is defined in Java’s io

package). This method displays text in the standard output, which CodeWarrior maps to the window called Java Out-

put. Since println() is an instance method, you’ve got to be able to get access to an instance of this class to

invoke this method. Rather than Java forcing you to create such an instance, Java’s System class, defined in the lang

package, defines such an object as one of its class variables. The name of the class variable in the System class that

refers to an instance of class PrintStream is called out.

Now let’s put all the pieces together. To get to a predefined instance of class PrintStream, you can write

System.out. System.out, then, refers to an object (an instance of class PrintStream). To invoke the instance

method called println() that’s defined for instances of class PrintStream, you write Sys-

tem.out.println(). And to pass a string as a parameter, you can put the text in quotes and Java will create an

instance of class String and assign it to the string parameter in the method you’re invoking. And there you have it:

System.out.println("Hello, world!"); in all its glory!

Barry Boone and Dave Mark Learn Java on the Macintosh 360

Formatting Strings

You’ve already learned that you can combine numbers with strings, as in

int scoreMets = 4;
int scorePirates = 3;

if (scoreMets > scorePirates)
 String s = new String("The Mets beat the Pirates " + scoreMets
+ " to " + scorePirtes);

else
 String s = new String("The Pirates beat the Mets " +
scorePirates + " to " + scoreMets);

you can also use special characters to format what the string displays. For example, how do you think you

can write a quote (") in a string? If you tried to create a string like this:

String s = new String("Adam said, "Madam, I’m Adam"");

the Java compiler would complain about a syntax error, because it would have thought the string actually

read "Adam said, " and everything starting at and to the right of the letter M was a mistake. In order to tell Java to

make the quote be a part of the string, you can use a backslash (\) in front of the quote, like this:

String s = new String("Adam said, \"Madam, I’m Adam\"");

Barry Boone and Dave Mark Learn Java on the Macintosh 361

There are also some formatting commands you can put into your strings using a combination of a backslash

and a letter. Here are two that you might find the most useful. To make Java start displaying text on the next line, we

can use \n (the "n" stands for "new line"). For example, we can write out the colors of the rainbow like we did earlier,

but this time we can use just one println() statement instead of seven by using \n, like this:

System.out.println("red\norange\nyellow\ngreen\nblue\nindigo\nviol
et");

Another special formatting command you might find useful is a tab stop, written as \t (the "t" stands for

"tab"). You can align text using the tab stop. For example, say you have an Employee class defined like this:

class Employee {
 String name;
 String ssn;
}

You might want to print out each employee’s name and social security number so that they all line up in two

columns. You can do so by writing code that looks something like:

Employee e;

// loop through all the employees

 // retrieve a particular employee and assign it to e

 System.out.println(e.name + "\t\t\t" + e.ssn);

Barry Boone and Dave Mark Learn Java on the Macintosh 362

This line of code writes out the name of the employee, then moves over three tab stops, and then writes out

the employee’s social security number.

StringBuffers

If you want to be able to modify a string, you should use an instance of class StringBuffer. String instances are read-

only; StringBuffer instances are read/write. You can create a new StringBuffer object just as you do for Strings:

StringBuffer sb = new StringBuffer("I like Paris ");

To add text to the end of sb, you can use the method append(), as in:

sb.append("in the springtime.");

StringBuffer is not a replacement for a String. That is, StringBuffers are not the same as Strings, only with

the ability to write to them. This is important, because most methods use Strings as parameters. If you have defined a

StringBuffer, you’ve got to convert the StringBuffer to a String before you can use it where a String is expected. The

way you do this is to use the method toString(), like this:

String s = sb.toString();

Then, you can use the variable s, above, wherever you need to use a string.

Barry Boone and Dave Mark Learn Java on the Macintosh 363

The Integer and Floating Point Classes

There are two types of data in Java. There are simple data types, which are the integers, floating point numbers, bool-

ean values, and character data (not strings) that we covered in the first part of this chapter. Then there are the objects,

which is everything else. You’ll almost always use the simple, non-object data types of int and float when you

want to use numbers. With variables declared as int and float, you can use all the arithmetic operators to perform

calculations, compare values, and control the flow through your code.

Sometimes, however, you want your numbers to have some behavior. The most common example is convert-

ing a number to a string object. It would be great to be able to invoke a method for the number that would cause it to

return a string object representing its value. Another example is the ability to tell what the largest and smallest value

is that a number can hold.

To do things like this, Java supplies classes that maintain a number and provide behavior for that number.

When you make an instance of one of these classes, you provide the number that this object will maintain. These

objects are just like all of Java’s other objects; you can’t use them in calculations or for comparisons, like you can do

with regular numbers. But they do provide methods to help you do things.

There classes are called Integer, Long, Float, and Double. Objects created from these classes are great for

maintaining a value and providing methods to manipulate that value. For example, you can create a new instance of

class Integer by writing:

Integer number = new Integer(10);

If you want a string representing the value in this integer instance (say to display the value inside a text

field), you could use the instance method toString(), like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 364

String s = number.toString();

Now, s would contain the text "10".

These classes also define some very useful class variables and class methods. For example, they define class

variables that hold the maximum and minimum values that these data types can store. (These variables are called

MAX_VALUE and MIN_VALUE.) These classes also provide methods which we’ll use in the next section to convert a

string into an instance of an Integer, Long, Float, or Double.

Handling Exceptions

Let’s say you want to convert a string into a floating point number. Fortunately, Java provides a class that does this,

and it’s easy to use. You can find the value of a string named s that represents a floating point number by writing:

float f = Float.valueOf(s).floatValue;

This works fine as long as the string says something like “100.51” or “-.003” or some other valid floating

point number, but what do you think Java does if the conversion runs into trouble? For example, what happens if the

string contains “100A” or “1.2.3”? These are not valid floating point numbers, and Float.valueOf() would not

be able to perform the conversion.

In situations like this, the designers of Java had an interesting problem to solve. They could have displayed a

message to the standard output when something like this occurred (in CodeWarrior, that would have made a message

Barry Boone and Dave Mark Learn Java on the Macintosh 365

appear in the Java Output window). But Float.valueOf() returns a value—in particular, an object representing a

Float instance. What value should this method return if there’s an error? This method could have returned null, but

then what would happen when the code hit null.floatValue()? The code would have fallen apart at the seams!

The solution to a Java method encountering this kind of problem lies in not handling the error at all, and

instead just reporting that an error occurred. That is, the method doesn’t display an error message, or return null or

any other value that might indicate an error. What the method does do is to tell the method invoking it that something

went awry. It does this by throwing an exception.

Throwing an Exception

The terminology “throwing an exception” is very visual, and it is a good image. If something goes wrong way in the

bowels of Java’s own methods, Java creates an object based on a class called Exception (or on one of Exceptions sub-

classes, some of which we’ll mention soon) and throws this object back to the code that invoked it. This is depicted in

Figure 13.1.

FIGURE 13. 1 Java creates and throws an exception object if it runs into a problem that it can’t handle.

Your code Java’s code

something goes wrong here

Java creates an exception object

and throws it back to you

invokes

Barry Boone and Dave Mark Learn Java on the Macintosh 366

Catching an Exception

So what do you think you have to do when Java throws you an exception? Right! You have to catch it. There’s a spe-

cial keyword called catch that you can use for just this purpose. Here’s the way it works.

1. First, you try to execute some code that might cause an exception to be thrown.

2. Then, you use the catch keyword to catch any exceptions that Java actually throws. If Java doesn’t throw an

exception, then everything’s fine, and you can continue along as normal. If Java does throw an exception, you

need to execute special code. This is the code that follows the catch keyword. Here’s an outline of what this

looks like in Java code:

try {

 // do something here that might throw an exception

} catch (Exception e) {

 // do something appropriate for the error that occurred

}

For example, when performing the conversion from a string to a float value, the try block would contain

code that performs the conversion and might cause the exception to be thrown.

String s = new String("1.23");
float f;

try {
 f = Float.valueOf(s).floatValue();
 System.out.println("f is " + f);
} catch (Exception e) {

Barry Boone and Dave Mark Learn Java on the Macintosh 367

 f = (float)0.0;
}

System.out.println("We’re past the try-catch statements");

Here, we try to execute the conversion code. If everything goes fine with the conversion, f would be

assigned the float value, and the very next line of code to execute would write the line "f is 1.23" to the Java Output

window. Following that, the very next line of code to execute would write "We’re past the try-catch statements" to the

Java Output window.

However, if Java found that s did not contain a valid floating point number, it would throw an exception. In

that case, the statement that wrote the value of f to the Java Output window would never execute. Instead, Java would

throw an exception, and our catch statement would execute next. This would assign the object that Java threw to the

variable e, and we would set f to 0.0. The next line of code to execute after setting f to 0.0 would write "We’re past

the try-catch statement" to the Java Output window.

It’s helpful in learning about try-catch statements to compare them to if-else statements. How does

the try-catch shown above compare with the following code?

if (noError()) {
 f = Float.valueOf(s).floatValue();
 System.out.println("f is " + f);
} else {
 Exception e = errorType();
 f = (float)0.0;
}

Is this the same as the try-catch? Not quite. This says that if the method noError() returns true,

then execute the if block. Otherwise, execute the else block. This is very different than the try-catch state-

Barry Boone and Dave Mark Learn Java on the Macintosh 368

ments, but in very subtle ways. First, the try keyword is not an if. There is no expression that is evaluated to see if

we should execute the code in the try block. We just start executing it. We keep on executing the statements, line by

line, and if there are no errors, we branch around the catch block (which is just like branching around the else

block in the code above). However, if in the course of executing the statements in the try block there is an error, we

jump immediately to the catch block. In the code above, we assigned the variable e to the type of error that

occurred, and this is similar to the catch block, where the error that occurred is assigned to an object with the name

e (though you can name this variable anything you want to, such as x, exception, or error—not just e).

Types of Exceptions

Java defines lots of subclasses of the Exception class. The purpose of these different types of exceptions is to be able

to identify exactly what went wrong. For example, if you try to use a string that’s supposed to contain a number but

contains something that’s not a number, Java doesn’t just through an instance of class Exception; it throws an instance

of a subclass of class Exception, called NumberFormatException.

Here’s another example. If you try to create a new object but there is no more memory in the computer, Java

will throw an instance of OutOfMemoryError. Java defines many, many types of exceptions. Since they all descend

from class Exception, you can always just catch an instance of class Exception, and you’ll be fine. But you can also

use the specific exception type in the catch block, as in:

catch (OutOfMemoryError error) {
 // error handling code
}

The reason for supplying these different exception subclasses is to be able to distinguish between excep-

tions. Chapter 13 shows you how to do that.

Barry Boone and Dave Mark Learn Java on the Macintosh 369

How Do You Know If You Need to Handle an Exception?

The documentation files for Java’s classes let you know if you need to handle an exception. Chapter 15 describes how

to read the HTML documentation for Java’s class files. You might have looked at these files already. If not, here’s a

sneak preview.

All of Java’s classes are defined using HTML files that you can look at in a Web browser. Figure 12.2 shows

what the documentation looks like for one of the Integer class’s constructor.

FIGURE 12. 2 The documentation for one of the Integer class’s constructor. This constructor takes a string object.

This constructor will throw an exception if the string does not contain a valid integer.

This constructor indicates that it will throw an exception if it cannot create an Integer object based on the

string supplied to it. For example, what would happen if you tried to create a number like this:

Integer number = new Integer("Doo wop doo wop");

The Integer class would not be able to make heads or tails of this. Rather than creating any old number, it

throws an exception. The documentation indicates it throws an exception called NumberFormatException. If a

Barry Boone and Dave Mark Learn Java on the Macintosh 370

method or constructor indicates that it might thrown an exception, you must be prepared to catch it. (If you don’t use

a try-catch block with a method that might throw an exception, you’ll know about it, because the compiler will

warn you about this and won’t let you compile the code.) So, the real way to create a new Integer instance based on a

string would be to write:

try {

 Integer number = new Integer("Doo wop doo wop");

} catch (NumberFormatException x) {

 System.out.println("Gauranteed to execute in this case!");

}

So check the documentation to see if you need to handle an exception, especially if the compiler tells you

that you do!

Arrays

Using individual variables to keep track of data works fine—usually. For example, for the triangle example, using an

int variable to keep track of the base and an int variable to keep track of the height works perfectly fine. As

another example, if an applet class created a triangle object, it could keep track of the triangle by using a variable

declared like this:

Triangle t1;

Barry Boone and Dave Mark Learn Java on the Macintosh 371

This is fine for one triangle, but what happens if the applet needs to keep track of three triangles? This still

isn’t so bad; the applet can declare three variables:

Triangle t1, t2, t3;

But you might begin to see where this could lead to problems. What if the applet needs to create 100 trian-

gles? Or 1,000 triangles? Does the program need to declare 1,000 variables, from t1 up to t1000?

There is an easier way, and that way involves using an array.

What Are Arrays?

Arrays are collections of variables of the same type. When you declare an array, you indicate to the compiler that you

want to work with a whole set of variables, all of the same type. For the triangle example, you can declare an array

that holds 1,000 triangles. As another example, if you needed to keep track of 254 integers, you could declare an array

that holds 254 integers. Then, if you wanted to access a particular triangle or a particular integer, you would access

one of the elements of that array.

When you declare a variable to hold one integer, you tell the compiler to set aside enough memory to hold

that one integer. When you declare a variable to hold an array of a certain number of integers, you tell the compiler to

set aside enough memory to hold all of those integers, one right after the other. Figure 12.3 provides a high-level pic-

ture of what happens in your computer’s memory when you declare one integer and when you declare an array of

integers.

Barry Boone and Dave Mark Learn Java on the Macintosh 372

FIGURE 12. 3 Declaring one integer sets aside enough memory in your computer to hold one integer value.

Declaring an array of four integers (for example) sets aside enough memory to hold four integer values, one right

after the other.

Declaring an Array

When you declare an array, you define a variable that will represent that array. The way that you indicate you want to

declare an array of values, instead of a single value, is to use square brackets. For example, to declare a variable that

will hold an array of integers, you write code like this:

int[] myIntArray;

Style

There’s another notation that programmers often use for declaring arrays, and that is to put the square brackets after

the variable name, rather than after the data type. For example, it’s perfectly legal to declare an array called myIn-

tArray that will hold an array of integers, like this:

int myIntArray[];

declare one integer

declare an array of 4 integers

Your Computer’s Memory

int

int int int int

Barry Boone and Dave Mark Learn Java on the Macintosh 373

Programmers coming from other language, where this is the only way to declare an array, often prefer this

syntax, since this is what they’re used to. However, this has a subtle disadvantage over the first method. The disadvan-

tage is that the data type is not truly reflecting the type of variable you are declaring. For example, here are two vari-

able declarations:

int temp;
int results[];

You can’t tell what kind of variables temp and result are just by looking at the data type. You’ve got to

look at the variable itself, not at its data type, and see if the variable contains a set of square brackets at the end. In this

book, we’ll use the approach of putting square brackets on the data type itself. In other words, our variable declara-

tions will look like this:

int temp;
int[] results;

After you’ve defined the variable that will be used to reference the array, you still need to indicate how large

the array should be—that is, how many elements the array will contain. The way that you do this is by using the same

new operator you’ve used before to create objects. This time, however, instead of using parentheses to indicate the

parameter list, you use square brackets and indicate how large to make the array. For example, here’s how you’d cre-

ate an array of four integers:

Barry Boone and Dave Mark Learn Java on the Macintosh 374

int[] myIntArray = new int[4];

This sets aside enough room in the computer to hold four int values. You’ll use the variable myIntArray

to access these four ints (as you’ll see in a moment).

This kind of thing works for any type of data whatever, including objects. For example, to declare an array of

1,000 triangles objects, you could write:

Triangle[] theTriangleLibrary = new Triangle[1000];

One other thing that can be very useful in declaring an array is that the size of the array can be provided in a

variable. For example, instead of the statement above, you could write (as long as numTriangles is declared as an

integer):

Triangle[] theTriangleLibrary = new Triangle[numTriangles];

You might do this kind of thing, for example, if you need to calculate how large to make your array, and you

don’t know how large your array will be at compile time (for example, this might occur if you’re reacting to choices

made by the user).

Barry Boone and Dave Mark Learn Java on the Macintosh 375

Accessing Elements in an Array

Once you have set aside enough memory for your array, you can put elements into the array and retrieve elements

from the array. You access elements in the array by indicating which element number you want, using notation like

this:

int oneInt = myIntArray[2];

This accesses the integer stored as element number two in an array of ints declared as myIntArray. You

can also put values into an array using this notation, such as:

myIntArray[2] = 421;

Arrays can sometimes be tricky because of the way that elements in the array are numbered. If you want the

first element in an array, you do not start at element 1. Instead, you start at element 0! Here’s an example. What do

you think this chunk of code does?

int[] myIntArray = new myIntArray[4];

for (int i = 0; i < 3; i++)
 myIntArray[i] = i;

Barry Boone and Dave Mark Learn Java on the Macintosh 376

The first statement declares a variable that will hold an array of integers. It then allocates (sets aside) the

memory in the computer by using the new operator, and specifies how many ints this array will hold (in this case,

this array will hold 4 ints).

The next statement sets up a loop from 0 to 3. The loop contains a single statement. In that statement, we

access an element in the array and assign a value to it. The first time through the loop, i will be 0. We access element

0 and assign it the value of i (which is 0). The second time through the loop, i will be 1. We access element 1 and

assign it the value of 1. The third time, we assign the third element the value of 2. The fourth time, we assign the

fourth element the value of 3.

This chunk of code has accessed all the elements in the array—elements 0, 1, 2, and 3—and assigned each

element the value corresponding to its position in the array. Note that there is no element 4! Figure 12.4 shows what

the array of ints looks like in memory after they have been initialized by the loop we just went through.

FIGURE 12. 4 An array holding four integers initialized to values corresponding to their position in the array.

Warning

Starting with element 0 as the first element often confuses programmers new to arrays, and for good reason! It’s only

natural for a person to think of the first element as starting in position 1. However, this is not the way that computers

think. For a computer, the first position is 0.

Where this is most often an issue is when accessing the last element in an array. For example, it’s quite natu-

ral for people to think of the last element in an array 1000 elements long as being number 1000. However, with arrays,

0 1 2 3

element 0 element 1 element 2 element 3

Barry Boone and Dave Mark Learn Java on the Macintosh 377

this is not the case! Since arrays start at 0, the last element in an array 1000 elements long is at position 999. If you try

to access an element beyond the end of the array (say element 1000 in an array 1000 elements long), you will cause

Java to generate an error. In particular, Java will—you guessed it—throw an exception.

Determining the Size of an Array

To help you keep out of trouble by inadvertently accessing an element beyond the length of an array, Java provides a

way for you to test how big an array actually is. The way you find the length of an array named myIntArray, for

example, is to refer to myIntArray.length. This represents the number of elements that the array can hold. For

example, what do you think the System.out.println() statement will display in the Java Output window in

the following block of code?

int[] myIntArray = new int[52];

System.out.println("myIntArray is " + myIntArray.length + "
elements long.");

In this case, message "myIntArray is 52 elements long" will appear in the Java Output window. To recap: an

array of ints 52 elements long starts at element 0, ends at element 51, and can hold a total 52 ints.

These are all examples of one-dimensional arrays. One-dimensional arrays are good for holding data where

you want a list of things, such as a list of the distances you jog each day over the course of a month (which might be a

floating point array that is 31 elements long), or the list of test scores from each pupil in the class (which might be an

integer array whose length was equal to the number of students in the class).

But sometimes a one-dimensional array is not powerful enough to do the job. For example, how would you

maintain the squares on a checker board with a one-dimensional array? Perhaps you are maintaining whether a square

contains a red checker, a black checker, or is empty: three values. Perhaps you want to store a 1 for a red checker, a 2

Barry Boone and Dave Mark Learn Java on the Macintosh 378

for a black checker, and a 0 if the square is empty (we’ll ignore kings for now). You would need eight arrays of inte-

gers eight elements long.

Working with all these arrays can be a little awkward. What would really come in handy right now would be

an array of arrays—and fortunately, you can do this in Java. You can define an array of arrays for a checker board

like this:

int[][] checkerBoard;

Notice the double set of brackets? This means we want a two-dimensional array. What about a three dimen-

sional array for a game of 3D Tic Tac Toe? You would define it like this:

int[][][] ticTacToe;

To allocate the memory for our checker board (a grid of squares 8 by 8), you can write:

checkerBoard = new int[8][8];

As with all uninitialized int values, each element in the checker board starts out set to 0. To access the first

row, second column, you can write checkerBoard[0][1]. To access the very last square in the eighth row,

eighth column, you can write checkerBoard[7][7].

Warning

Barry Boone and Dave Mark Learn Java on the Macintosh 379

Be careful not to try to access an element in an array that has not yet been allocated. For example, even though you

might have defined a variable that will hold an array, like this:

int[][][] ticTacToe;

don’t start accessing elements in the array until you’ve allocated it (by writing new int[3][3][3]); if

you try to access an element in an array that has not yet been allocated, Java will thrown an exception.

Vectors

Arrays are great for maintaining a collection of items when you know how many items you’ll need before you declare

the array. For example, if you need to determine the population of the United States and you happen to know the pop-

ulation for each state, you can declare an array of integers, allocate it to 50 elements, and store each state’s population

in each element. Then, you can loop through the array and add each entry in the array to your running total:

int population;
int[] state = new int[50];

// set each entry in the array to the population of a state
.
.
.

// then find the total population
for (int i = 0; i < 50; i++)
 population += state[i];

Barry Boone and Dave Mark Learn Java on the Macintosh 380

This is a fine technique for a fixed number of items. But what happens when you need to maintain a collec-

tion of items where the number of items changes over time? For example, for the SimpleDraw applet, the user is con-

tinually creating new shapes. We need a way to keep track of these shapes without locking ourselves in to a

predetermined maximum number of shapes. Java provides a class that allows us to work with a list of objects whose

size changes over time. This class is called Vector and is defined in Java’s util package.

Objects created based on Java’s Vector class can keep on growing in size as more items are added to the vec-

tor. This is like an array without limits—except that you’ll still generate an error if you try to access an element num-

ber beyond the bounds of what the vector contains. You can construct a vector object just like any other object:

Vector v = new Vector();

Then, you can use instance methods defined by the Vector class to access elements in the vector. Here are

four methods you might use most often with vectors:

• To add a new object to the end of the vector, use the method addElement(). This method takes one parameter:

The object to add to the end of the vector.

• To retrieve an object from the vector at a specific location within the vector, use elementAt(). This method

takes one parameter: The element to retrieve. This method returns the object at that location.

• To change an object in the vector at a specific location within the vector, use setElementAt(). This method

takes two parameters: The first is the object to place into the vector, the second is the entry in which to place it.

• There’s also a useful method that allows you to tell how many objects a vector contains. This method is called

size().

Here’s an example of how the SimpleDraw applet uses a vector to keep track of all the circles created by the

user. First, the applet creates a vector object in init().

Barry Boone and Dave Mark Learn Java on the Macintosh 381

Vector circlesToDraw = new Vector();

At first, the vector is empty and doesn’t contain anything; the method circlesToDraw.size() would

return 0.

When the user created a new circle, we could add this new circle object (referenced, for example, by a vari-

able named circle) to the end of the vector like this:

circlesToDraw.addElement(circle);

And finally, when it was time to draw all of the circles, the applet could loop through the vector by accessing

each element in order. One important piece of information you need to know about with retrieving objects from a vec-

tor is that you must cast the object returned by elementAt() to the type of object stored there. For example, you

could retrieve circles (created from a class called Circle) like this:

Circle circle;
int numCircles = shapesToDraw.size();

for (int i = 0; i < numCircles; i++)
 circle = (Circle)shapesToDraw.elementAt(i);

Notice the last line of this code snippet. shapesToDraw.elementAt(i) returns the object at position

i in the vector. The object returned is declared in the method to be of type Object. This means, to use the returned

Barry Boone and Dave Mark Learn Java on the Macintosh 382

object as a circle, you’ve got to cast it to a circle and assign it to a variable defined as a Circle instance. This is what

we do in the snippet above. The Sample Code coming up contains more examples of this.

HashTables

Vectors work great when all you want is to step through the elements in the list of objects sequentially. For example,

SimpleDraw has no need to access the fourth shape (and only the fourth shape) that the user created, or the first one,

or the last one. All that SimpleDraw has to do is to add a new shape to the list and step through the entire list in the

applet’s paint() method. (You’ll do this yourself in the Sample Programs in this chapter.)

But this is not the case for all your programs. For example, the payroll applet we started earlier would very

likely have a need to access one and only one employee. That is, if we wanted the employee with an employee num-

ber of 987, it would be great just to look up the employee by this number and have it hop out of the collection, without

the need for looking through each item in the collection ourselves. To do this kind of thing, Java provides a class

called Hashtable. (Like Vector, Hashtable is also defined in Java’s util package.)

The Hashtable Class

Hashtables are actually very simple to use considering the power they provide. Here’s the idea. Using a hashtable is

like using a good filing system in a file cabinet. When you put away a file, you put it in its proper place in the file cab-

inet, stored in the right drawer and in the right folder, so that when you return at some future time to retrieve the file,

you know right where it is. You don’t have to look through every file in order, starting with the first drawer—you can

directly to the drawer and folder where you put it.

Using a hashtable, you can file an object and retrieve it later by going directly to it. When you file an object,

you need to specify two things. The first is the object you wish to file. Simple enough. The second thing is a key, or

index, that you can find the object again later.

Barry Boone and Dave Mark Learn Java on the Macintosh 383

An index can be anything that makes the object unique. It could be a social security number in the case of an

employee. It might be the employee’s email address. For a collection of baseball cards, it might be the card number

on the back of the card. Whatever you use as a key doesn’t matter, as long as it’s unique (and as long as you’ll be able

to remember what the key was so you can retrieve your object at a later date!).

To create a hashtable, you can write the following:

Hashtable db = new Hashtable();

The variable name db in this example stands for "database." To place and retrieve data from the hashtable,

let’s look at two methods hashtables define just for this purpose.

get() and put()

Putting an object into a hashtable is easy. All you have to do is use the hashtable object’s put() method and specify

two parameters: The key you’ll use to identify the object, and the object you want to put. For example, for an instance

of class Employee defined like this:

class Employee {
 String name;
 String ssn;
}

You might store an employee object named e in the hashtable like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 384

 db.put(e.ssn, e);

Notice that we use the key as the first parameter, and the object itself as the second. Notice also that the key

is an object! If you want to use a number as a key, you’ve got to first find a way to convert the number to an object.

The Sample Programs show you how to do this kind of thing.

Now, to retrieve an object, you use the hashtable’s get() method and supply the key. The get() method

returns an object, which you’ve got to cast to the proper type of object (just like you did with vectors). So, to access an

employee with the social security number represented by the string ssn, you could write:

 Employee e = (Employee)db.get(ssn);

Pretty easy! You can fill up the hashtable and retrieve values as if there were no tomorrow.

Sample Programs

We’ll start the sample programs by looking at floating point numbers and arrays. Then we’ll get back to the applets

we started in Chapter 11, finishing SimpleDraw and Payroll by using vectors and hashtables.

FloatingPt.µ

Open the folder 12.01 - floating pt in Learn Java Projects , double-click FloatingPt.µ, make the

project, and drop the file FloatingPt.html onto the Metrowerks Java icon. You’ll see the following two lines

appear in the Java Output window:

Barry Boone and Dave Mark Learn Java on the Macintosh 385

area of t1 is 67.5
area of t2 is 23.4451

This applet calculates the areas for two triangles. Notice the decimal points! How did we finally achieve this

kind of precision? We used floating point numbers! Let’s take a look.

Stepping Through the Source Code

Open FloatingPt.java. You’ll see there are two classes here, an applet and a Triangle class. The Triangle class

looks like what we’ve seen before, except this time it defines its data using the floating point data type double,

rather than the integer data type int.

class Triangle {
 double base;
 double height;

 double area() {
 return base * height / 2.0;
 }
}

Now the applet can interact with this Triangle class in a very similar way to what we’ve already seen. Here’s

what the applet does in its init() method. First, it defines a couple of triangles. The first triangle takes the values 9

and 15 for its base and height. (We can assign an integer value to a floating point value without casting it, since float-

ing point values are more accurate than integers.) The second triangle has the value 14.232 for the base and 3.2947 for

the height.

Barry Boone and Dave Mark Learn Java on the Macintosh 386

public class FloatingPt extends java.applet.Applet {

 public void init() {

 Triangle t1 = new Triangle();
 t1.base = 9;
 t1.height = 15;

 Triangle t2 = new Triangle();
 t2.base = 14.232;
 t2.height = 3.2947;

Then all we do is print out the area for each triangle. The triangle performs the floating point calculation, and

we display the results in the Java Output window.

 System.out.println("area of t1 is " + t1.area());
 System.out.println("area of t2 is " + t2.area());

 }

}

So now you know how to work with two different kinds of numbers: integer and floating point. As you can

see, floating point values are just as easy to work with as integer values; just declare a data type as float or dou-

ble and away you go. Just remember these two rules:

1. When written out, floating point numbers, such as 4.0, 3.14 or -100.0292, have the data type of double.

2. If you assign a floating point number to an integer, remember to cast it so the compiler won’t compain.

Barry Boone and Dave Mark Learn Java on the Macintosh 387

ArrayApplet.µ

Open the folder 12.02 - arrays in Learn Java Projects. Double-click ArrayApplet.µ and make the project.

Drop the file ArrayApplet.html onto the Metrowerks Java icon. This applet displays fortunes and advice. There

are five fortunes, chosen at random. A new fortune is displayed every time you resize the applet. A sample session is

shown in Figure 12.5 and Figure 12.6.

FIGURE 12. 5 A fortune displayed by the ArrayApplet.

FIGURE 12. 6 Another fortune that’s displayed by resizing the applet.

 Let’s take a look at the source to get a feel for working with arrays.

Barry Boone and Dave Mark Learn Java on the Macintosh 388

Stepping Through the Source Code

This applet illustrates how to create and work with an array. It also uses three other classes you’ll somtimes take

advantage of in your own programs: The Date class (in the util page), the Random class (also in the util package), and

the Math class (in the lang package). The only class this applet creates is the Applet subclass, called ArrayApplet.

At the top of this file, before we define our new class, we need to import three of Java’s classes used by this

applet that are not part of the lang package (remember, the classes in the lang package are imported for us automati-

cally). These are the Graphics class, which we’ll need to override the paint() method; the Random class, which

we’ll use to randomly select a fortune; and a Date class, which we’ll use to seed the random number, initializing it to

a value so that the applet is unlikely to repeat the same sequence of fortunes the next time you run the applet. The

Random class and the Date class are defined in Java’s util package.

import java.awt.Graphics;
import java.util.Random;
import java.util.Date;

The applet defines three instance variables. The first, numStrings, is used to keep track of the number of

fortunes in our array of strings. The second, paintString, defines the string array, but it does not yet allocate it.

The third, r, will be used to hold an instance of a class called Random, which we’ll use to generate random numbers.

public class ArrayApplet extends java.applet.Applet {
 int numStrings = 5;
 String[] paintStrings;
 Random r;

Barry Boone and Dave Mark Learn Java on the Macintosh 389

In the init() method, we’ll create an instance of the Random class. We could create this instance with an

empty parameter list, like this: r = new Random(), but instead, we’ll supply a long value to seed the random

number. Supplying a seed value makes it likely that we’ll get a different sequence of numbers every time we run the

applet. To seed this number, we need a fairly random number to start with! (Kind of a Catch-22....) Here’s how we’ll

proceed: We’ll find the number of milliseconds that have elapsed between 1970 and the current date and time. Since

this value will change every time we run the applet (that is, the number of elapsed milliseconds keeps on increasing

from second to second), we can use this as our random number seed. Java provides a way to get these milliseconds.

Given the current date as maintained by an instance of class Date, there’s a method called getTime() that returns

the number of milliseconds since 1970. To create a new date object with today’s date, all you have to do is create a

new date without supplying any parameters. This is shown in the code below.

 public void init() {
 Date d = new Date();
 r = new Random(d.getTime());

Now we have a random number object, assigned to our instance variable r. We’ll use this random number

object in our paint() method to choose a fortune at random.

Our next step is to allocate the array of strings that will hold our fortunes and to initialize this array. We’ll

create a new string array set to hold five strings. Then we’ll create a new string for each element in the array.

 paintStrings = new String[numStrings];
 paintStrings[0] = new String("Look for opportunities");
 paintStrings[1] = new String("Take chances");
 paintStrings[2] = new String("Beware of tricks");
 paintStrings[3] = new String("Take the day off");
 paintStrings[4] = new String("Smell the roses");
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 390

Everything’s initialized. All that remains is to display a random fortune when the applet repaints. We can do

this in three lines of code by overriding the paint() method.

First, we’ll use the random number object to generate a random number. There’s a method called nex-

tInt() defined by random numbers that returns a random integer over the range of all integers, both positive and

negative. By dividing this number by the number or strings we have and taking the remainder, we can whittle this

number down to the range of -4 to 4. This operation is called modulo, as in "nextInt() modulo 5," and is written using

the % character.

 public void paint(Graphics g) {

 int index = r.nextInt() % numStrings;

We’re going to use the variable index as an index into the array. However, we can’t use a negative number

as an index! The only valid indexes range from zero to one minus the number of elements in the array (in this case,

from 0 to 4). So, we need to take the absolute value of index, to turn a possible negative value into a positive value.

The Math class defines a class method called abs() that provides this behavior.

 index = Math.abs(index);

Now index ranges from 0 to 4. We want to use index to select a string in the string array. We do this by

writing paintStrings[index]. We can use the drawString() method supplied by the graphics object to

make this new string appear inside the applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 391

 g.drawString(paintStrings[index], 50, 25);

 }
}

Now, every time the applet repaints, such as when it’s resized, it will contain a new fortune, randomly

selected from its array of strings.

SimpleDraw.µ, Final Version

Open 12.03 - SimpleDraw in the Learn Java Projects folder. Open SimpleDraw.µ as the current project file

and make the project. Run the applet by dropping SimpleDraw.html onto the Metrowerks Java icon. At long last,

we’ve recreated the applet you first saw in Chapter 4! Figure 12.6 shows what the applet look like when you create a

number of different shapes in different colors.

FIGURE 12. 7 SimpleDraw is too much fun!

Barry Boone and Dave Mark Learn Java on the Macintosh 392

In the last chapter, we got as far as drawing a shape according to the user’s preference (shape type and color).

However, we were only able to draw the most recent shape; we did not keep a list of all the shapes the user had cre-

ated with each click of the mouse. Here, we remember each shape and redraw each shape in the applet’s paint()

method. Let’s see how we are able to keep track of all these shapes.

(By the way, it’s not quite accurate to say this is the final version! You’ll see three more versions of this

applet in the upcoming chapters. First, you’ll see a version where you can pass parameters to this applet from your

HTML file; second, you’ll see a version of this applet that runs separately from a Web browser or Applet Viewer; and

third, you’ll see a version that illustrates the basics of multithreading. All of these versions await you in Chapters 13,

14, and 15.)

Stepping Through the Source Code

Open SimpleDraw.java. You might notice that this code looks almost identical to what you saw in the previous

version in Chapter 11. It’s very similar, but there’s one crucial difference: the use of the Vector class. We’ll point out

the differences here.

First, in addition to importing the Applet class and the classes in the awt package, we also import the classes

in the util package. This package defines the Vector class that we’ll use to keep track of the shapes drawn by the user.

import java.applet.Applet;
import java.util.*;
import java.awt.*;

The SimpleDraw class starts by defining an instance variable that will hold the vector; it also defines the

choice objects that you saw before.

Barry Boone and Dave Mark Learn Java on the Macintosh 393

public class SimpleDraw extends Applet {
 Vector drawnShapes;
 Choice shapeChoice;
 Choice colorChoice;

The init() method is next. It starts by creating a new instance of the Vector class.

 /** Create the GUI. */
 public void init() {
 drawnShapes = new Vector();

The init() method then moves on to create the choice objects for selecting the shape to draw and the

color in which to draw it. This is the same code you already saw; we’ll mark its place here with a comment.

 // Create the two choice objects and add them to the applet

 }

After the init() method, we’ve defined the mouseUp() method. This method starts by creating a new

shape just as it did before. Again, we’ll put in a placeholder for this code by using a comment.

 public boolean mouseUp(Event e, int x, int y) {

 Shape s; // This shape will be either a circle or a square.

 // Create the shape just like before

Barry Boone and Dave Mark Learn Java on the Macintosh 394

The previous version of SimpleDraw assigned the new shape to an instance variable maintained by the

applet. This time, we don’t keep track of individual shapes in the applet itself; we only keep track of the collection of

shapes in the vector. So, here, we add the new shape to the vector, and then invoke repaint(), as we did before.

 drawnShapes.addElement(s);

 repaint();

 return true;
 }

We also return true to indicate we handled this event.

The final method that has changed is the paint() method. This time, instead of repainting the single shape

maintained by the applet, we repaint every shape in the vector. This means we have to perform these steps:

1. Determine how many shapes are in the vector.

2. Access each shape, one at a time, and redraw that shape.

Here’s how we do that. First, paint() defines two variables: s will hold the shape we access from the vec-

tor, and numShapes will hold the number of shapes in the vector.

 public void paint(Graphics g) {
 Shape s;
 int numShapes;

Barry Boone and Dave Mark Learn Java on the Macintosh 395

We’ll determine the number of shapes in the vector by using an instance method supplied by the vector,

called size().

 numShapes = drawnShapes.size();

Then, we’ll loop through the number of shapes in the vector, accessing each one in turn.

 for (int i = 0; i < numShapes; i++) {

 s = (Shape)drawnShapes.elementAt(i);

Notice that we need to cast the object returned by elementAt(), which accesses a particular object in the

vector by number, to the proper class type. elementAt() is defined as returning an object of class Object; we know

this object will be a shape object and we want to assign to assign it to a variable that holds a shape. To do this, we

must cast the returned object to be of type Shape. (Be aware that this code only works because we are dealing with

objects that really are shapes; you can’t just go around casting any old object into a shape or some other class type

that it is not. However, you’ll use this technique a lot in situations like this.)

At the end of this method, we redraw the shape by invoking its draw() method.

 s.draw(g);
 }
 }

}

Barry Boone and Dave Mark Learn Java on the Macintosh 396

The Shape, Circle, and Square classes are identical to what you saw before; we won’t repeat them here.

Notice that using an array to keep track of the shapes would not have worked as well as using a vector. With

an array, we would constantly have to worry about adding a new shape to the array beyond the bounds of the array. If

we ever maxed out the array, we would have to allocate a new array a little bit larger than the one we were using,

move all the elements from the old array to the new array, and then add our new shape to the new array. The vector

object handles all these details for us. This is another good example of Java supplying a class that makes our program-

ming task easier.

Payroll.µ, Final Version

Open 12.04 - Payroll in Learn Java Projects. Open Payroll.µ as the current project file and make the

project. Drop the file Payroll.html onto the Metrowerks Java icon to run the applet.

This applet is fully functional and allows you to enter new employees into a database and retrieve previously

entered information for employees. (Of course, a commercial payroll applet would have better look-up methods, offer

confirmation of changes, provide some security, allow for data other than integers, and so on. While all these features

would be great, the point of this applet is to show how to develop a user interface that accepts keyboard entry, illus-

trate how to keep track of data using a hashtable, and provide an example of handling an exception.)

To enter a new employee into the payroll applet or to search for an existing employee, click in the text field

named Employee number, enter a number, and press enter. If information for that employee exists in the payroll

applet, that information is displayed in the text fields. Otherwise, the payroll information will be all zeroes.

To enter new values or change the values for the employee’s hourly wage and hours worked, click in the

appropriate text field, enter a new number, and press enter. When there is data for both the hourly wage and hours

worked, the applet will display the employee’s earned income.

Barry Boone and Dave Mark Learn Java on the Macintosh 397

FIGURE 12. 8 This screen shot shows the payroll information for employee number 1. The user typed 1 into the

text field for the employee number and pressed enter. The user then typed in the hourly wage and hours worked,

pressing enter for each text field. Once all the data was entered, the applet totalled that employee’s earned income.

All this data was saved in the employee object and made part of the database.

FIGURE 12. 9 This time, the user entered information for employee number 2; the applet saved all of employee

number 2’s information into the database. Now there are two employees in the database. If the user now typed a 1

into the employee number field and pressed enter, the applet would look up the payroll data for employee number

1 and redisplay that information in its text fields.

Barry Boone and Dave Mark Learn Java on the Macintosh 398

Stepping Through the Source Code

Open Payroll.java to see what’s changed from the previous version. Here’s the concept of what we’re going to

do. We’re going to create new employee objects based on the information the user enters into the text fields. We’re

going to use an instance of class Hashtable to keep track of the employee objects. By using a hashtable, we’ll be able

to retrieve any employee object, as long as we have their employee number. We’ll use the employee number for each

employee as the employee’s key. When the user types a new number into the employee number text field, we’ll take

the characters the user typed and turn them into a number, then use that number as the key to look up that employee

object in the hashtable. If the employee is found, we’ll display the employee’s payroll information in the other text

fields. If the employee is not found, we’ll create a new employee object using this number and add it to the hashtable.

We’ll start looking at the code by examining three utility methods. The first is intFromTextField(), an

instance method defined as part of the applet. This method’s purpose in life is to take the characters a user enters into

a text field and convert them into an int data type. This method takes a text field as a parameter and returns an int.

 int intFromTextField(TextField tf) {

It starts off defining two variables. The string s will be used to hold the character data in the text field;

value will be used to hold the int we’ll return.

 String s;
 int value;

This method starts by retrieving the characters in the text field passed to this method. The method get-

Text() returns a string object that has the characters the user typed.

Barry Boone and Dave Mark Learn Java on the Macintosh 399

 s = tf.getText();

To convert this into an int, we’ll use a class method defined by Integer called parseInt(). This method

takes a string and returns an int. Since this method might throw an exception, we have to use a try-catch block

so that we’re prepared to catch the exception. We’ll try to perform the conversion in the try block; we’ll catch any

exceptions thrown in the catch block.

 try {
 value = Integer.parseInt(s);
 } catch (Exception e) {
 value = 0;
 setCurrent(null);
 }

If the conversion to an int did not work and Java threw an exception, we set value to 0 and set the current

employee to null. (You’ll look at the method setCurrent() in a moment. The purpose of the setCurrent()

method is to save the current employee object in an instance variable named current. This instance variable is

maintained by the applet. setCurrent() also redisplays the information in the text fields so that it’s appropriate to

the current employee.) Finally, we return the value, and the method ends.

 return value;
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 400

Next, let’s look at a method called findEmployee(). This is also an instance method defined as part of

the applet. This method takes an int as a parameter and returns an instance of class Employee.

 Employee findEmployee(int number) {

This method consists of a single statement, though there’s a lot going on in this statement. This method

returns an employee object that it finds in the hashtable. To get the employee object, this statement uses the get()

method, supplied by the hashtable. The instance variable we use in this applet to keep track of the hashtable is called

db (for "database"). To invoke get(), then, we can say db.get(). The get() method takes a key, and hashtable

keys must be objects. To obtain an appropriate object based on the employee number, we can create an instance of

class Integer to represent this number. We can do this by writing new Integer(number). The full statement

looks like this:

 return (Employee)db.get(new Integer(number));
 }

Notice that, as with the vector, get() returns an object of class Object. This means that if we want to work

with an instance of class Employee, we need to cast it to Employee. We can safely do this because all the objects in

the hashtable are instances of class Employee; if they were instances of some other class, we could not do this.

One more thing: If there is no employee object that uses the key we’ve indicated, then get() will return

null, and that’s what findEmployee() will return, as well.

Barry Boone and Dave Mark Learn Java on the Macintosh 401

For our third utility method, take a look at addNew(). This instance method creates a new employee object

given an employee number and adds this employee to the database. This method takes the employee number as a

parameter and returns the newly created employee object.

 Employee addNew(int number) {

After creating the new employee object, this code initializes the employee number and sets the other

instance variables to 0.

 Employee e = new Employee();
 e.idNumber = number;
 e.hourlyWage = 0;
 e.hoursWorked = 0;

It then uses the hashtable’s put() method to put the new employee object into the hashtable. The put()

method requires a key as its first parameter. Again, we’ll create an Integer instance out of the employee number. The

second parameter for put() is the employee object to add.

 db.put(new Integer(number), e);

At the end of this method, we again use the method setCurrent() to set the current employee main-

tained by the current variable and to display this new employee’s information in the text fields. Then, we return the

new employee object.

Barry Boone and Dave Mark Learn Java on the Macintosh 402

 setCurrent(e);

 return e;
 }

With an understanding of these methods and the approach taken by this applet, let’s look at the rest of the

applet.

The file begins by importing the Applet class and the awt and util packages. We need the util package for the

hashtable.

import java.applet.Applet;
import java.awt.*;
import java.util.*;

As with the previous version of Payroll, we define instance variables to hold the text fields. We also define an

instance variable to hold the hashtable.

public class Payroll extends Applet {
 Hashtable db;
 TextField textFieldEmployee;
 TextField textFieldWage;
 TextField textFieldHours;
 Label labelEarned;

In addition, we also define an instance variable to hold the current employee.

Barry Boone and Dave Mark Learn Java on the Macintosh 403

 Employee current;

The init() method creates a new hashtable. The rest of the init() method creates the same labels and

text fields in a grid layout you saw before. We’ll mark its place with a comment.

 public void init() {

 // Create the employee database.
 db = new Hashtable();

 // Create the labels and text fields.

Before we leave the init() method, we also invoke setCurrent() and indicate that we’re not cur-

rently looking at any employee object—since there aren’t any yet to look at.

 setCurrent(null);
 }

The method action() handles the events generated by this applet. The previous version showed how we

could tell when the user typed into a text field and pressed return. In this version, we’ll access the data in the text

fields and use them to initialize the employee objects.

The action() method starts off by defining variables to hold an employee object and the employee num-

ber.

Barry Boone and Dave Mark Learn Java on the Macintosh 404

 public boolean action(Event e, Object arg) {
 Employee employee;
 int number;

One of the parameters passed to this method is an event object, which contains the information that indicates

what generated this event. Just as with the previous version, we test to see what text field the user has just typed text

into. The event’s target instance variable holds this text field. The first possibility is the employee number text

field.

 if (e.target == textFieldEmployee) {

If the text field is the one used for the employee number, we use the method intFromTextField(),

which we’ve already seen, to retrieve the employee number. Then, we use the method findEmployee(), which

we’ve also seen, to retrieve the employee with this number from the hashtable.

 number = intFromTextField(textFieldEmployee);
 employee = findEmployee(number);

If an employee with this number could not be found in the hashtable, employee will be equal to null. If

this is the case, then we want to create a new employee using this number. We use the method addNew(), which we

also covered earlier.

 if (employee == null)
 employee = addNew(number);

Barry Boone and Dave Mark Learn Java on the Macintosh 405

Now we invoke setCurrent() with this new employee to initialize the current variable and display

this employee’s payroll information.

 setCurrent(employee);
 }

If the event’s target is the hourly wage field, then we want to set the current employee object’s hourly wage

to the value the user entered into this field. We can use the method intFromTextField() to retrieve this int

from the characters in this field.

 else if (e.target == textFieldWage) {

 if (current != null) {
 current.hourlyWage = intFromTextField(textFieldWage);

We also want to update the display for the earned income. If the user has just changed the value for the

hourly wage, we can reflect that change in the earned income display immediately. The method recalcEarned()

performs this simple recalculation and displays the new value in the appropriate label in the applet.

 recalcEarned();
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 406

We want to do the identical kind of thing with the hourly wage text field. That is, we want to retrieve the

value the user entered into the text field, assign it to the appropriate instance variable for the current employee, and

recalculate the value for the earned income.

 } else if (e.target == textFieldHours) {

 if (current != null) {
 current.hoursWorked =intFromTextField(textFieldHours);
 recalcEarned();
 }
 }

When we exit this action() method, we’ll return whatever the superclass thinks is appropriate (true or

false).

 return super.action(e, arg);
 }

Let’s take a quick look at the two methods we haven’t seen yet for this applet: setCurrent() and

recalcEarned(). setCurrent() starts by assigning the new employee object to the applet’s instance variable

named current.

 void setCurrent(Employee e) {
 current = e;

Barry Boone and Dave Mark Learn Java on the Macintosh 407

If there is not a current object (that is, if it is equal to null), then set the text fields to contain 0.

 if (e == null) {
 textFieldEmployee.setText("0");
 textFieldWage.setText("0");
 textFieldHours.setText("0");
 }

Otherwise, if there is an employee object, convert the int data maintained by this employee into a string,

and display this text in the text field.

 else {
 textFieldWage.setText(Integer.toString(current.hourlyWage));
 textFieldHours.setText(Integer.toString(current.hoursWorked));
 }

At the end, recalculate the earned income to reflect any new data.

 recalcEarned();

 }

recalcEarned() asks the current employee object to calculate its own earned income (hourly wage

times hours worked). If there is no current employee, then we set the earned income to be 0. The last line sets the

label in the applet that displays the earned income.

Barry Boone and Dave Mark Learn Java on the Macintosh 408

 void recalcEarned() {
 int earned;

 if (current != null)
 earned = current.earnedIncome();
 else
 earned = 0;

 labelEarned.setText(Integer.toString(earned));
 }

}

The Employee class is identical to what you saw before so we won’t repeat it here.

This applet illustrates a lot of functionality. It shows you how to arrange a user interface, how to acquire data

from the user, how to convert between int data types and objects (such as Integers and Strings), and how to store and

retrieve data in a hashtable. You are likely to do many of these things when writing your own Java applets.

Review

This chapter rounded out your knowledge of how to work with data in Java. Working with data involves integer and

boolean data as well as floating point values, characters, and objects that maintain data such as strings and instances

of class Integer.

To keep track of collections of data, you can use arrays. Java also defines two useful classes called Vector

and Hashtable. Vectors contain a simple list of objects; Hashtables allow you to find objects based on a key.

Barry Boone and Dave Mark Learn Java on the Macintosh 409

What's Next?

Chapter 13 snoops around some advanced areas of Java programming, including how to pass values to your applet

from your HTML file, how to define more than one method with the same name, and how to throw exceptions (that is,

in addition to catching them, which you learned about here).

After the next chapter, we’ll cover how to make your Java programs run separately from a Web browser, and

we’ll close in Chapter 15 by pointing out areas you can explore further to learn even more about Java.

Barry Boone and Dave Mark Learn Java on the Macintosh 410

CHAPTER 13 Advanced Topics

This chapter highlights some advanced features you can take advantage of in your own applications. Even if you don't

use these features right away, they're useful to know about because you're likely to run across them when you look

over other Java programs generally available on the Web. The advanced features of Java discussed here include:

• applet parameters

• methods overloading

• constructors

• constants

• throwing exceptions

Applet Parameters

So far, all of the HTML files that have incorporated our applets have been very simple. These HTML files used the

<applet> tag to specify the name of the applet to run as well as the initial height and width of the applet’s window.

With only these parameters, our applets had to be self-contained. That is, the HTML file that launched the applet did

not change anything about the applet, other than its initial size.

However, it is possible to embed values, or parameters, in your HTML page that the applet can access. The

way you do this is to place the parameters within tags named <param> right between the <applet> and </

applet> tags.

For example, if you wanted to supply a parameter named “minimumwage” to the payroll applet, to make

sure you don’t initialize any employees to an illegal value, you could write something like:

Barry Boone and Dave Mark Learn Java on the Macintosh 411

<applet code="Payroll.class" width=270 height=150>
<param name=minimumwage value="4.25">
</applet>

Now, when Congress passes a new minimum wage law, or when a business in another country wants to use

the payroll applet, users of this applet can set this value according to the new conditions.

To retrieve this value in an applet, you use an applet instance method defined by Java called getParame-

ter(). This method takes a string with the name of the parameter to access. getParameter() returns a string

representing the value of this parameter. Here’s a snippet:

String wageString = getParameter(“minimumwage”);

 In this example, wageString is now “4.25”. If we want a float number, we have to convert this string to a

number before we can use it like a number. For example, we can write:

float wageFloat;

try {
 float wageFloat = Float.getValue(wageString).toFloat;
} catch (Exception e) {
 wageFloat = 4.25; // default
}

Barry Boone and Dave Mark Learn Java on the Macintosh 412

The Sample Programs at the end of this chapter contain an example of how to customize your applet by

passing values to it from your HTML file.

Method Overloading

So far, all of our methods have used unique names. This might seem to be a requirement for methods—that each one

have its own, unique name—but this is not precisely true. The real requirement is that each method belonging to the

same class have a unique signature. What do we mean by a signature? A signature consists of a method’s name and

parameter types. This means that two methods in the same class can be named identically, as long as either the num-

ber of parameters or, if two methods with the same name have the same number of parameters, the types of parame-

ters are different. Here are some examples that illustrate this rule.

Let’s start with a simple method called addTheseNumbers(), defined like this:

int addTheseNumbers(int num1, int num2) {
 return num1 + num2;
}

This method would work fine as long as there were only two numbers to add. However, what if we some-

times wanted to add two numbers, and other times we wanted to add three numbers? It would be nice not to have to

worry about different method names, but to always invoke a method called addTheseNumbers(), regardless of

how many numbers we had to add.

Barry Boone and Dave Mark Learn Java on the Macintosh 413

One way to solve this problem is by writing two methods, both called addTheseNumbers(). The first

method would define two parameters. The second would define three parameters. Here’s how these two method defi-

nitions might look:

 int addTheseNumbers(int num1, int num2) {
 return num1 + num2;
 }

 int addTheseNumbers(int num1, int num2, int num3) {
 return num1 + num2 + num3;
 }

What happens when we write a line of code that looks like the following?

int sum = addTheseNumbers(10, 20);

In this case, Java is smart enough to invoke the first method named addTheseNumbers(), since that

method defines two parameters. What happens with the following line of code?

int sum = addTheseNumbers(10, 20, 15);

You guessed it: Java invokes the second method, matching the three values here to the method that declares

three int parameters.

Barry Boone and Dave Mark Learn Java on the Macintosh 414

As before, the parameters in your method invocations must match up with one of your method definitions. If

Java cannot find a method that matches an invocation, you’ll either receive a compiler error or a runtime error

(depending on the class your compiling and the class defining the method).

In addition to defining a different number of parameters for two methods with the same name, it’s also per-

fectly legal to define a second method with the same name and the same number of parameters—as long as at least

one of those parameters is of a different type than in the first method. For example, here’s another method with the

same name:

 double addTheseNumbers(double num1, double num2) {
 return num1 + num2;
 }

Now, if you invoke addTheseNumbers() like this:

int i = addTheseNumbers(10, 15);

the method for int values will execute, and it will return the int value 25. If you invoke addTheseNum-

bers() like this:

double d = addTheseNumbers(10.3, 14.6);

Barry Boone and Dave Mark Learn Java on the Macintosh 415

the method for double values will execute, and it will return the double value of 24.9. Even with the

same number of parameters, Java is smart enough to figure out which method is the appropriate one to invoke. Notice

that in all of these examples, the return value does not play a role in determining what method to invoke! Only the

method name, the number of parameters, and the types of parameters are used to distinguish between methods.

Constructors

When you create a new object from a class, Java allocates the appropriate amount of memory in the computer to hold

your new object. Then, Java invokes any constructors that are defined for your new object. Your constructor can do

whatever it wants to do. The most common task for a constructor is initializing instance variables, and this is what

you’ll do most often if you define your own constructor.

Constructors are defined somewhat similar to methods, except they don’t take any keywords or define a

return value. For example, here’s an example of a class called Employee that defines a constructor:

class Employee {
 int ssn;
 int hourlyWage;
 int hoursWorked;

 // Define a constructor.
 Employee() {
 hourlyWage = 10;
 }

 // Define an instance method.
 int earnedIncome() {
 return hourlyWage * hoursWorked;
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 416

This class is similar to what we worked with before when we defined an Employee class. Only this time, we

have defined a constructor for the class. The constructor initializes a new employee’s hourly wage to 10. Perhaps after

a few months the employee will get a raise, but new hires start out with 10 as their base wage. What this means, then,

is that when you create an instance of an Employee class like this:

Employee e = new Employee();

e.hourlyWage will start out equal to 10, and e.hoursWorked will start out equal to 0 (remember, Java

sets your int variables to 0 if you don’t initialize them yourself).

You can also pass parameters to constructors. You’ll find that Java defines lots of constructors for its classes

that take parameters. For example, if we wanted to set the employee’s number when we created it, we might write a

constructor like this:

 Employee (int ssn) {
 this.ssn = ssn;
 hourlyWage = 10;
 }

Now we can create a new employee like this:

Employee e = new Employee(401);

Barry Boone and Dave Mark Learn Java on the Macintosh 417

which we might write for the 401st person to join the company. Even if this were the only constructor we

defined, we could still create an employee object without passing a value for the ssn parameter value to the construc-

tor. That is, we could still create an employee like this:

Employee e = new Employee();

We can do this because Java always defines a default constructor for you, and this default constructor does

not take any parameters. With the default constructor, all of your object’s instance variables will be set to their default

values, but at least Java saves you the trouble of needing to create a constructor if you only want the default behavior.

By the Way

You don’t have to invoke your superclass’s constructor. Java will do this for you automatically.

Constants

Variables are great for keeping track of data that changes over time. Sometimes, however, you’ll want to keep track of

data that won’t change, ever, while your program is running.

For example, we saw an example of this kind of thing already in SimpleDraw. The user was able to tell the

applet what shape to draw and what color to draw it in, but the user was unable to set the size of the shape—the size

of the shape was always constant. Appropriately enough, programming languages refer to these types of data as con-

stants. In other words, a variable that has a value, but cannot be changed, is called a constant.

You can define a constant in Java by using the keyword final, meaning the value can never be changed.

For example, SimpleDraw can define a constant to represent the radius of a circle like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 418

final int radius = 20; // circles are 20 pixels in radius

Often, constants are placed in the class. This allows any part of your code to easily access the constant. So,

you could also define radius like this:

static final int radius = 20; // circles are 20 pixels in radius

Java uses the convention of writing all its constant names in capitals. This is a hold-over from C, and allows

you to tell at a glance whether a variable is a constant or not.

By the Way

Why use a constant? Why not just use the value 20 wherever the program needed to know the radius of a circle? There

are two reasons for using a constant. First, a well-named constant documents what the number is used for. Second,

using constants can speed up Java’s execution. And third, if the value ever changes, all you need to do is change the

number in one place.

Throwing Exceptions

You learned the basics about handling exceptions, but, like packages, exceptions are available for you to use, as well.

That is, they’re not just something you have to catch; your code can also throw its own exceptions. All you have to do

is create your own Exception subclass or use one of Java’s. If you hit an error condition in your own code, you can

write:

Barry Boone and Dave Mark Learn Java on the Macintosh 419

throw new MyException();

And your code exits, tossing the exception object to the code that invoked your method. Your method must

declare that it might throw a method if you use a throw keyword. For example, you might write:

void myMethod() throws MyException {
 if (errorCondition())
 throw new MyException();
}

This code also assumes you’ve defined your own subclass of Exception, called MyException:

class MyException extends Exception {
}

There’s also a nifty keyword called finally that allows you to execute a block of code, no matter what

happened. For example, you can write:

try {
 // try something here
} catch (Exception e) {
 // catch an exception here
} finally {
 // execute this code no matter what happened in the above try
and catch blocks

Barry Boone and Dave Mark Learn Java on the Macintosh 420

}

Remember how we talked about different types of exceptions in the previous chapter? By catching a particu-

lar type of exception, you can choose to do different things, depending on the exception that occurred. You can catch

more than one type of exception by presenting a few different catch blocks, like this:

try {
 // try something here
} catch (ExceptionSubclass1 e) {
 // catch an exception of type ExceptionSubclass1 here
} catch (ExceptionSubclass2 {
 // catch an exception of type ExceptionSubclass2 here
} catch (Exception e) {
 // catch any other type of exception here
}

You can also “handle” an exception by re-throwing it. For example, you can write:

try {
 // try something here
} catch (Exception e) {
 throw e;
}

If you do this, you must declare your method as indicating it throws an exception. Also, be aware that if no

one else handles the exception, your program (or more technically, the thread that is currently executing) will come to

a halt. Barry Boone’s Java Essentials for C and C++ Programmers, from Addison-Wesley, has many more examples

of why, when, and how to create and use your own exceptions.

Barry Boone and Dave Mark Learn Java on the Macintosh 421

Sample Programs

We’ll look at three different programs in this section. TThe first shows you how to pass values to your applet from

your HTML file. The second shows you how to initialize objects by rolling your own constructor. The third program

provides an example of throwing your own custom exception.

SimpleDrawCustom.µ

Open the file SimpleDraw.µ in the folder 13.01 - applet params in the Learn Java Projects folder. Make

the project, then run this applet by dropping the HTML file SimpleDraw.html onto the Metrowerks Java icon. A

similar applet to the SimpleDraw applet will appear—except that you’ll notice the colors are different than before

(Figure 13.1). Once you’re done playing around with these new shape colors, quit the Applet Viewer so we can take a

look at the source.

FIGURE 13. 1 Shapes that are white, black, and pink.

Barry Boone and Dave Mark Learn Java on the Macintosh 422

Looking at the Source

The original SimpleDraw applet hard-coded the colors that were used to display the shapes. These colors were built-

in to the applet’s init() method and were set to red, green, and blue. In the version here, rather than forcing red,

green, and blue to be the colors, we have instead structured the applet so that every person placing the applet in a Web

page could choose which colors the applet would use. What’s wrong with pink, cyan, and orange? You have a prob-

lem with that? With applet parameters, this is no problem at all, because you can change them, just by changing the

HTML file.

Double-click the file SimpleDraw.html to see how this file is set up. This file will appear as in Figure

13.2.

FIGURE 13. 2 The SimpleDraw.html file that supplies custom colors to the applet.

This file names each parameter so that the applet can find it later. Here, we’re supplying three colors. We’ve

called these colors color1, color2, and color3. We use the name keyword to define the parameter’s name.

Immediately following the name, we use the value keyword to supply a value for this parameter.

<applet codebase="SimpleDraw" code="SimpleDraw.class" width=270
height=150>
<param name=color1 value="White">

Barry Boone and Dave Mark Learn Java on the Macintosh 423

<param name=color2 value="Black">
<param name=color3 value="Pink">
</applet>

(The values are defined inside of quotes in case the values contain spaces in their text.)

The next step is to access these values in your applet. Originally, we defined a new choice object and

added the choices to it by writing:

 colorChoice = new Choice();
 colorChoice.addItem(“Red”);
 colorChoice.addItem(“Green”);
 colorChoice.addItem(“Blue”);

Now, however, we want to get the parameter given its name. To do this, we use the method

getParameter(). This method takes a string with the name of the parameter to access. getParameter()

returns a string, which is exactly what we want for the addItem() method for choices. Here’s how we would get

the value for the color parameters embedded in the HTML file:

 colorChoice = new Choice();
 colorChoice.addItem(getParameter("color1"));
 colorChoice.addItem(getParameter("color2"));
 colorChoice.addItem(getParameter("color3"));

getParameter(“color1”) would retrieve the value “White,” given the HTML file we supplied

above. Similarly, getParameter(“color2”) would retrieve the value “Black,” and

getParameter(“color3”) would retrieve the value “Pink.”

Barry Boone and Dave Mark Learn Java on the Macintosh 424

With all these color possibilities, we need more choices in our color selection code. We might expand the

choices of red, green, and blue to look more like this:

 if (colorString.equals("Red"))
 s.color = Color.red;
 else if (colorString.equals("Green"))
 s.color = Color.green;
 else if (colorString.equals("Black"))
 s.color = Color.black;
 else if (colorString.equals("Blue"))
 s.color = Color.blue;
 else if (colorString.equals("Pink"))
 s.color = Color.pink;
 else if (colorString.equals("Cyan"))
 s.color = Color.cyan;
 else if (colorString.equals("Orange"))
 s.color = Color.orange;
 else
 s.color = Color.white; // default color

(Red, green, pink, and the others are a few of the color choices predefined in the Color class. You can look

at the documentation for the Color class supplied in the Java APIs (Application Programmer Interfaces) to see a

complete list of colors that are provided by Java. As we covered in Chapter 11, you can always create your own

custom colors, as well.)

You might want to play around with this applet and HTML file, changing the colors to get a feel for how

this all works. (It’s even more fun with funkier colors like cyan and orange, but the screen shots for this book

required colors that would be somewhat apparent in gray-scale.)

Barry Boone and Dave Mark Learn Java on the Macintosh 425

Constructor.µ

Go to the folder 13.02 - constructor in the Learn Java Projects folder. Open Constructor.µ and make

the project. Run the applet by dropping Constructor.html onto the Metrowerks Java icon. This applet will write

the following three messages to the Java Output window:

This circle’s radius is 10
This circle’s radius is 20
This circle’s radius is 20

Each of the three circles created in this applet were created with a different constructor. Let’s take a look.

Stepping Through the Source

Open the file Constructor.java to view the source code. There are two classes defined in this file: Constructor,

which is an applet, and Circle. The top part of the Circle class defines one instance variable and one class variable, set

to a default radius:

class Circle {
 static int defaultRadius = 10;
 int radius;

Then the class defines three constructors. The first constructor overrides the default constructor, which does

not take any parameters. The code for this constructor simply assigns the circle’s radius to be the value of the default

radius.

Barry Boone and Dave Mark Learn Java on the Macintosh 426

 Circle() {
 radius = defaultRadius;
 }

The second constructor takes a radius as a parameter, and uses this value to set the radius for this circle.

 Circle(int radius) {
 this.radius = radius;
 }

The third constructor takes a circle object as a parameter, and uses this object to set the radius to the same

value in this object.

 Circle(Circle referenceCircle) {
 this.radius = referenceCircle.radius;
 }

We can write three constructors, all with the same name, because of method overloading. The first construc-

tor is distinguished from the second and third because of the different number of parameters (zero and one). The sec-

ond and third constructors can be distinguished by the different parameter types (int and Circle).

The Circle class also defines an instance method that displays the radius for a particular circle.

 void displayInfo() {
 System.out.println("This circle's radius is " + radius);
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 427

}

Going back up to the top of the code, the Constructor applet defines an init() method. The init()

method defines three variables, one to hold each circle it will create.

public class Constructor extends Applet {
 public void init() {
 Circle c1, c2, c3;

The init() method then creates three circles, each time using a different constructor defined in the Circle

class. The first time, init() does not supply any parameters, so the circle will take on the default radius (the value

10). The second time, init() supplies a radius, so the circle will take on that radius value (the value 20). The third

time, init() passes the second circle as a reference circle, so the third circle will have the same radius value as the

second circle (that is, it will be 20).

 c1 = new Circle();
 c2 = new Circle(20);
 c3 = new Circle(c2);

Then, each of the circle’s information is printed, resulting in the display to the Java Output window.

 c1.displayInfo();
 c2.displayInfo();
 c3.displayInfo();
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 428

}

ExceptionApplet.µ

For our last example, go to the folder 13.03 - exception, open ExceptionApplet.µ, make the project,

and run the applet in the usual way—in this case, by dropping ExceptionApplet.html onto the Metrowerks

Java icon. Here are the messages the ExceptionApplet writes to the Java Output window:

Exception with radius -20
This circle’s radius is 10
This circle’s radius is 20
This circle’s radius is 10
This circle’s radius is 20

This applet is very similar to the one we just saw that defined three constructors for the Circle class. This

time, we created four circles, and creating one of these circles caused an exception to be thrown! Let’s take a look.

Stepping Through the Source

Open ExceptionApplet.java. At the very bottom of this file, we’ve defined our own Exception subclass, called

ImaginaryCircleException. We’ve simply created an empty class; the class’s name is enough to identify what excep-

tion this defines.

class ImaginaryCircleException extends Exception {
}

Barry Boone and Dave Mark Learn Java on the Macintosh 429

The Circle’s class definition is the same as before, except we’ve changed the constructor that takes the int

parameter for the circle’s radius. This time, instead of writing:

Circle (int radius) {
 this.radius = radius;
}

we’re a little more careful about the circle we’re creating! Instead of creating a circle with any old radius, we

first verify that the radius is in fact not a negative number. If it is, someone is attempting to create an imaginary circle.

If that is the case, we want to throw an exception so that the code creating this circle can handle this problem in a way

it finds appropriate. The circle constructor does not presume to know what the code creating the circle wants to do

when it tries to create an illegal circle. All the circle constructor does is notify the code that this kind of circle can’t

exist. Here’s the new constructor:

 Circle(int radius) throws ImaginaryCircleException {

 if (radius < 0)
 throw new ImaginaryCircleException();
 else
 this.radius = radius;

 }

As you can see, the constructor must indicate that it might throw an exception. It does this by using the

throws keyword, followed by the type of exception it might throw. The code itself creates and throws an instance of

ImaginaryCircleException if the radius is negative. Otherwise, all is fine, and the circle takes on the radius value sup-

plied to it.

Barry Boone and Dave Mark Learn Java on the Macintosh 430

The ExceptionApplet code progresses in a similar way to what you saw earlier. Its init() method starts

out defining variables to hold the new circle objects it will create. It then creates a circle using the default constructor,

which hasn’t changed from before.

public class ExceptionApplet extends Applet {
 public void init() {
 Circle c1, c2, c3, c4;

 c1 = new Circle();

Next, the init() method tries to create two circles using the new circle constructor. First, it tries to set the

circle’s radius to 20. In order to use the new constructor, which might throw an exception, the call to this constructor

must be wrapped in a try block. The try is followed by a catch.

 try {

 c2 = new Circle(20);

 } catch (ImaginaryCircleException e) {

 System.out.println("Exception with radius 20");
 c2 = new Circle();

 }

If the constructor throws an exception of type ImaginaryCircleException, the catch block will be able to

handle this situation. It will display a message to the Java Output window indicating what went wrong, and it will

then create a default circle. As it happens, everything goes fine with creating a circle of radius 20; the constructor

never throws the exception, since the radius value supplied is not negative.

Barry Boone and Dave Mark Learn Java on the Macintosh 431

However, the init() method then tries to create a circle with a radius of -20. Trying to do that triggers the

circle’s constructor to throw an exception. You can see the exception message appear in the Java Output window, and

the third circle has a radius of 10, which is what’s created by the default constructor.

 try {

 c3 = new Circle(-20);

 } catch (ImaginaryCircleException e) {

 System.out.println("Exception with radius -20");
 c3 = new Circle();

 }

The rest of the init() method is similar to what was there before: A new circle is created using the third

constructor, and then the information for each circle is displayed.

 c4 = new Circle(c2);

 c1.displayInfo();
 c2.displayInfo();
 c3.displayInfo();
 c4.displayInfo();
 }
}

As this example shows, you don’t just have to respond to Java’s exceptions; you can also use exceptions to

signal and handle error conditions that arise in your own code.

Barry Boone and Dave Mark Learn Java on the Macintosh 432

Review

This chapter brought you up to speed on some advanced topics and concepts in Java that you are likely to use as you

develop ever-more sophisticated programs. This includes how to customize your applets by supplying values for your

applet as part of a Web page; how to write methods with the same name but that take a different set of parameters;

how to get into the act of initializing your objects by creating your own custom constructors; and how throw your own

exceptions.

There are a few more features of the language that we’ll touch on in Chapter 15, where we’ll also suggest

places for learning more about Java.

What's Next?

You’ve almost reached the end of your complete tour of the Java language. Before you take a peek at the remaining

language topics in Chapter 15, you should familiarize yourself with how to create Java applications that run apart

from a Web browser. That’s the subject of Chapter 14, coming up next.

Barry Boone and Dave Mark Learn Java on the Macintosh 433

CHAPTER 14 Stand-Alone Applications

So far, all of the programs in this book have been applets. That is, the Java programs we developed so far were all

meant to run either in a Web browser or in CodeWarrior’s Applet Viewer. But this is not the only way you can write

and run a Java program. There is no requirement that Java programs only run as part of the Web—only that the com-

puter on which a Java program is running has a Java interpreter. When you run a Java application that is not meant to

be run as part of the Web, it is said that the program runs stand-alone (that is, apart from a Web browser).

In fact, you can do just about everything (and in some cases, a little bit more) in an environment that is not

connected to the Web than you can do in an applet which is part of the Web. For example, some security restrictions

are lifted when running separately from the Web—such as gaining access to the file system—because the browser

does not need to guard the gate, as it were. There’s nothing coming in over the wild and wooly Internet. Everything is

running locally on your machine, the programs exist on your hard drive, and you are in complete control of what’s

happening.

You can’t just launch an applet stand-alone, however, without making some minor adjustments to your pro-

gram so that it can run without a browser. This chapter will show you how to make these changes and how to plan out

a stand-alone application.

Barry Boone and Dave Mark Learn Java on the Macintosh 434

What Is a Stand-Alone Application?

A Review of the Java Virtual Machine

Stand-alone applications run just like any other application you might be used to from the Mac. You don’t need a

modem, an Internet access provider, a Web browser, MacTCP, and so on. All you need is a Java interpreter to act as

the Java Virtual Machine (JVM). Remember, your Java programs are compiled into a machine language that does not

run on any particular chip. Instead, the machine language produced by a Java compiler is tailored to a theoretical

machine—the JVM. The Java interpreter implements the JVM in software and acts as a translator between your com-

piled Java code and your Mac (different Java interpreters translate between your program and other environments on

which you want to run your Java program). This is depicted in Figure 14.1.

Java program

compile

compiled code ready
to run on the Java
Virtual Machine (JVM)

run

the Java interpreter

your Macintosh

(implements the JVM
in software)

translate

compile

run

translate

Barry Boone and Dave Mark Learn Java on the Macintosh 435

FIGURE 14. 1 Your compiled Java program runs in a machine implemented in software. This machine is the Java

Virtual Machine (JVM).The Java Virtual Machine is called Metrowerks Java in the CodeWarrior environment.

The JVM translates the machine language of your compiled class files into the machine language of the

Macintosh.

A Review of the Applet Viewer

With a Web browser, the Java interpreter is built in to the browser itself. In the CodeWarrior environment (and in other

environments, as well), the Applet Viewer acts as a stand-in for the browser. The Applet Viewer uses the Java inter-

preter that’s in Metrowerks Java. Even though you’re not running in a Web browser, the Applet Viewer still carries on

the applet life-cycle dialog with the applet. That is, the Applet Viewer tells the applet when to initialize, start, stop,

and destroy itself. This is shown in Figure 14.2.

FIGURE 14. 2 The Applet Viewer carries on the life-cycle dialog with your applet so that it knows when it should

do things.

Launch the Java interpreter

Load the indicated applet

Your applet is told to initialize,

and Applet Viewer

start running, stop running, and
destroy itself

Barry Boone and Dave Mark Learn Java on the Macintosh 436

Executing a Class

When you write a stand-alone application, you don’t need to extend the Applet class. In fact, you can execute any

class at all. When you run a stand-alone application, you don’t use the Applet Viewer, because you do not have an

applet. Therefore, your application never receives the applet life-cycle method invocations. So how does your applica-

tion know what to do and when to do it? You’ve got to know what to do and when to do it yourself! The only thing the

Java interpreter tells your program to do is to start running. (We’ll get into how the Java interpreter does this in just a

moment.) You’ve got to do the rest. This is depicted in Figure 14.3.

FIGURE 14. 3 The Java runtime environment loads your class and tells it to start running.

So how does the Java interpreter tell your class to start? The Java interpreter invokes your class’s main()

method.

The main() Method

You must include a main() method for a class if you want to execute that class as a stand-alone application. This is

different than the life-cycle methods for applets, where you could choose not to implement a particular life-cycle

method if you didn’t want to (in fact, you could ignore all the life-cycle methods and the applet would still run). How-

ever, if you do not have a main() method for a class that you want to execute, the Java interpreter will halt your pro-

gram. (Only the class that you run needs to have a main() method; any other classes that it uses do not need to have

a main() method.) This is depicted in Figure 14.4.

Launch the Java interpreter

Load the class you indicate

Your class is told to start running

Barry Boone and Dave Mark Learn Java on the Macintosh 437

FIGURE 14. 4 The Java interpreter tries to start a stand-alone application at a method called main(). If this

method does not exist, the application halts.

The declaration of the main() method is not nearly as simple as the init() or start() methods for an applet—

but then, since it’s the only method that’s invoked by the interpreter, it has more responsibilities.

First of all, your main() method must belong to the class. Why? Because when you run a class, the Java

interpreter does not automatically create an instance of your class, as the browser and Applet Viewer do with your

applet. You can create any objects yourself that you want to, but the interpreter does not try to guess that this is what

you want to do. In fact, stand-alone applications never have to create objects if they don’t want to! (We’ll take a look

at an example of this in a moment.) As you’ll recall, to declare a method as belonging to a class, you use the keyword

static.

Second, your main() method must be able to accept data as part of launching the program. This data can

be any length at all. The data that can be passed to your main() method is a list of words—in particular, a list of

String objects. You already know how to work with a list of strings: You make an array of them. As you learned in

Launch the Java interpreter

Load the class you indicate

when the Java interpreter tries to

method existsmethod does not exist

halt with an error message execute main()

Your class is told to start running

invoke a method called main()

Barry Boone and Dave Mark Learn Java on the Macintosh 438

Chapter 12, the way you declare an array is by using square brackets. The way that you declare an array of String

objects, then, is by writing String[]. Your main() method must accept an array of string objects as a parameter.

The two other keywords required by your main() method include public, so that main() can be

invoked from anywhere, and void, which indicates that main() does not return a value. Here, then, is the main()

method’s declaration:

public static void main(String[] args) {
}

By the Way

Why the name main()? Where does this come from? The name main() is a hold-over from the C language. In C,

all programs begin at a block of code named main(). The keywords and parameters are different, but the name

remains the same.

Hello, Java!

So now you know enough to write a complete, stand-alone application. Let’s write a stand-alone application that

writes the words “Hello, Java!” to the Java Output window. How do you think you should go about doing this?

First, you need to declare a class. This class does not need to be public, though it often is declared as

public. It does not need to extend any other class, though sometimes it does. The class can define the one class

method it needs, main(). main() can then do anything it wants to do, such as writing to the Java Output window.

Here’s the code for a simple stand-alone program:

public class WriteHello {

Barry Boone and Dave Mark Learn Java on the Macintosh 439

 public static void main(String[] args) {
 System.out.println(“Hello, Java!”);
 }
}

As you can see, this program ignores the parameter we’ve called args. If the user executed this application

and supplied any data, that data would be ignored. Notice also that we don’t create an object at all! There’s only one

method here, named main(), that belongs to the class. We run the class, the class executes its behavior, and then

that’s it! The main() method comes to an end, and so does the program. There’s no applet window sitting around.

There’s no other user interface. This program just writes its message to the Java Output window and halts.

Let’s look at this program in CodeWarrior and see what happens when it runs.

HelloJava.µ

Go to the folder named 14.01 - hello, java in the Learn Java Projects folder and open the project file Hel-

loJava.µ. The project window will appear (Figure 14.5).

FIGURE 14. 5 The HelloJava.µ project window.

Barry Boone and Dave Mark Learn Java on the Macintosh 440

Notice that this project window, unlike the project windows for applets, only contains one section, not two.

The section missing here is for HTML files. That’s because we’re not intending to run this Java program as part of the

Web, so we don’t need any HTML files.

When you compile this source file by selecting Make from the Project menu, CodeWarrior will gener-

ate a file named HelloJava.out (Figure 14.6).

FIGURE 14. 6 The folder 14.01 - hello, java after compiling the application.

The file HelloJava.out is a double-clickable icon that will launch the Java interpreter and run your pro-

gram. Go ahead and double-click this file now to see your program run. The result will be that the words “Hello,

Java!” will appear in the Java Output window, as in Figure 14.7.

Barry Boone and Dave Mark Learn Java on the Macintosh 441

FIGURE 14. 7 Hello, Java! in the Java Output window.

In addition to the Java Output window, you can also display a window called “javai.” To do this, select File,

New, javai from the Metrowerks Java menus at the top of the screen. This window can be used to interact with the

Java interpreter and your stand-alone applications. Figure 14.8 shows what this window looks like when it first

appears.

FIGURE 14. 8 The javai window when it first appears.

Here’s an example of how you can use this window. If you’d like to run HelloJava again, type “HelloJava”

into this window (Figure 14.9), and click the Execute button. The words “Hello, Java!” will appear again in the

Java Output window.

Warning

If you make a change to your applet and then recompile it, you’ll need to quit out of Metrowerks Java and relaunch

your application to see the changes come into effect. Otherwise, Metrowerks Java will keep on running the class that

it loaded originally.

Barry Boone and Dave Mark Learn Java on the Macintosh 442

FIGURE 14. 9 Type the name of the application class you’d like to execute and click the Execute button. This

figure shows how you can run the HelloJava application once you’re already in the Java interpreter.

You can also use the javai window to pass parameters to your application when you execute it. The next sec-

tion explains how this is done.

By the Way

When working with CodeWarrior, you must indicate whether you would like to create an applet or a stand-alone

application when you first create your project file. There are also preferences you can set that indicate what kind of

files the CodeWarrior compiler will generate. That’s how we got the double-clickable file to be created for the stand-

alone application. For stand-alone applications, you expect it to behave like an other Mac application, and so we want

to generate a double-clickable icon.

That’s also how we generated the compiled class files in their own folder for applets. For applets, you need

compiled class files so that your applet can be downloaded over the Web.

All of the project files in this book have already been created for you, so you didn’t have to worry about this.

For more information on creating new projects in the full version of CodeWarrior (that is, not the Lite version) and in

setting the preferences for a project, check out the documentation that comes with CodeWarrior.

Differences Between Applications and Applets

For the most part, everything you’ve learned in this book concerning applets is the same for applications. This

includes defining classes, creating and using objects, writing and invoking methods, defining and using variables,

implementing flow control, using inheritance, creating constructors, and handling exceptions, to name just a few of

Barry Boone and Dave Mark Learn Java on the Macintosh 443

the features of Java that carry over from applets to applications. It’s still Java, after all, and the language is the same.

However, there are a few subtle differences between applications and applets; this section points out some of the more

important ones.

The Command Line

Applets are somewhat sheltered from the operating environment because they run in a browser; applications are exe-

cuted directly in the environment itself. For example, stand-alone applications are meant to run in an operating envi-

ronment such as your Macintosh. They can also run in Windows 95, Solaris, OS/2, and wherever else there’s a Java

interpreter.

In graphical environments, such as the Mac, stand-alone applications can be created to run when the user

double-clicks an icon, as you saw with the HelloJava application. However, in environments that also allow for com-

mand line input, where the user types commands from the keyboard rather than using the mouse, applications can

also be launched by using typed commands.

CodeWarrior provides a way into this capability by displaying the window titled javai. This is a window that

allows you to execute commands by typing them in and clicking the Execute button. For example, you’ve already

seen how to execute your application class by typing its name. You can also pass parameters to your application by

using the command line. To do that, you can type the parameters you want to pass to your class’s main() method

after the name of the class you want to execute. We set up main()’s parameter as an array of string objects. This is

exactly how the parameters you supply are passed to main(): as string objects in the string array.

Here’s an example. Remember our NextPrime applet back in Chapter 8? That applet found the next prime

number after an initial starting point. Here was the start of that applet:

public class NextPrime extends java.applet.Applet {
 public void init() {

Barry Boone and Dave Mark Learn Java on the Macintosh 444

 int startingPoint, candidate, last, i;
 boolean isPrime;

 startingPoint = 19;

How would we rewrite this so that it was a stand-alone application, and so that it accepted its value for

startingPoint as a command line parameter? We’d start by writing the following:

public class NextPrime {
 public static void main(String[] args) {

 int startingPoint, candidate, last, i;
 boolean isPrime;

Now, what should we set startingPoint equal to? The whole intent here is to avoid “hard-coding” the

value for startingPoint and instead use the first parameter passed to NextPrime. The first parameter passed to

NextPrime will be the first string in the string array. From our discussion of arrays, you know how to access this: The

first value will be in the variable args, and you can get at it by writing args[0].

The Sample Programs section in this chapter shows you how to make the changes to NextPrime to make this

all work.

The Top-Level Frame

The HelloJava application simply displayed some text in the Java Output window. It did not allow the user to interact

with the application. To do this, you have to create a user interface. You’ve already developed user interfaces in Chap-

ter 11, and everything you learned there applies to creating a user interface for a stand-alone application. However,

there is one important difference between applets and applications when it comes to user interfaces, and that is where

your user interface is displayed.

Barry Boone and Dave Mark Learn Java on the Macintosh 445

For applets, this is not really an issue. An applet displays its user interface inside a Web browser (or inside

the Applet Viewer). This is shown in Figure 14.10.

FIGURE 14. 10 An applet displays its user interface inside a Web browser, placing its user interface objects inside

the applet itself.

However, an application has no such place to display its user interface. This means that the application must

create its own place to display its user interface. How do we go about doing this? Let’s think through how your user

interface is displayed in a Web browser. The Web browser automatically created your applet instance for you. All you

had to do was to create the user interface objects that went inside it. For stand-alone applications, no one is creating

this place to put your user interface objects. You have to do so yourself.

Java supplies a class called Frame that you can use as a place to put your user interface. Frames contain other

user interface objects, which is exactly what you want. What you can do, then, is create your own instance of class

Frame, arrange your user interface objects inside of your frame object, and display the frame. This is shown in Figure

14.11.

Web browser

applet

Barry Boone and Dave Mark Learn Java on the Macintosh 446

FIGURE 14. 11 Your application’s user interface is displayed inside a frame your application created itself.

Here are the steps you might follow when creating your own frame in which to contain your user interface.

(This assumes that you are still defining an applet class, but want to run this applet as a stand-alone application, but

this technique is easily transferable to other types of classes, as well.)

1. In your applet’s main() method, create a new instance of the applet. When running your applet in a browser, the

browser (or Applet Viewer) creates a new instance of your applet class for you. If you’re running stand-alone, you

have to do this yourself.

2. Invoke your new applet instance’s init() method. Again, the browser normally does this for you; you must ini-

tialize your own applet if you are running stand-alone.

3. Create an instance of class Frame to contain your applet. In a browser, your applet is contained within the browser

itself. As a stand-alone application, you have to supply your own container for your applet, then add your applet to

the frame.

4. Resize the frame. The HTML file sets the size for the applet; without an HTML file, you’ve still got to set the size

in your code.

5. Finally, make the frame display itself on the screen.

We’ll take a look at an example of all this in the next section.

Frame you create

applet

Barry Boone and Dave Mark Learn Java on the Macintosh 447

Sample Programs

In this section we’ll take two programs that we’ve seen before—NextPrime and SimpleDraw—and turn both of these

applets into stand-alone applications.

NextPrime.µ

Open the file 14.02 - next prime in the Learn Java Projects folder. Open NextPrime.µ and make the

project. This time, instead of dropping the HTML file onto the Metrowerks Java icon, double-click the file named

NextPrime.out. This will run the stand-alone application.

The Java Output window will appear. Display the javai window by selecting File, New, javai from the

Metrowerks Java menu options at the top of the screen. At first, nothing will seem to have happened. That’s because

the application is set up to halt gracefully if no data was supplied for it. So, let’s run it again, this time supplying it

with data. In the javai window, type:

 NextPrime 19

and click Execute. A message will appear in the Java Output window indicating that the next prime is 23.

Change the 19 in the javai window to 153 (so that it reads NextPrime 153), and click Execute again. A second

message will appear in the Java Output window, indicating the next prime is 157. This is shown in Figure 14.12.

Barry Boone and Dave Mark Learn Java on the Macintosh 448

FIGURE 14. 12 NextPrime, when run as a stand-alone application. This version is set up to take its starting point as

a command line parameter, allowing you to easily rerun the application to find a different prime number.

Let’s see how we did this.

Stepping Through the Source

Open the file NextPrime.java. First of all, you’ll notice that this class no longer inherits from Applet. In fact, it

doesn’t inherit from any other class (other than Object). We’ve also removed the init() method. In its place, we’ve

defined a main() method.

public class NextPrime {
 public static void main(String[] args) {

We then define the same variables as before.

Barry Boone and Dave Mark Learn Java on the Macintosh 449

 int startingPoint, candidate, last, i;
 boolean isPrime;

This time, however, instead of setting startingPoint to 19, we attempt to retrieve it from the command line

parameters. Before grabbing this value, we might want to check to make sure the user actually supplied a command

line parameter in the first place! Otherwise, imagine that the user did not supply a command line parameter. In that

case, the array would be empty—it would have a length of 0. If we tried to access a value in the array’s first position

we would be looking beyond the end of the array, which would cause Java to throw an exception called ArrayIndex-

OutOfBoundsException. So, before accessing the args array, we might want to check to make sure the array does in

fact contain one element. If it doesn’t, we can return right away, which would cause the program to halt. Here’s how

we could write this:

 if (args.length == 1) {
 // try accessing the first command line parameter
 } else
 return;

If args.length does equal 1, then there is a command line parameter. Each command line parameter is a

string. This means, if we want to assign the first command line parameter, which is a string, to startingPoint,

which is an int, we must first convert the string to an int. One way to do that is to create a new instance of class

Integer based on the value in the string and then use the integer’s instance method toInt() to return an int data

type. Since the constructor for the Integer instance might throw an exception if the string does not contain a valid inte-

ger, you have to be prepared to catch the exception. Here’s the code:

 try {

Barry Boone and Dave Mark Learn Java on the Macintosh 450

 Integer integer = new Integer(args[0]);
 startingPoint = integer.intValue();

 } catch (Exception e) {

 return;

 }

(Alternatively, you could also use Integer.parseInt() as we saw in a previous example.)

SimpleDraw.µ

Displaying a user interface in a stand-alone application requires providing a frame for the user interface. We can write

an applet just as usual, but instead of relying on the browser to tell us what to do, our main() method can do this

work itself.

Run the SimpleDraw application that’s in the folder 14.03 - stand alone in Learn Java Projects.

First open SimpleDraw.µ and make the project. You can run this by double-clicking the file SimpleDraw.out.

You can interact with SimpleDraw just as you’re used to. Create new shapes by clicking in the applet;

change the type of shape and color to draw in by using the choice lists. Notice that there is no Applet Viewer. This

application is truly running separately from the Applet Viewer.

Stepping Through the Source

Open SimpleDraw.java to check out the source. The only thing that has changed since you saw this program last

is the addition of a main() method. We’re still creating an applet; we still have an init() method; and so on. Let’s

take a look at this main() method and see what it does.

Barry Boone and Dave Mark Learn Java on the Macintosh 451

First, main() creates a new instance of the applet. Remember, main() is a class method. When main()

starts executing, there is no instance at all; all that exists is the class itself.

 public static void main(String[] args) {

 SimpleDraw sd = new SimpleDraw();

Since there is no Web browser or Applet Viewer invoking init() for us, we have to do this ourselves.

 sd.init();

Since a Web browser or Applet Viewer is not supplying a place to display our applet, we have to create our

own place. We can create an instance of Java’s class Frame to contain our applet. One of the constructors of class

Frame allows us to supply a title for this window; we’ll use that constructor here.

 Frame f = new Frame("SimpleDraw");

Frames use a type of layout manager called a BorderLayout. As mentioned in Chapter 11, a BorderLayout

arranges its user interface components according to directions: North, South, East, West, and Center. We’ll put our

applet smack-dab in the center.

 f.add("Center", sd);

Barry Boone and Dave Mark Learn Java on the Macintosh 452

For applets, the HTML file supplies the default size in its width and height keywords. For stand-alone

applications, we have to supply this size ourselves.

 f.resize(200,100);

The last thing to do is display the frame, which makes our applet appear as well, since it is contained within

the frame.

 f.show();
 }

As mentioned, the rest of the program is the same. This main() routine does everything the Applet Viewer

did, and so our application can run stand-alone.

Review

This chapter outlined how to create applications in Java that do not rely on Web browsers. You’ve seen how you must

define a main() routine for stand-alone applications. In fact, you can execute any class at all, as long as it has a

main() routine.

main() is a class method; if you want to interact with instances of your class (for example, if you want to

invoke instance methods), you must create an instance of your class and use that for invoking methods. To display a

Barry Boone and Dave Mark Learn Java on the Macintosh 453

user interface, you have to take over the responsibilities of a Web browser in main() by supplying a place to display

the applet, adding your applet to this place, sizing the window that will appear, and then displaying the window (and

so displaying your applet inside of it).

What’s Next?

At this point, you’ve learned just about all there is to know. The next chapter highlights some concepts that are impor-

tant to Java and offers some insights into how you can continue your pursuit of Java excellence.

Barry Boone and Dave Mark Learn Java on the Macintosh 454

CHAPTER 15 Where Do You Go From
Here?

Congratulations! You’ve made it through to the end. By learning Java, you have begun to travel the road to great Web

sites, fun programming, and a rewarding career as a Java programmer. Now that you’ve started you’re journey, we’re

not just going to drop you off in the middle of nowhere! This chapter provides a link between this book and the rest of

the great, wide, world of Java. In particular, you’ll learn about a number of advanced concepts concerning Java and

where you can go to find out more information about them.

You’ve come a long way since Chapter 1. You started your journey learning about a Java development envi-

ronment called CodeWarrior, then waded through the concepts of Web programming and how to solve problems in

Java using classes, objects, and methods. You started developing very simple applets at first, but then, as you learned

about variables, methods, and the applet life-cycle, you were able to start to customize your applets to do things. Once

you learned about objects and Java’s classes, you were able to put together user interfaces that allowed users to inter-

act with your applet. That’s when things really started getting good! By learning about different ways of working with

data you were able to complete these applets. Finally, you learned a few advanced topics, then took a look at what you

needed to do to create applets that ran stand-alone, apart from a Web browser.

What more is there? There are lots of details, and this chapter helps show you where to look to dig down

deeper. Having gained a strong footing in the language, you should feel confident about exploring any of these areas

and learning many of the details that are not quite appropriate for a beginning book on Java. But you’re no longer a

beginner! Now’s the time to explore. Some of the topics presented here might begin to fill up entire books on their

own, so we can’t go into much more detail other than to point out that they exist and offer some links to where you

can learn more about them. This chapter suggests how you might:

• learn about interfaces

Barry Boone and Dave Mark Learn Java on the Macintosh 455

• define your own packages

• learn about threads

• learn how Java works on the inside

• read the HTML files that describe Java’s packages

• explore Java’s packages

• study other resources

• experiment with a multithreading applet

Appendix G also offers a path to your continuing education by listing additional resources where you can

find out more about Java as the language develops and finds uses all over the Web. You might also want to attempt to

create your own programs that implement the features mentioned here. One of the best ways to learn the language is

to experiment. Try them out, play around with them, and test their limits to learn what these features are all about.

Learn About Interfaces

Interfaces define a set of behavior for classes to implement. The idea behind an interface is that different classes

might share the same characteristics, even if these classes are not part of the same class hierarchy.

For example, you might have a class hierarchy for a Navy application that describes a whole bunch of jets,

destroyers, aircraft carriers, tug boats, and so on. Some of the more modern of these aircraft and ships might be

nuclear powered; the rest are diesel powered. How can you give different classes of crafts the roles and responsibility

of a nuclear powered craft without building it right into a class? YYou can create an interface. Figure 15.1 provides an

idea of how an interface can be sprinkled into your class hierarchy.

Barry Boone and Dave Mark Learn Java on the Macintosh 456

FIGURE 15. 1This class hierarchy has the characteristic of “nuclear powered” sprinkled into different parts of the

hierarchy. Only those classes that have this characteristic are nuclear powered; the rest of the classes are just like

normal. Those vehicles that are nuclear powered must implement the specific behavior of what being nuclear

powered means for them.

An interface is somewhat similar to a class, except that it can be shared among different classes. Interfaces

only define method names, parameters, and return values; they do not provide any behavior. The specific behavior for

a method defined in an interface is left up to the class that implements that interface. Interfaces can define variables,

but these variables must be constants.

Java provides a number of interfaces, and you’ll run across these as you continue programming in Java. For

example, one of the most common interfaces, defined by Java, is called Runnable. This interface defines a method

called run(), but does not supply any code for run(). Instead, if your class implements the Runnable interface,

your class must supply a method for run() that tells run() what to do.

The way you declare a class as implementing an interface is to use the implements keyword. For exam-

ple, to indicate that your applet implements the Runnable interface, you can declare your applet like this:

aircraft sea-going spaceship

boatship

aircraft carrier destroyer tugboatfighter

jet

awacbomber

propeller

vehicle
= nuclear powered

attack shuttle

Barry Boone and Dave Mark Learn Java on the Macintosh 457

public class MyApplet extends Applet implements Runnable {

 // your applet code goes here

 public void run() {
 // your code for run() goes here
 }
}

This particular interface (that is, Runnable) is used with multithreading, as touched on later in this chapter.

For more information concerning interfaces, check out Java Essentials for C and C++ Programmers, by Barry

Boone and published by Addison-Wesley.

Define Your Own Packages

All of Java’s classes come in packages, and you can do the same thing with your own classes—that is, you can group

your classes into packages, as well. This can help you share classes between different applets that you write, just as

Java’s classes are shared between applets.

What Are Packages?

Packages are Java’s way of grouping together related classes. The advantage of packages over a bunch of individual

classes is that packages are easy to share between applications. If you have a collection of classes you’d like to share

between two or more applications, it’s very useful to place all of these classes into a package, and then simply share

the package.

For example, you might have two applications that could make use of the Square and the Rectangle classes

discussed in this chapter. One of these applications might be used for drawing, and the other might be used in an

Barry Boone and Dave Mark Learn Java on the Macintosh 458

application that teaches geometry to students. Figure 15.2 shows how each application might be organized without

packages.

FIGURE 15. 2 Duplicating classes for different applications.

Rather than duplicating the classes between the applications, you could split out the classes for the square

and rectangle (as well as any other shape classes you’ve defined), place these classes into a package called shapes,

and then share this package between the two applications. This would allow you to use the same classes in both appli-

cations, without duplicating any work, in a way that’s very easy to manage. Figure 15.3 shows this organization.

FIGURE 15. 3 Sharing classes between applications.

drawing application Learn Geometry on the Mac

Square class Square class

Drawing class Teacher class

Rectangle classRectangle class

drawing application Learn Geometry on the Mac

Square class

Drawing class Teacher class

Rectangle class

shape package

Barry Boone and Dave Mark Learn Java on the Macintosh 459

Creating Packages

To indicate that the classes in a particular file belong to a particular package, you must use the package keyword.

For example, the following line at the top of a file indicates that all of the classes in that file should belong to a pack-

age named shapes.

package shapes;

When you want to use a class in another package, you must import it, just as you import Java’s classes, by

writing:

import shapes.*;

Learn About Threads

All of the programs in this book work by asking the computer to do one thing at a time. This is how most programs in

other languages work, and you can write many great Java programs like this, as well. But Java contains an advanced

feature that makes it easy to ask the computer to do two or more things at the same time, and this makes Java much

different from other languages (Figure 15.4). This section will introduce you to this concept and to Java’s capabilities.

We won’t go into too much code here, but by the time you finish this section, you’ll at least understand what Java

means by multithreading.

Barry Boone and Dave Mark Learn Java on the Macintosh 460

FIGURE 15. 4 In Java, you can ask the computer to do more than one thing at a time.

When Do You Want to Do More than One Thing at a Time?

Many programs are perfectly content to do one thing at a time. The SimpleDraw applet is happy enough responding

to user input and displaying squares and circles. The Triangle applet is content to calculate the area of the triangle

when the use clicks the “area” button.

What would happen if we changed SimpleDraw to be called SimpleDrawBlink? Perhaps such an applet

would “blink” the squares and circles in the applet. For example, you click in the applet, and a red square appears.

Every second, it changes to yellow for a quarter of a second, and then redraws itself in red. You click again, and a blue

circle appears. Every second, it changes to yellow for a quarter of a second, and then redraws itself in blue. Soon,

your applet is filled up with blinking shapes, all blinking to yellow at different times.

Other than becoming hypnotized by such an applet, we’d run into some trouble if we really wanted all the

shapes to start blinking independently of each other. If the applet managed each shape’s blink, we’d have to enter

some kind of loop, draw each shape in yellow, then loop back, redraw the shape in its original color, and so on, for-

ever—and still we would probably end up with them all blinking in unison, which is not what we want. In addition to

this, when would we respond to user input if all we did was draw and redraw these shapes? Would we be using system

resources correctly?

Difficult questions indeed, and a problem tailor made for threads.

do this
now do this at the same time!

and don’t forget about this!

Barry Boone and Dave Mark Learn Java on the Macintosh 461

What Is a Thread?

A thread is kind of like a mini-program. A thread maintains its own thread of execution or thread of control. Your

program can use as many threads as it wants to; each thread will do its own thing, independently of the others. For

example, you could have a thread that controls how to draw each shape. Each thread would decide when to blink each

shape. You could create a thread and assign it to the first red square you create; you could create a second thread and

assign it to the blue circle you create next. Each time a new shape is created, you create a new thread for it, as well.

In this scenario, we’ve assigned each shape its own mini-program, and each program executes independently

of each other and at the same time. SimpleDraw itself does not have to go around blinking each shape; the threads and

shapes working together make this happen. This is depicted in Figure 15.5.

FIGURE 15. 5 Each thread works with a particular shape to make that shape blink; all the threads run at the same

time. The applet does not have to worry about anything other than creating a shape and a corresponding thread.

Creating and Starting a Thread

Java supplies a class called Thread. One way to work with threads is to create your own subclass of the Thread class.

By creating your own subclass, you can provide behavior for the thread that will make it do what you want.

blink circle

blink square

blink square

SimpleDraw creates
the shapes and threads

Barry Boone and Dave Mark Learn Java on the Macintosh 462

All you have to do to create a new thread is to create an instance of your thread subclass. To start a thread

going, you need to give it a little nudge. You tell it to start by invoking its start() method.

Telling a Thread What to Do

How does a thread know what to do? You have to tell it! You can tell your thread, for example, to redraw a particular

shape. You can tell your thread to perform some animation. You can tell your thread to access a Web page while the

user is busy interacting with the application. Remember, threads are mini-programs. They can do whatever you tell

them to do.

The way you tell a thread what to do is by supplying a method called run(). Once you start your thread by

invoking its start() method, Java will invoke its run() method for you, as shown in Figure 15.6.

You can also create a thread without subclassing it and indicate to Java that you want another class, such as

your applet, to provide a run() method for the thread. You would then implement a run() method in your applet to

provide the behavior for the thread and declare your applet as implementing the Runnable interface.

 Once the run() method begins, it will continue to execute until one of two things happens:

1. Java reaches the end of the code in the thread’s run() method. If run() exits, your thread will no longer be

doing anything. Many times, threads enter an infinite loop, so that they run forever (that is, until the thread is

destroyed, usually because the user quit the applet).

2. Someone puts your thread to sleep. Who might do this to your thread? Any object can put a thread to sleep—

including the thread itself! If your thread goes to sleep, you can always wake it up again, and it will continue along

its merry way. There are a few different methods to make your thread sleep, and a few corresponding methods to

make your thread wake up.

Barry Boone and Dave Mark Learn Java on the Macintosh 463

FIGURE 15. 6 Starting a thread invokes the thread’s run() method.

One way to make a thread go to sleep is for the thread to invoke its own sleep() method, which waits the

indicated number of milliseconds before reawakening. The sample program in this chapter uses this technique. For

other techniques for putting a thread to sleep and reawakening a thread, check out the different methods associated

with class Thread in the Java Application Programmer’s Interface (API) documentation.

Synchronizing Threads

Traditionally, with other languages, threads can be a nightmare. Having all these threads running around doing things

is a little like having dozens of ants running around, each one doing its own task. How do you control all these little

critters? How do you stop one ant (I mean, thread) from doing something that another thread is doing at the same

time?

This is a difficult problem in other languages, because other languages were not developed with the idea of

threads in mind. In Java, however, this idea is built right into the language. Java supplies two keywords (the primary

one being the keyword synchronized) that asks Java to take on the responsibility of making sure that threads

don’t step on each other’s toes. If you ever see a method declared as synchronized, this means the author of the

code wanted to make sure that only one thread could invoke that method at a time. If another thread comes along and

also wants to invoke that method, it must wait patiently until the first thread is done and the method exits.

Detail

start()

thread

run() {

}

Barry Boone and Dave Mark Learn Java on the Macintosh 464

To be complete about this, there’s also a keyword that is rarely used, called volatile. This keyword ensures that if

a thread changes a variable that another thread is using, that other thread will see the change.

The Thread Life-Cycle

There’s also a thread life-cycle, which applies to the Thread class; in particular, threads can start and stop. Very often,

you will put your thread’s life-cycle in synch with your applet’s life cycle: When your applet starts, you should start

your applet’s threads; when your applet stops, you should stop your applet’s threads.

There are some good explanations of multithreading on the Web at JavaSoft’s site, as well as applets you can

run at this site to see examples of multithreading in action. Also, Barry Boone’s Java Essentials for C and C++ Pro-

grammers, from Addison-Wesley, describes multithreading, including the synchronized and volatile key-

words, in much more detail.

Learn How Java Works on the Inside

Garbage Collection

The applets in this book all created a number of objects. We kept track of almost all of these, from shapes to employ-

ees. Sometimes, however, you’ll create objects only temporarily, and then you won’t have need or use for them again.

As we mentioned earlier, objects take up memory in your computer. If you create an object and then don’t use it

again, does the object continue to sit in memory, using up space unnecessarily?

Not in Java. Java provides a mechanism called garbage collection. When your program can no longer

access a particular object, Java has ways of finding out. If it discovers an object that you won’t be using any more

(because you no longer can access it from your program), it frees up the memory used by that object.

Barry Boone and Dave Mark Learn Java on the Macintosh 465

It’s not strictly necessary to know about garbage collection to use Java, but it does enhance your understand-

ing of what’s happening behind the scenes. Check out the specifications for the Java Virtual Machine and the docu-

mentation for the Object class for more information concerning what Java’s garbage collection is all about.

The Java Virtual Machine

You know what the Java Virtual Machine (JVM) does; one advanced area of study is learning how the JVM works.

For example, the JVM does not allow any code to execute that contains a virus. How does it know? What do the

machine language instructions for the JVM look like? What can you learn about Java by knowing these details?

The answers to these and many more questions can be found in the specifications for the Java Virtual

Machine. If you really want to try to figure out what’s going on behind the scenes, you might want to gain an over-

view of the JVM.

Explore Java’s Packages

You’ve now at least seen all there is to know about the Java language. But Java is much more than a language. Java

comes with lots and lots of predefined classes for you to use in your own programs. We’ve already seen lots of these,

from Strings to Applets to Vectors to the Math class. This section provides an overview of some of the classes you

might want to investigate first as you continue learning what Java has to offer. For more information on the classes

mentioned here, check out the HTML files containing the Java package information.

Barry Boone and Dave Mark Learn Java on the Macintosh 466

Understand the HTML Files

First off, let’s look at the structure of the HTML files that contain Java’s class documentation. These files can be

found on your CD; you can use a Web browser to view them. (Check with your development environment for more

information about what’s available on the CD.) You can also go to the JavaSoft Web site containing the most up-to-

date documentation (see Appendix G).

The documentation files are arranged in a hierarchy. The first level is a listing of all of Java’s packages that

are available to you to use in your own Java programs. This is shown in Figure 15.7.

Barry Boone and Dave Mark Learn Java on the Macintosh 467

FIGURE 15. 7 The index of Java’s packages as found at the JavaSoft Web site.

By clicking on one of these hypertext links (say java.lang, for example), you’ll go to a listing of the

classes that are found within this package. The lang package contains lots of classes that are at the heart of Java. The

beginning of the listing of classes in the lang package is shown in Figure 15.8.

FIGURE 15. 8 A listing of the classes within a package (in this case, these are the classes within the lang package).

The top part of this listing presents the interfaces that are defined in this package. The interfaces are followed

by the classes. To learn more about an interface or a class, click on it to view a page describing all the variables and

methods for that class.

The top part of the class’s detailed information shows where this class fits into Java’s class hierarchy. For

example, clicking on Integer displays the information shown in Figure 15.9.

Barry Boone and Dave Mark Learn Java on the Macintosh 468

FIGURE 15. 9 The definition for the Integer class, including a simple diagram of where the Integer class fits into

Java’s class hierarchy.

If you’d like to navigate to an ancestor class, simply click it. For example, you can click

java.lang.Number or java.lang.Object in the display shown in Figure 15.9 to go to information about the

Number or Object class.

Beneath this hierarchy information, you’ll find the complete definition for the class, as well as documenta-

tion concerning what this class is all about. (You can see from this HTML file that the Integer class is defined as

final, which means it cannot be subclassed.)

The next part of the HTML file is divided into two broad sections. The first section provides indexes for the

variables, constructors, and methods. Each entry in this first section jumps to the appropriate spot in the second sec-

tion, where you’ll find the detailed information for a variable, constructor, or method. For example, Figure 15.10

shows the Variable Index for a class.

Barry Boone and Dave Mark Learn Java on the Macintosh 469

FIGURE 15. 10 The Variable Index for the Integer class.

If you click one of these hyperlinked variable names, you’ll jump to the part of this same HTML document

that defines these variables. This is shown in Figure 15.11.

FIGURE 15. 11 You can tell by looking at the definition for the variables named MIN_VALUE and MAX_VALUE

that they cannot be changed—that is, they are constants by virtue of being defined as final. Since they are

defined as static they are class variables, and you can access these variables by writing

Barry Boone and Dave Mark Learn Java on the Macintosh 470

Integer.MIN_VALUE and Integer.MAX_VALUE. (The values for these constants are given as hexadecimal

values in the documentation. In base 10, these values are 2,147,483,647 and -2,147,483,648.)

After the Variable Index comes the Constructor Index. The Constructor Index lists the constructors defined

by the class. And finally, following the Constructor Index is the Method Index. As with all of the HTML documenta-

tion, click any link to find out more about a variable, constructor, method, or parameter. Figure 15.12 shows an exam-

ple of what a typical method definition looks like:

FIGURE 15. 12 The equals() instance method for the Integer class.

This definition shows the method declaration, including all its keywords and parameters. The details for the

method indicate the meaning of the parameters and return values, and indicates which method it is overriding, if any.

Another convenient aspect to the documentation is an index. If you need to find a particular method and are

not sure what class to go to, you can use the index to look up variables and method names alphabetically. You can

access the index by clicking on the word Index at the top right of the documentation (Figure 15.13).

Barry Boone and Dave Mark Learn Java on the Macintosh 471

FIGURE 15. 13 The Index link takes you to an alphabetical index for the documentation.

That brings you to a large document listing everything in alphabetical order. The top part of this is shown in

Figure 15.14. Simply click on a variable or method name to jump right to its definition.

FIGURE 15. 14 The top part of the Index, listing all fields (that is, variables) and methods.

By the Way

The original Sun JDK had a feature that automatically produced nicely formatted HTML files containing documenta-

tion for your source code. When the tool that generated these HTML files read your source files, they sought out com-

ments that started with /** and added these to the HTML documentation files. For example, you could write:

Barry Boone and Dave Mark Learn Java on the Macintosh 472

/** Shapes provide a common ancestor for the circle and square. */
abstract class Shape {
 // definition for the Shape class here
}

and these comments would be added to the HTML file automatically generated for you that contained your

class’s documentation.

It’s likely that other development environments will implement this documentation tool as well. Check the

documentation with your development environment for details.

Spend some time looking around these class documentation files. They’ll provide lots of insights into how

Java is put together and you’ll learn about lots of classes you can use in your own applets. The next few sections pro-

vide an introduction to what you’ll find in these packages.

The awt Package

With the awt package, you can create very sophisticated graphical user interfaces that run on any platform. The

classes and methods in this package will allow your applet to interact with the user and will make your applet sparkle.

You’ve already created some user interfaces in this book, and what you’ve learned so far has taken you far.

You can also generate much more complex user interfaces with Java than you’ve created up to this point. And as more

graphical development environments emerge, you’ll be able to create user interfaces simply by arranging objects on

the screen. Soon, you may not even realize what classes you’re using, and creating an interface will be a matter of

“drawing.” But it’s always helpful to know what you’re doing; learning how to work with Java’s awt classes directly

can be very educational when learning what makes Java tick.

Some of Java’s classes that will help you develop more complex user interfaces include:

• Panels, which contain other user interface elements inside of them

Barry Boone and Dave Mark Learn Java on the Macintosh 473

• Frames, which are top-level windows with a title

• Dialogs, which are windows that take input from the user

These are all types of Containers. The Container class defines user interface elements that contain other user

interface elements. In addition to all the other user interface classes we’ve already covered (such as TextFields,

Labels, and Buttons), the awt package also defines:

• Scrollbars, which allow the user to scroll the contents of a window

• TextAreas, which display multiple lines of text and can be used to display or edit text

• Menus, which are choices in MenuBars

• Canvases, which you can subclass to create your own custom components

These are all types of Components. The Component class defines things with which the user can interact.

The JavaSoft Web site has a number of examples of applets that create user interfaces. You’ll also find some examples

on the CD that comes with CodeWarrior.

The net Package

The net package contains classes for communicating over networks, including the Internet and the Web. You can use

all sorts of great networking classes by using the net package, including:

• URLs, which encapsulate Universal Resource Locators and allow you to get a file or open a connection to the

URL simply by creating this object and specifying an Internet address

• Sockets, which handle low-level connections between a computer and a network

• ContentHandlers, which construct an object based on data read over the Internet

Barry Boone and Dave Mark Learn Java on the Macintosh 474

The io Package

This package contains classes that support reading and writing data to files (“io” stands for “Input/Output”). These

classes include:

• Files, which represent a file stored in a computer

• InputStreams, which help you to read incoming data

• OutputStreams, which help you to write outgoing data

The lang Package

The lang package (which stands for “language”) defines many classes that are at the core of Java. Many of these

classes support keywords that are part of the language itself. For example, Exceptions are used with the try, catch,

and throw keywords. Threads are used with the synchronized and volatile keywords. Objects are used with

the new operator. Some of the key classes in this package include:

• Exceptions, which are used to signal and handle error conditions arising when your code executes

• Integers, Longs, Floats, and Doubles, which provide behavior for their corresponding data types

• Objects, which support all base-level object capabilities, such as the ability to create and destroy objects

• Strings, which maintain character data and provide methods for searching and manipulating the text they contain

• Systems, which allow access to the functionality of the operating environment

Barry Boone and Dave Mark Learn Java on the Macintosh 475

Study Other Resources

Other than the HTML files, what else is there? Where to start? There are lots and lots of educational resources out

there, many of them on the Web. There are news groups, mailing lists, corporate Web sites from Java licensees, “offi-

cial” Java Web sites from JavaSoft (Sun’s spin-off company now responsible for the Java language), home-grown

Web sites by Java fans, and many other sites that use Java without calling attention to the fact that they are using

Java—their Java applets are just part of the Web page.

There are magazines devoted to Java. Some of these are Web-based; some of these are available at your

newsstand.

There are also books, books, books. Many of the books available are quite good, and you’ll find, as you

probably have already, that you have lots of choices as you peruse the bookstore shelves. You’re now ready for an

intermediate book (or perhaps even an advanced book, if you’ve gone through the exercises in the appendices), and

definitely pick up a reference to the Java language if you plan to continue on.

All of these resources, and more, are listed in Appendix G.

Sample Programs

Even though we just scratched the surface of multithreading, we’ve included a sample program that implements the

SimpleDraw applet so that each shape actually does blink, just as we described in this chapter.

SimpleDrawBlink

Open the folder 15.01 - threads in the Learn Java Project folder. Open SimpleDraw.µ and make the

project. Run the applet by dropping the SimpleDraw.html file onto the Metrowerks Java icon.

Barry Boone and Dave Mark Learn Java on the Macintosh 476

Interact with the SimpleDraw applet in the usual way. You’ll soon notice that all the shapes start blinking,

and generally not at the same time! When you’re done playing with this applet, quit out of the Applet Viewer. Let’s

take a peek at the source.

Peeking at the Source

Open SimpleDraw.java. Here are the changes we’ve made from the version you’ve come to know and love:

1. We renamed the vector object from drawnShapes to threads. Instead of keeping track of the shapes, we’ll

create threads and keep track of them instead. Each thread, in turn, will keep track of and control its own shape.

 threads = new Vector();

2. We created a new class, a subclass of Thread called BlinkThread. Here’s how we defined this subclass (the run()

method is coming up).

class BlinkThread extends Thread {
 static Graphics g;
 Shape s;

 BlinkThread(Shape s) {
 this.s = s;
 }

 public void run() {
 // we’ll supply the code in just a moment
 }
}

3. In init(), we find the graphics object that is used by the applet. We’ll keep track of this object in a class vari-

able in BlinkThread.

Barry Boone and Dave Mark Learn Java on the Macintosh 477

 BlinkThread.g = getGraphics();

4. We removed the paint() method from the applet. Now, each thread invokes a shape’s draw method itself when

it finds the shape should be redrawn. You’ll see this in the run() method for the thread.

5. When the user clicks the mouse, the applet creates a new instance of BlinkThread and assigns it the shape just cre-

ated. It does this by supplying the shape as a parameter to a custom constructor we’ve created for this BlinkThread

class. The applet then starts the thread by invoking its start() method.

 t = new BlinkThread(s);
 t.start();

6. The applet supplies start(), stop(), and destroy() methods. When the browser stops or starts the applet,

the applet suspends or resumes each thread, as appropriate. The applet also stops each thread for good when the

applet itself goes away.

 /** Resume all the threads when the applet starts. */
 public void start() {
 BlinkThread t;
 int numThreads;

 numThreads = threads.size();
 for (int i = 0; i < numThreads; i++) {

 t = (BlinkThread)threads.elementAt(i);
 t.resume();
 }
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 478

 /** Suspend all the threads when the applet stops. */
 public void stop() {
 BlinkThread t;
 int numThreads;

 numThreads = threads.size();
 for (int i = 0; i < numThreads; i++) {

 t = (BlinkThread)threads.elementAt(i);
 t.suspend();
 }
 }

 /** Stop all the threads when the applet goes away. */
 public void destroy() {
 BlinkThread t;
 int numThreads;

 numThreads = threads.size();
 for (int i = 0; i < numThreads; i++) {

 t = (BlinkThread)threads.elementAt(i);
 t.stop();
 }
 }
}

7. Each shape defines an additional draw method that draws the shape in yellow, called drawBlink(). For exam-

ple, here’s the drawBlink() method for the circle (the square’s drawBlink() method is similar):

 void drawBlink(Graphics g) {
 g.setColor(Color.yellow);
 g.fillOval(this.x - shapeRadius, this.y - shapeRadius,
shapeRadius * 2, shapeRadius * 2);
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 479

8. And finally, the moment you’ve been waiting for: the run() method for the BlinkThread instances. This method

loops forever. It draws the shape in yellow, then goes to sleep for a quarter of a second (250 milliseconds). When

it wakes up, it draws the shape in the shape’s defined color, then goes to sleep for a full second (1000 millisec-

onds). This sequence, repeating endlessly, makes it appear that the shape is blinking.

 public void run() {

 // don't ever exit the thread
 while(true) {

 try {
 s.drawBlink(g);
 sleep(250);

 s.draw(g);
 sleep(1000);

 } catch (Exception e) {
 }

 }

Each time the user clicks the mouse, the applet creates a new shape and a new thread, assigning the new

shape to the new thread. Each thread, then, keeps track of one shape object. Since threads are all running at the same

time, independently of each other, each thread’s run() method is executing simultaneously with all the other

threads. Each thread is telling the shape for which it’s responsible to draw in yellow, and then to draw in its original

color. This makes it appear that each shape is marching to the beat of its own drummer—which is exactly what each

shape is doing, blinking in time with the beat of its own thread.

You can investigate this applet and the source code further to get a sense for what’s going on. Try altering the

times each thread goes to sleep; try writing messages to the Java Output window in a thread’s run() method. Again,

Barry Boone and Dave Mark Learn Java on the Macintosh 480

threads are a complex topic, but we felt that since they’re used quite frequently in Java applets, you should at least be

introduced to them. Now that are, you can start to find your way around what they’re all about by reading over the

available documentation and by studying other applets on the Web that also use threads.

Review

This chapter provided some ideas of where you can go next to learn more about Java. There are a few additional fea-

tures of the language, and many, many classes provided by Java that you can use in your own applications. Also, be

sure to check out Appendix G, with its listing of books and Web resources that point the way to even more informa-

tion on Java.

What's Next?

Your next step is to become a Java master. You started this book as a white belt, but you’ve come a long way. At this

moment, you’re somewhere in the middle of your studies towards gaining a black belt. (You’re already a force to be

reckoned with.)

As you continue to learn more about Java and improve your skills, remember to have fun and develop some

exciting applets and applications. We hereby graduate you into the community of Java programmers! Thanks for

reading this book and good luck in all your future Java endeavors.

Barry Boone and Dave Mark Learn Java on the Macintosh 481

APPENDIX A Glossary

abstract class (see also concrete class)

An abstract class cannot be instantiated.

allocate

To allocate a variable means to set aside enough memory to contain the type of data that this variable will refer to.

ancestor

An ancestor is a class from which another class inherits.

applet

An applet is a Java application that is meant to run over the World Wide Web in a Web browser.

array

An array is a collection, or list, of data all of the same type that is allocated in one contiguous block of memory.

assignment operator

The assignment operator, which is an equals sign (=), tells the computer to compute the value to the right of the = and

to assign that value to the variable on the left of the =.

binary operator

A binary operator takes two variables.

block

Barry Boone and Dave Mark Learn Java on the Macintosh 482

A block of code combines any number of statements into a single “superstatement.” A block is delimited by a pair of

curly braces.

Boolean expression

A Boolean expression evaluates to either true or false.

Boolean values

A Boolean value can either be true or false; there are no other possibilities.

bytecode

Bytecodes refer to the compiled class instructions, which are the machine language instructions contained in the com-

piled class files (the files that end in .class). Bytecodes are ready to run on the Java Virtual Machine.

casting

Casting data types means to make one type of data become a different type of data (for example, you might cast a

floating point number into an integer).

catch an exception (see also throw an exception)

Catching an exception means handling an error condition.

character-based user interface (see also graphical user interface)

A character-based user interface relies on simple text to interact with the user

class

A class is a template or recipe for instantiating objects of the same type. A class defines behavior and data for objects

(as well as for the class itself). Classes can inherit the behavior and variables of other classes, which allows them to be

arranged in hierarchies.

Barry Boone and Dave Mark Learn Java on the Macintosh 483

class variable or method (see also instance variable or method)

A class variable or method is a variable or method belonging to a class.

comparative operator

A comparative operator is an operator that compares two expressions and evaluates to true or false

compile

Compiling a program means converting source code into machine language.

compiled class file

A compiled class file contains the definition for a class that’s ready to run.

compiled language

A compiled language is a programming language whose references to variables, memory, method invocations, and

the flow through the program are determined at compile time.

compiler

Compilers convert an application’s source code into machine language.

component (see also container)

A component is a user interface object which the user interacts with directly (such as a button or a text field).

concrete class (see also abstract class)

A concrete class can be instantiated.

constant

A constant is a variable whose value never changes.

Barry Boone and Dave Mark Learn Java on the Macintosh 484

constructor

A constructor is a special method that initializes an object

container (see also component)

A container is a user interface object that groups together components and other containers.

current object

The object responding to a method invocation is known as the current object. (Java automatically sets the variable

named this to the current object.)

data types

Variables in Java must be declared as representing a certain data type, which includes numbers such as integers or

floating point values, characters, Boolean values, or objects.

descendent

A class is said to be a descendent of another class when it inherits from that class.

development cycle

The development cycle consists of the steps that programmers follow when developing a software application.

debugging

Debugging is the process of finding and fixing “bugs,” or problems, in a program.

event

Java signals an event has occurred every time the user interacts with your applet’s user interface.

exception

An exception is Java’s way of reporting errors.

Barry Boone and Dave Mark Learn Java on the Macintosh 485

expression

An expression is any snippet of code that has a value.

floating-point numbers

Floating-point numbers are numbers containing fractional values, such as numbers like 3.14159, 2.5, and .0001.

(Floating-point data types in Java can hold integer numbers as well.)

flow control

Flow control defines the order in which the statements in your program are executed. Controlling your program’s flow

means determining when to branch around code, under which conditions to execute code, and when to perform loops.

fractional numbers (see floating point numbers)

framework

A framework consists of classes that you use to build your application.

garbage collection

Garbage collection is Java’s way of reclaiming memory that your program has allocated at some point during its exe-

cution but which your program no longer needs.

Graphical User Interface (GUI)

A GUI is a user interface that takes advantage of graphical elements, such as windows, buttons, check boxes, and text

fields. GUIs take advantage of the mouse and are different from character-based user interfaces, which rely solely on

characters.

Hypertext Markup Language (HTML)

HTML is a standard that defines formatting commands for laying out documents.

Barry Boone and Dave Mark Learn Java on the Macintosh 486

i/o

This is an abbreviation for “input/output.” Input refers to ways to get information into the computer, such as through

the keyboard or mouse. Output refers to ways for the program to get information back to the user, such as displaying

information using a monitor or a printer.

infinite loop

An infinite loop is a loop that never terminates and instead repeats a sequence of statements forever.

inheritance

Classes can be set up in relationships. Subclasses build on and extend their superclasses. Subclasses inherit all of the

variables and methods in their superclasses.

initialization

Initialization is any code that affects a loop but occurs before the loop is entered.

instance (see object)

instance variable or method (see also class variable or method)

An instance variable or method belongs to an object (as opposed to belonging to a class).

instantiate

To instantiate an object is to create an instance (an object) based on a class.

integers

Integers are whole numbers like -37, 0, and 22. Variables declared in Java as integers cannot hold floating-point or

fractional values.

interface

Barry Boone and Dave Mark Learn Java on the Macintosh 487

An interface is like a class, except that it only defines a set of behavior for classes to implement. Interfaces can also

define class constants.

interpreted language

An interpreted language is a programming language whose references to variables, memory, method invocations, and

the flow through the program is determined at run-time. This is as opposed to compiled languages.

invoke

Invoking a method means executing its instructions.

Java

An object-oriented programming language that’s especially appropriate to use for developing applications for the

Internet and the World-Wide Web.

Java-enabled Web browsers

Web browsers that are capable of running software applications written in Java are said to be Java-enabled.

Java interpreter

A Java interpreter implements the Java Virtual Machine. There is a different Java interpreter for each hardware/soft-

ware environment, that allows the same Java program you write to be run in these different environments without

modification.

Java Virtual Machine (JVM)

The JVM is a theoretical machine, at the moment only implemented in software, that all Java programs are compiled

to run on.

layout manager

A layout manager is an object that controls how a container arranges its user interface components.

Barry Boone and Dave Mark Learn Java on the Macintosh 488

literals

Literals are values not stored in a variable, such the number 123 or the character ‘a’.

loading a class

When Metrowerks Java first reads a compiled class file, it loads the class into the interpreter.

local variable

A local variable is only accessible to the method in which it is defined

logical operator

A logical operator is an operator that evaluates to either true or false.

loop (see also initialization, modification, and termination)

To loop means to repeat a sequence of statements (usually for a set number of times).

machine language (see also compiler)

If you want to tell a computer what to do, you need to tell it what to do in machine language. Machine language is

written using only 1s and 0s.

method

A method is a chunk of code that defines behavior for an object or a class.

method signature

A method signature is defined by a method’s name and parameter types.

modification

When used in reference to a loop, this refers to any code that changes the value of the loop’s expression.

Barry Boone and Dave Mark Learn Java on the Macintosh 489

multithreading (see also thread)

Multithreading is the ability to run multiple threads at once (that is, to do more than one thing at the same time).

numeric expression

A numeric expression is an expression that evaluates to a number.

object

An object is a specific instance of a class. Objects maintain data and provide access to behavior. All objects that

belong to the same class store the same types of data and have access to the same types of behavior. Each object main-

tains data that makes it unique from other objects.

operator

An operator is a special character (or set of characters) representing a specific computer operation.

override a method

Overriding a method involves changing the default behavior for a method that a class inherits from one of its ances-

tors.

parameter

A parameter is a local variable that is initialized as part of invoking a method.

porting

Porting is the process of getting source code created with a specific environment in mind to run in a different environ-

ment.

postfix notation

Barry Boone and Dave Mark Learn Java on the Macintosh 490

Writing in postfix notation means placing the operator to the right of a variable or an expression. (Only certain opera-

tors are appropriate to use with postfix notation.)

project

In CodeWarrior, a project is a way to organize the different files that make up an application or applet.

project window

In CodeWarrior, a project window displays information about the files used to build a Java application or applet.

project file

In CodeWarrior, a project file contains information about the files used to build a Java application or applet.

scope

A variable’s scope defines where in the program you have access to the variable.

signature (see method signature)

source code

Your source code is a set of instructions that determines what your application or applet will do and when it will do it.

source file

A source file contains source code for an application or applet.

stand-alone applications

Java applications that do not run as part of the World Wide Web or in a Web browser are said to be stand-alone appli-

cations (as opposed to applets).

standard input

Barry Boone and Dave Mark Learn Java on the Macintosh 491

Standard input is a place where new input from the user first arrives to the program. This concept comes from a time

when the user only communicated with a computer using a keyboard (and not also with a mouse). Hence, standard

input almost always refers to the keyboard.

standard output

Standard output is the place where information displayed by the program appears. This concept comes from a time

when the computer almost always displayed characters on the screen (without graphics). In a graphical environment

such as the Mac, Java environments often supply a place for standard output. In CodeWarrior, this place is the Java

Output window.

statement

A statement is a line of Java code that actually does something. All statements in Java end in a semicolon (;).

static initializer

When your class loads, Java looks to see if the class has defined a static initializer. If it has, then this code is executed.

string

Text is stored in strings in Java.

subclass

A subclass is the immediate descendent of a particular class, a class that directly inherits from that class.

superclass

A superclass is the immediate ancestor of a particular class, a class from which a class directly inherits.

syntax

A language’s syntax involves the rules for writing in that language.

Barry Boone and Dave Mark Learn Java on the Macintosh 492

syntax error

Syntax errors occur when your program does not follow the rules of the language (such as by leaving off a semicolon

accidentally, or forgetting to use curly braces where they should appear).

termination

When used in conjunction with a loop, termination refers to any condition that causes the loop to end.

thread (see also multithreading)

A thread of control, or thread of execution, defines a specific sequence of tasks that a program should perform. Many

programs only need one thread to do their thing, but some programs need to do more than one thing at the same time;

these programs need multiple threads.

throw an exception (see also catch an exception)

throwing an exception signals an error in Java.

types (see data types)

unary operator

A unary operator is an operator that takes only one variable.

user interface (UI)

A user interface defines the “look and feel” of your application, which includes the way in which the user interacts

with your application.

variable

A variable is a container for your program’s data. Variables refer to specific locations in memory where a program can

store numbers, characters, true/false values, or any other type of data.

Barry Boone and Dave Mark Learn Java on the Macintosh 493

whole numbers (see integers)

zip files

A zip file is a computer standard for combining files so that they take up less room on the computer’s hard drive. Sun

Microsystems picked this standard as an easy way to organize and manage many different compiled class files.

Barry Boone and Dave Mark Learn Java on the Macintosh 494

APPENDIX B Source Code

02.01 - hello, world

/* ---
This displays "Hello, world!" when it repaints.

Java's classes: Applet (applet)
 Graphics (awt) used for drawing

Custom classes: HelloWorld

--- */
public class HelloWorld extends java.applet.Applet {

 public void paint(java.awt.Graphics g) {
 g.drawString("Hello, world!", 100 , 25);
 }

}

04.01 - simple draw

See 12.03 - SimpleDraw.

05.02 - static init

/* ---
This applet displays a message when it loads.

Barry Boone and Dave Mark Learn Java on the Macintosh 495

Java's classes: Applet (applet)
 System (lang)

Custom classes: StaticInit

--- */
public class StaticInit extends java.applet.Applet {

 static {
 System.out.println("I like Java in the springtime");
 }

}

06.01 - operator

/* ---
This applet performs some arithmetic operations when it loads.

Java's classes: Applet (applet)
 System (lang)

Custom classes: Operator

--- */
public class Operator extends java.applet.Applet {

 static {

 int myInt;

 myInt = 3 * 2;
 System.out.println("myInt ---> " + myInt);

 myInt += 1;
 System.out.println("myInt ---> " + myInt);

 myInt -= 5;
 System.out.println("myInt ---> " + myInt);

Barry Boone and Dave Mark Learn Java on the Macintosh 496

 myInt *= 10;
 System.out.println("myInt ---> " + myInt);

 myInt /= 4;
 System.out.println("myInt ---> " + myInt);

 myInt /= 2;
 System.out.println("myInt ---> " + myInt);

 }

}

06.02 - postfix

/* ---
This applet illustrates prefix and postfix notation.

Java's classes: Applet (applet)
 System (lang)

Custom classes: Postfix

--- */
public class Postfix extends java.applet.Applet {

 static {

 int myInt;

 myInt = 5;

 System.out.println("myInt ---> " + myInt++);

 System.out.println("myInt ---> " + ++myInt);

 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 497

07.01 - life cycle

/* ---
This applet displays a message at each phase in its life-cycle.

Java's classes: Applet (applet)
 System (lang)

Custom classes: LifeCycle

--- */

public class LifeCycle extends java.applet.Applet {

 public void init() {
 System.out.println("init()");
 }

 public void start() {
 System.out.println("start()");
 }

 public void stop() {
 System.out.println("stop()");
 }

 public void destroy() {
 System.out.println("destroy()");
 }

}

07.02 - init

/* ---
This applet invokes methods when it initializes.

Java's classes: Applet (applet)

Barry Boone and Dave Mark Learn Java on the Macintosh 498

 System (lang)

Custom classes: InitMethod

--- */
public class InitMethod extends java.applet.Applet {

 public void init() {
 System.out.println("init()");
 setUpGUI();
 }

 void setUpGUI() {
 System.out.println("setUpGUI()");
 makeWindow1();
 makeWindow2();
 }

 void makeWindow1() {
 System.out.println("makeWindow1()");
 }

 void makeWindow2() {
 System.out.println("makeWindow2()");
 }
}

07.03 - average

/* ---
This applet finds the average for three sets of numbers.

Java's classes: Applet (applet)
 System (lang)

Custom classes: Average

--- */
public class Average extends java.applet.Applet {

Barry Boone and Dave Mark Learn Java on the Macintosh 499

 public void start() {

 int average;

 average = findAverage(10, 20, 30);
 System.out.println(average);

 average = findAverage(-400, 182, 213);
 System.out.println(average);

 average = findAverage(9901, 20201, 41);
 System.out.println(average);

 }

 int findAverage(int num1, int num2, int num3) {
 return (num1 + num2 + num3)/3;
 }

}

08.01 - truth tester

/* ---
This applet illustrates if-else statements.

Java's classes: Applet (applet)
 System (lang)

Custom classes: TruthTester

--- */

public class TruthTester extends java.applet.Applet {
 public void init() {

 boolean hasCar, hasTimeToGiveRide;
 boolean nothingElseOn, newEpisode, itsARerun;

 hasCar = true;

Barry Boone and Dave Mark Learn Java on the Macintosh 500

 hasTimeToGiveRide = true;

 if (hasCar && hasTimeToGiveRide)
 System.out.println("Hop in - I'll give you a ride!");
 else
 System.out.println(
 "I've either got no car, no time, or both!");

 nothingElseOn = true;
 newEpisode = true;

 if (newEpisode || nothingElseOn)
 System.out.println("Let's watch Star Trek!");
 else
 System.out.println(
 "Something else is on or I've seen this one.");

 nothingElseOn = true;
 itsARerun = true;

 if (nothingElseOn || (!itsARerun))
 System.out.println("Let's watch Star Trek!");
 else
 System.out.println(
 "Something else is on or I've seen this one.");
 }
}

08.02 - loop tester

/* ---
This applet performs a few loops.

Java's classes: Applet (applet)
 System (lang)

Custom classes: LoopTester

--- */
public class LoopTester extends java.applet.Applet {

Barry Boone and Dave Mark Learn Java on the Macintosh 501

 public void init() {

 int i;

 i = 0;
 while (i++ < 4)
 System.out.println("while: i=" + i);

 System.out.println("After while loop, i=" + i);
 System.out.println(" ");

 for (i = 0; i < 4; i++)
 System.out.println("first for: i=" + i);

 System.out.println("After first for loop, i=" + i);
 System.out.println(" ");

 for (i = 1; i <= 4; i++)
 System.out.println("second for: i=" + i);

 System.out.println("After second for loop, i=" + i);

 }
}

08.03 - is odd

/* ---
This applet illustrates simple flow control.

Java's classes: Applet (applet)
 System (lang)

Custom classes: IsOdd

--- */
public class IsOdd extends java.applet.Applet {
 public void init() {

 int i;

Barry Boone and Dave Mark Learn Java on the Macintosh 502

 for (i = 1; i <= 20; i++) {
 System.out.print("The number " + i + " is ");

 if ((i % 2) == 0)
 System.out.print("even");
 else
 System.out.print("odd");

 if ((i % 3) == 0)
 System.out.print(" and is a multiple of 3");

 System.out.println("");

 }
 }
}

08.04 - next prime

/* ---
This applet finds the next prime number after a starting point.

Java's classes: Applet (applet)
 System (lang)
 Math (lang)

Custom classes: NextPrime

--- */

public class NextPrime extends java.applet.Applet {
 public void init() {

 int startingPoint, candidate, last, i;
 boolean isPrime;

 startingPoint = 19;

 if (startingPoint < 2) {

Barry Boone and Dave Mark Learn Java on the Macintosh 503

 candidate = 2;
 } else if (startingPoint == 2) {
 candidate = 3;
 } else {

 candidate = startingPoint;
 if (candidate % 2 == 0) /* Test only odd numbers */
 candidate--;
 do {

 isPrime = true; /* Assume glorious success */
 candidate += 2; /* Bump to the next number */
 last = (int)Math.sqrt(candidate);
 /* We'll check to see if candidate */
 /* has any factors, from 2 to last */

 /* Loop through odd numbers only */
 for (i = 3; (i <= last) && isPrime; i += 2) {
 if ((candidate % i) == 0)
 isPrime = false;
 }
 } while (! isPrime);
 }

 System.out.println(
 "The next prime after " +
 startingPoint + " is " + candidate);

 }
}

08.05 - next prime 2

/* ---
This applet finds the prime numbers from 1 to 100.

Java's classes: Applet (applet)
 System (lang)
 Math (lang)

Barry Boone and Dave Mark Learn Java on the Macintosh 504

Custom classes: NextPrime2

--- */

public class NextPrime2 extends java.applet.Applet {
 public void init() {

 int candidate, i, last;
 boolean isPrime;

 System.out.println("Primes from 1 to 100: 2, ");

 for (candidate = 3; candidate <= 100; candidate += 2){

 isPrime = true;
 last = (int)Math.sqrt(candidate);

 for (i = 3; (i <= last) && isPrime; i += 2) {

 if ((candidate % i) == 0)
 isPrime = false;

 }

 if (isPrime)
 System.out.println(candidate);

 }
 }
}

08.06 - next prime 3

/* ---
This applet finds the primes between 1 and 100.

Java's classes: Applet (applet)
 System (lang)

Custom classes: IsOdd

Barry Boone and Dave Mark Learn Java on the Macintosh 505

--- */

public class NextPrime3 extends java.applet.Applet {
 public void init() {

 int primeIndex, candidate, i, last;
 boolean isPrime;

 System.out.println("Prime #1 is 2.");

 candidate = 3;
 primeIndex = 2;

 while (primeIndex <= 100) {

 isPrime = true;
 last = (int)Math.sqrt(candidate);

 for (i = 3; (i <= last) && isPrime; i += 2) {
 if ((candidate % i) == 0)
 isPrime = false;
 }

 if (isPrime) {
 System.out.println("Prime " + primeIndex +
 " is " + candidate);
 primeIndex++;
 }

 candidate += 2;
 }
 }
}

09.01 - employee 1

/* ---
This applet illustrates using instance variables and instance
methods.

Barry Boone and Dave Mark Learn Java on the Macintosh 506

Java's classes: Applet (applet)
 System (lang)

Custom classes: Employee1

--- */
public class Employee1 extends java.applet.Applet {

 int hourlyWage;
 int hoursWorked;

 int earnedIncome() {
 return hourlyWage * hoursWorked;
 }

 public void init() {
 hourlyWage = 10;
 hoursWorked = 20;
 }

 public void start() {
 int earnedIncome;

 System.out.println("hourly wage = " + hourlyWage);
 System.out.println("hours worked = " + hoursWorked);

 earnedIncome = earnedIncome();
 System.out.println("earned income = " + earnedIncome);
 }
}

09.02 - employee 2

/* ---
This applet illustrates working with instance variables
and instance methods in different objects.

Java's classes: Applet (applet)
 System (lang)

Barry Boone and Dave Mark Learn Java on the Macintosh 507

Custom classes: Employee2
 Employee

--- */
public class Employee2 extends java.applet.Applet {

 Employee e1;
 Employee e2;
 Employee e3;

 public void init() {
 e1 = new Employee();
 e1.hourlyWage = 10;
 e1.hoursWorked = 20;

 e2 = new Employee();
 e2.hourlyWage = 18;
 e2.hoursWorked = 38;

 e3 = new Employee();
 e3.hourlyWage = 12;
 e3.hoursWorked = 52;
 }

 public void start() {
 System.out.println("");
 System.out.println("Employee 1:");
 e1.displayInfo();

 System.out.println("");
 System.out.println("Employee 2:");
 e2.displayInfo();

 System.out.println("");
 System.out.println("Employee 3:");
 e3.displayInfo();
 }
}

class Employee {
 int hourlyWage;
 int hoursWorked;

Barry Boone and Dave Mark Learn Java on the Macintosh 508

 int earnedIncome() {
 return hourlyWage * hoursWorked;
 }

 void displayInfo() {
 int earnedIncome;

 System.out.println("hourly wage = " + hourlyWage);
 System.out.println("hours worked = " + hoursWorked);

 earnedIncome = earnedIncome();
 System.out.println("earned income = " + earnedIncome);
 }
}

09.03 - employee 3

/* ---
This applet shows when you might want to use the variable "this".

Java's classes: Applet (applet)
 System (lang)

Custom classes: Employee3
 Employee

--- */
public class Employee3 extends java.applet.Applet {

 Employee e1;
 Employee e2;
 Employee e3;

 public void init() {
 e1 = new Employee();
 e1.initialize(10, 20);

 e2 = new Employee();
 e2.initialize(18, 38);

Barry Boone and Dave Mark Learn Java on the Macintosh 509

 e3 = new Employee();
 e3.initialize(12, 52);
 }

 public void start() {
 System.out.println("");
 System.out.println("Employee 1:");
 e1.displayInfo();

 System.out.println("");
 System.out.println("Employee 2:");
 e2.displayInfo();

 System.out.println("");
 System.out.println("Employee 3:");
 e3.displayInfo();
 }
}

class Employee {
 int hourlyWage;
 int hoursWorked;

 int earnedIncome() {
 return hourlyWage * hoursWorked;
 }

 void displayInfo() {
 int earnedIncome;

 System.out.println("hourly wage = " + hourlyWage);
 System.out.println("hours worked = " + hoursWorked);

 earnedIncome = earnedIncome();
 System.out.println("earned income = " + earnedIncome);
 }

 void initialize(int hourlyWage, int hoursWorked) {
 this.hourlyWage = hourlyWage;
 this.hoursWorked = hoursWorked;
 }

}

Barry Boone and Dave Mark Learn Java on the Macintosh 510

09.04 - variable

/* ---
This applet shows a simple example of accessing a class variable.

Java's classes: Applet (applet)
 System (lang)

Custom classes: ClassVar

--- */
public class ClassVar extends java.applet.Applet {

 static int test = 20;

 public void init() {
 System.out.println("test = " + test);

 int test = 30;

 System.out.println("test = " + test);

 System.out.println("ClassVar.test = " + ClassVar.test);
 }

}

09.05 - method

/* ---
This applet shows an example of accessing a class variable and
a class method.

Java's classes: Applet (applet)
 System (lang)

Custom classes: ClassMethod
 Circle

Barry Boone and Dave Mark Learn Java on the Macintosh 511

--- */
public class ClassMethod extends java.applet.Applet {

public void init() {
 Circle c1, c2, c3;

 c1 = new Circle();
 Circle.numCircles++;

 c2 = new Circle();
 Circle.numCircles++;

 c3 = new Circle();
 Circle.numCircles++;

 Circle.displayNumCircles();
}

}

class Circle {

static int numCircles;

static void displayNumCircles() {
 System.out.println(numCircles +

 " circles were created.");
}

}

10.01 - triangle

/* ---
This applet shows how overriding a method can change its
behavior. It also shows how to invoke the behavior that's defined
in the superclass for an object.

Java's classes: Applet (applet)
 System (lang)

Barry Boone and Dave Mark Learn Java on the Macintosh 512

Custom classes: TriangleApplet
 Triangle

--- */

public class TriangleApplet extends java.applet.Applet {

 public void init() {

 Triangle t1 = new Triangle();
 t1.base = 10;
 t1.height = 20;

 Triangle t2 = new Triangle();
 t2.base = 10;
 t2.height = 20;

 Triangle t3 = new Triangle();
 t3.base = 12;
 t3.height = 52;

 System.out.println("The triangles say:");
 System.out.println("t1 == t2? " + t1.equals(t2));
 System.out.println("t1 == t3? " + t1.equals(t3));

 System.out.println("The objects say:");
 System.out.println("t1 == t2? " + t1.objectEquals(t2));
 System.out.println("t1 == t3? " + t1.objectEquals(t3));

 }

}

class Triangle {
 int base;
 int height;

 public boolean equals(Object obj) {
 Triangle t;

 if (obj instanceof Triangle) {

 t = (Triangle)obj;

Barry Boone and Dave Mark Learn Java on the Macintosh 513

 if (t.base == base && t.height == height)
 return true;
 }

 return false;
 }

 boolean objectEquals(Object obj) {
 return super.equals(obj);
 }

}

10.02 - access

/* ---
This applet uses a small class hierarchy to illustrate how to
define abstract classes, superclasses, subclasses, and private
and protected variables.

Java's classes: Applet (applet)
 System (lang)
 Color (awt)

Custom classes: AccessApplet
 Shape
 Circle
 Square

--- */
import java.awt.Color;

public class AccessApplet extends java.applet.Applet {

 public void init() {

 Circle c = new Circle();
 Square s = new Square();

 c.setColor(Color.blue);

Barry Boone and Dave Mark Learn Java on the Macintosh 514

 s.setColor(Color.black);

 c.x = 50;
 c.y = 60;

 s.x = 100;
 s.y = 200;

 c.draw();
 s.draw();

 }

}

/** Shapes provide common characteristics for the circle and
square. */

abstract class Shape {
 static protected final int radius = 20;

 private Color color;
 int x;
 int y;

 abstract void draw();

 void setColor(Color color) {
 if (color == Color.black)
 this.color = Color.white;
 else
 this.color = color;
 }

 Color getColor() {
 return color;
 }

}

/** Draws and maintains circle information. */
class Circle extends Shape {
 void draw() {
 System.out.println("Circle: radius = " + radius);

Barry Boone and Dave Mark Learn Java on the Macintosh 515

 System.out.println("Circle: color = " +
 getColor().toString());
 }
}

/** Draws and maintains square information. */
class Square extends Shape{
 void draw() {
 System.out.println("Square: radius = " + radius);
 System.out.println("Square: color = " +
 getColor().toString());
 }
}

11.01 - components

/* ---
This applet creates a few different user interface components
and detects when the user interacted with them.

Java's classes: Applet (applet)
 System (lang)
 Button (awt)
 Choice (awt)
 TextField (awt)
 Checkbox (awt)
 CheckboxGroup (awt)
 Label (awt)
 Event (awt)

Custom classes: UIApplet

--- */
import java.awt.*;

public class UIApplet extends java.applet.Applet {

 Button button;
 Choice choice;
 TextField textField;

Barry Boone and Dave Mark Learn Java on the Macintosh 516

 /** Create a user interface. */
 public void init() {

 Checkbox checkbox;
 CheckboxGroup checkboxGroup;
 Label label;

 // create a choice list
 choice = new Choice();
 choice.addItem("Apple");
 choice.addItem("Banana");
 choice.addItem("Cherry");
 add(choice);

 // create a text field
 textField = new TextField(10); // 10 columns wide
 add(textField);

 // create a button
 button = new Button("Click me");
 add(button);

 // create a label
 label = new Label("I am a label");
 add(label);

 // create 3 exlusive-choice checkboxes
 checkboxGroup = new CheckboxGroup();

 checkbox = new Checkbox("Yes", checkboxGroup, false);
 add(checkbox);
 checkbox = new Checkbox("No", checkboxGroup, false);
 add(checkbox);
 checkbox = new Checkbox("Maybe", checkboxGroup, true);
 add(checkbox);

 }

 /** Respond to user input events. */
 public boolean action(Event e, Object arg) {

 if (e.target == textField)
 System.out.println(

Barry Boone and Dave Mark Learn Java on the Macintosh 517

 "User entered text into the text field");

 else if (e.target == button)
 System.out.println("User clicked the button");

 else if (e.target == choice)
 System.out.println("User selected a new choice");

 else if (e.target instanceof Checkbox)
 System.out.println("User clicked a check box");

 else
 System.out.println("Unrecognized event");

 return super.action(e, arg);

 }

}

11.02 - paint hello

/* ---
This applet displays a friendly greeting.

Java's classes: Applet (applet)
 Graphics (awt)

Custom classes: PaintHello

--- */
import java.awt.Graphics;

public class PaintHello extends java.applet.Applet {

 public void paint(Graphics g) {
 g.drawString("Hello, applet!", 80, 50);
 }

}

Barry Boone and Dave Mark Learn Java on the Macintosh 518

11.03 - paint circle

/* ---
This applet paints a red circle.

Java's classes: Applet (applet)
 Graphics (awt) used for drawing
 Color (awt) defines colors

Custom classes: SimpleDraw

--- */

import java.applet.Applet;
import java.awt.*;

public class SimpleDraw extends Applet {

 /** Draw a red circle when the applet paints itself. */
 public void paint(Graphics g) {
 g.setColor(Color.red);
 g.fillOval(115, 55, 40, 40);
 }

}

11.04 - circle at click

/* ---
This applet paints a red circle wherever you click.

Java's classes: Applet (applet)
 Event (awt) user-generated action
 Graphics (awt) used for drawing
 Color (awt) defines colors

Custom classes: SimpleDraw
 Circle defines and draws circles

Barry Boone and Dave Mark Learn Java on the Macintosh 519

--- */

import java.applet.Applet;
import java.awt.*;

public class SimpleDraw extends Applet {

 Circle c;

 /** Create a circle to start with. */
 public void init() {
 c = new Circle();
 c.initialize(50, 50);
 }

 /** Create a new red circle when the user clicks the mouse. */
 public boolean mouseUp(Event e, int x, int y) {
 c = new Circle();
 c.initialize(x, y);

 repaint();

 return true;
 }

 /** Repaint the newest circle. */
 public void paint(Graphics g) {
 c.draw(g);
 }
}

/** Maintain circle information and provide drawing capabilities.
*/

class Circle {
 Color color;
 int x;
 int y;

 /** Draw a circle that is 20 pixels in radius. */
 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillOval(this.x - 20, this.y - 20, 40, 40);

Barry Boone and Dave Mark Learn Java on the Macintosh 520

 }

 /** Initialize a red circle at the given pixel location. */
 void initialize(int x, int y) {
 color = Color.red;
 this.x = x;
 this.y = y;
 }

}

11.05 - simple draw

/* ---

This applet paints a circle or square of the color you've chosen
wherever you click.

Java's classes: Applet (applet)
 Event (awt) user-generated action
 Graphics (awt) used for drawing
 Color (awt) defines colors
 Choice (awt) shape and color selection
choices

Custom classes: SimpleDraw
 Circle defines and draws circles
 Square defines and draws squares

--- */

import java.applet.Applet;
import java.awt.*;

public class SimpleDraw extends Applet {
 Shape currentShape = null;
 Choice shapeChoice;
 Choice colorChoice;

 /** Create the GUI. */

Barry Boone and Dave Mark Learn Java on the Macintosh 521

 public void init() {

 shapeChoice = new Choice();
 shapeChoice.addItem("Circle");
 shapeChoice.addItem("Square");
 add(shapeChoice);

 colorChoice = new Choice();
 colorChoice.addItem("Red");
 colorChoice.addItem("Green");
 colorChoice.addItem("Blue");
 add(colorChoice);
 }

 /** Draw the current shape. */
 public void paint(Graphics g) {
 if (currentShape != null)
 currentShape.draw(g);
 }

 /** Create a new shape. */
 public boolean mouseUp(Event e, int x, int y) {
 Color color;
 String shapeString = shapeChoice.getSelectedItem();
 String colorString = colorChoice.getSelectedItem();

 if (colorString.equals("Red"))
 color = Color.red;
 else if (colorString.equals("Green"))
 color = Color.green;
 else
 color = Color.blue;

 // Create a new shape of the appropriate type.
 // Without inheritance, we have to write duplicate
 // code for each of the shape types.

 if (shapeString.equals("Circle"))
 currentShape = new Circle();
 else
 currentShape = new Square();

 currentShape.color = color;
 currentShape.x = x;

Barry Boone and Dave Mark Learn Java on the Macintosh 522

 currentShape.y = y;

 repaint();

 return true;
 }

}

/** Shapes provide common characteristics for the circle and
square. */

abstract class Shape {
 static public final int shapeRadius = 20;

 Color color;
 int x;
 int y;

 abstract void draw(Graphics g);
}

/** Draws and maintains circle information. */
class Circle extends Shape {
 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillOval(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }
}

/** Draws and maintains square information. */
class Square extends Shape{
 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillRect(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 523

11.06 - payroll

/* ---
 This illustrates the beginning of an applet to keep track
 of employees in a database. This version defines an
 Employee class but only adds the text fields to the applet
 for use once more of the applet is developed.

 Java's classes: Applet (applet)
 TextField (awt) for entering new employee data
 Label (awt) read-only text
 GridLayout (awt) aligns by columns and rows

 Custom classes: Payroll
 Employee payroll information

--- */
import java.applet.Applet;
import java.awt.*;

public class Payroll extends Applet {
 TextField textFieldEmployee;
 TextField textFieldWage;
 TextField textFieldHours;
 Label labelEarned;

 /* Create user interface needed by this applet. */
 public void init() {

 // Arrange the user interface in a grid.
 setLayout(new GridLayout(4,2)); // 4 rows, 2 columns

 // 1st row
 add(new Label("Employee number:"));
 textFieldEmployee = new TextField(20); // 20 columns wide
 add(textFieldEmployee);

 // 2nd row
 add(new Label("Hourly wage:"));
 textFieldWage = new TextField(20); // 20 columns wide
 add(textFieldWage);

Barry Boone and Dave Mark Learn Java on the Macintosh 524

 // 3rd row
 add(new Label("Hours worked:"));
 textFieldHours = new TextField(20); // 20 columns wide
 add(textFieldHours);

 // 4th row
 add(new Label("Earned income:"));
 labelEarned = new Label();
 add(labelEarned);
 }

 /** Detect keyboard entry. */
 public boolean action(Event e, Object arg) {

 if (e.target == textFieldEmployee) {

 System.out.println("Employee number");

 } else if (e.target == textFieldWage) {

 System.out.println("Hourly wage");

 } else if (e.target == textFieldHours) {

 System.out.println("Hours worked");

 }

 return super.action(e, arg);
 }

}

/** Maintain payroll information for an employee. */
class Employee {
 int idNumber;
 int hourlyWage;
 int hoursWorked;

 int earnedIncome() {
 return hourlyWage * hoursWorked;
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 525

12.01 - floating pt

/* ---
This applet uses floating point numbers as instance variables.

Java's classes: Applet (applet)
 System (lang)

Custom classes: FloatingPt
 Triangle

--- */

public class FloatingPt extends java.applet.Applet {

 public void init() {

 Triangle t1 = new Triangle();
 t1.base = 9;
 t1.height = 15;

 Triangle t2 = new Triangle();
 t2.base = 14.232;
 t2.height = 3.2947;

 System.out.println("area of t1 is " + t1.area());
 System.out.println("area of t2 is " + t2.area());

 }

}

class Triangle {
 double base;
 double height;

 double area() {
 return base * height / 2.0;
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 526

12.02 - arrays

/* ---
This applet displays your fortune whenever you resize the applet.

Java's classes: Applet (applet)
 Graphics (awt) used for drawing
 Math (lang) to find the absoluate value
 Date (util) gets the current date
 Random (util) finds a random number

Custom classes: ArrayApplet

--- */
import java.awt.Graphics;
import java.util.Date;
import java.util.Random;

public class ArrayApplet extends java.applet.Applet {
 int numStrings = 5;
 String[] paintStrings;
 Random r;

 public void init() {
 Date d = new Date(); // today's date
 r = new Random(d.getTime()); // milliseconds since 1970

 paintStrings = new String[numStrings];
 paintStrings[0] = new String("Look for opportunities");
 paintStrings[1] = new String("Take chances");
 paintStrings[2] = new String("Beware of tricks");
 paintStrings[3] = new String("Take the day off");
 paintStrings[4] = new String("Smell the roses");
 }

 public void paint(Graphics g) {

 int index = r.nextInt() % numStrings;
 index = Math.abs(index);
 g.drawString(paintStrings[index], 50, 25);

 }

Barry Boone and Dave Mark Learn Java on the Macintosh 527

}

12.03 - SimpleDraw

/* ---
This applet paints a circle or square of the color you've chosen
wherever you click. This applet keeps a list of the shapes you've
drawn
and paints all the shapes in the list when it repaints.

Java's classes: Applet (applet)
 Event (awt) user-generated action
 Graphics (awt) used for drawing
 Color (awt) defines colors
 Choice (awt) shape and color selection
choices
 Vector (util) list of shapes

Custom classes: SimpleDraw
 Circle defines and draws circles
 Square defines and draws squares
 Shape a common ancestor for circles and squares

--- */

import java.applet.Applet;
import java.util.*;
import java.awt.*;

public class SimpleDraw extends Applet {
 Vector drawnShapes;
 Choice shapeChoice;
 Choice colorChoice;

 /** Create the GUI. */
 public void init() {
 drawnShapes = new Vector();

 shapeChoice = new Choice();
 shapeChoice.addItem("Circle");

Barry Boone and Dave Mark Learn Java on the Macintosh 528

 shapeChoice.addItem("Square");
 add(shapeChoice);

 colorChoice = new Choice();
 colorChoice.addItem("Red");
 colorChoice.addItem("Green");
 colorChoice.addItem("Blue");
 add(colorChoice);
 }

 /** Create a new shape. */
 public boolean mouseUp(Event e, int x, int y) {

 Shape s; // This shape will be either a circle or a square.

 String shapeString = shapeChoice.getSelectedItem();
 String colorString = colorChoice.getSelectedItem();

 if (shapeString.equals("Circle"))
 s = new Circle();
 else
 s = new Square();

 if (colorString.equals("Red"))
 s.color = Color.red;
 else if (colorString.equals("Green"))
 s.color = Color.green;
 else
 s.color = Color.blue;

 s.x = x;
 s.y = y;

 drawnShapes.addElement(s);

 repaint();

 return true;
 }

 /** Draw all the shapes. */
 public void paint(Graphics g) {
 Shape s;
 int numShapes;

Barry Boone and Dave Mark Learn Java on the Macintosh 529

 numShapes = drawnShapes.size();
 for (int i = 0; i < numShapes; i++) {

 s = (Shape)drawnShapes.elementAt(i);

 // When the shape draws, circles and squares each
 // invoke their own draw method, depending on
 // which shape this is.
 s.draw(g);
 }
 }

}

/** Shapes provide common characteristics for the circle and
square. */
abstract class Shape {
 static public final int shapeRadius = 20;

 Color color;
 int x;
 int y;

 abstract void draw(Graphics g);
}

/** Draws and maintains circle information. */
class Circle extends Shape {
 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillOval(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }
}

/** Draws and maintains square information. */
class Square extends Shape{
 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillRect(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 530

12.04 - Payroll

/* ---
 This illustrates a few standard classes and basic applet
behavior. Enter an employee number for an employee into a text
field. If this employee exists, the applet will find the employee
and display the employee's payroll information. Otherwise, the
applet will create a new employee and add the employee to the
database.

 Java's classes: Applet (applet)
 TextField (awt) to enter new employee data
 Label (awt) read-only text
 GridLayout (awt) aligns by columns and rows
 Event (awt) user-generated action
 Hashtable (util) database
 String (lang) text
 Integer (lang) number

 Custom classes: Payroll
 Employee payroll information

--- */
import java.applet.Applet;
import java.awt.*;
import java.util.*;

public class Payroll extends Applet {
 Hashtable db;
 TextField textFieldEmployee;
 TextField textFieldWage;
 TextField textFieldHours;
 Label labelEarned;
 Employee current;

 /* Create user interface needed by this applet. */
 public void init() {

 // Create the employee database.
 db = new Hashtable();

 // Arrange the user interface in a grid.

Barry Boone and Dave Mark Learn Java on the Macintosh 531

 setLayout(new GridLayout(4,2)); // 4 rows, 2 columns

 // 1st row.
 add(new Label("Employee number:"));
 textFieldEmployee = new TextField(20); // 20 columns wide
 add(textFieldEmployee);

 // 2nd row.
 add(new Label("Hourly wage:"));
 textFieldWage = new TextField(20); // 20 columns wide
 add(textFieldWage);

 // 3rd row.
 add(new Label("Hours worked:"));
 textFieldHours = new TextField(20); // 20 columns wide
 add(textFieldHours);

 // 4th row.
 add(new Label("Earned income:"));
 labelEarned = new Label();
 add(labelEarned);

 setCurrent(null);
 }

 /** Handle events that propogate to the applet. This will
include new text field data. */

 public boolean action(Event e, Object arg) {
 Employee employee;
 int number;

 // Create/retrieve the employee.
 if (e.target == textFieldEmployee) {

 number = intFromTextField(textFieldEmployee);
 employee = findEmployee(number);

 // Create a new employee if not already there.
 if (employee == null)
 employee = addNew(number);

 // Display this employee's payroll information.

Barry Boone and Dave Mark Learn Java on the Macintosh 532

 setCurrent(employee);

 // Set the hourly wage for the current employee.
 } else if (e.target == textFieldWage) {

 if (current != null) {
 current.hourlyWage = intFromTextField(textFieldWage);
 recalcEarned();
 }

 // Set the number of hours worked for the current employee.
 } else if (e.target == textFieldHours) {

 if (current != null) {
 current.hoursWorked =
 intFromTextField(textFieldHours);
 recalcEarned();
 }
 }

 return super.action(e, arg);
 }

 /** This is a utility routine to retrieve an integer from a
text field. */

 int intFromTextField(TextField tf) {
 String s;
 int value;

 s = tf.getText();
 try {
 value = Integer.parseInt(s);
 } catch (Exception e) {
 value = 0;
 setCurrent(null);
 }

 return value;
 }

 /** Do a database lookup using the employee's number as the
key. */

Barry Boone and Dave Mark Learn Java on the Macintosh 533

 Employee findEmployee(int number) {
 return (Employee)db.get(new Integer(number));
 }

 /** Set the text fields to display the correct information for
the current employee. */

 void setCurrent(Employee e) {
 current = e;

 // If there isn't a current employee, initialize the fields.
 if (e == null) {
 textFieldEmployee.setText("0");
 textFieldWage.setText("0");
 textFieldHours.setText("0");
 } else {
 textFieldWage.setText(
 Integer.toString(current.hourlyWage));

 textFieldHours.setText(
 Integer.toString(current.hoursWorked));
 }

 recalcEarned();

 }

 /** Create a new employee and add it to the database */
 Employee addNew(int number) {
 Employee e = new Employee();
 e.idNumber = number;
 e.hourlyWage = 0;
 e.hoursWorked = 0;

 db.put(new Integer(number), e); // Add to the database

 setCurrent(e);

 return e;
 }

 /** Recalculate the text to display in the "Earned income:"
label. */

Barry Boone and Dave Mark Learn Java on the Macintosh 534

 void recalcEarned() {
 int earned;

 if (current != null)
 earned = current.earnedIncome();
 else
 earned = 0;

 labelEarned.setText(Integer.toString(earned));
 }

}

/** Maintain payroll information for an employee. */
class Employee {
 int idNumber;
 int hourlyWage;
 int hoursWorked;

 int earnedIncome() {
 return hourlyWage * hoursWorked;
 }
}

13.01 - applet params

/* ---
This applet paints a circle or square of the color you've chosen
wherever you click. This applet keeps a list of the shapes you've
drawn and paints all the shapes in the list when it repaints. It
allows the HTML file to supply a list of colors for the shapes.

Java's classes: Applet (applet)
 Event (awt) user-generated action
 Graphics (awt) used for drawing
 Color (awt) defines colors
 Choice (awt) shape and color choices
 Vector (util) list of shapes

Custom classes: SimpleDraw

Barry Boone and Dave Mark Learn Java on the Macintosh 535

 Circle defines and draws circles
 Square defines and draws squares
 Shape a common ancestor for circles and squares

--- */

import java.applet.Applet;
import java.util.*;
import java.awt.*;

public class SimpleDraw extends Applet {
 Vector drawnShapes;
 Choice shapeChoice;
 Choice colorChoice;

 /** Create the GUI. */
 public void init() {
 drawnShapes = new Vector();

 shapeChoice = new Choice();
 shapeChoice.addItem("Circle");
 shapeChoice.addItem("Square");

 add(shapeChoice);

 colorChoice = new Choice();
 colorChoice.addItem(getParameter("color1"));
 colorChoice.addItem(getParameter("color2"));
 colorChoice.addItem(getParameter("color3")); t

 add(colorChoice);
 }

 /** Draw all the shapes. */
 public void paint(Graphics g) {
 Shape s;
 int numShapes;

 numShapes = drawnShapes.size();
 for (int i = 0; i < numShapes; i++) {

 s = (Shape)drawnShapes.elementAt(i);

 // When the shape draws, circles and squares each

Barry Boone and Dave Mark Learn Java on the Macintosh 536

 // invoke their own draw method, depending on
 // which shape this is.
 s.draw(g);
 }
 }

 /** Create a new shape. */
 public boolean mouseUp(Event e, int x, int y) {

 Shape s; // This shape will be either a circle or a square.

 String shapeString = shapeChoice.getSelectedItem();
 String colorString = colorChoice.getSelectedItem();

 if (shapeString.equals("Circle"))
 s = new Circle();
 else
 s = new Square();

 if (colorString.equals("Red"))
 s.color = Color.red;
 else if (colorString.equals("Green"))
 s.color = Color.green;
 else if (colorString.equals("Black"))
 s.color = Color.black;
 else if (colorString.equals("Blue"))
 s.color = Color.blue;
 else if (colorString.equals("Pink"))
 s.color = Color.pink;
 else if (colorString.equals("Cyan"))
 s.color = Color.cyan;
 else if (colorString.equals("Orange"))
 s.color = Color.orange;
 else
 s.color = Color.white; // default color

 s.x = x;
 s.y = y;

 drawnShapes.addElement(s);

 repaint();

 return true;

Barry Boone and Dave Mark Learn Java on the Macintosh 537

 }

}

/** Shapes provide common characteristics for the circle and
square. */
abstract class Shape {
 static public final int shapeRadius = 20;

 Color color;
 int x;
 int y;

 abstract void draw(Graphics g);
}

/** Draws and maintains circle information. */
class Circle extends Shape {
 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillOval(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }
}

/** Draws and maintains square information. */
class Square extends Shape{
 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillRect(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }
}

13.02 - constructor

/* ---
This applet creates circles using different constructors.

Java's classes: Applet (applet)

Barry Boone and Dave Mark Learn Java on the Macintosh 538

 System (lang)

Custom classes: Constructor
 Circle

--- */

import java.applet.Applet;

public class Constructor extends Applet {
 public void init() {
 Circle c1, c2, c3;

 c1 = new Circle();
 c2 = new Circle(20);
 c3 = new Circle(c2);

 c1.displayInfo();
 c2.displayInfo();
 c3.displayInfo();
 }
}

class Circle {
 static int defaultRadius = 10;
 int radius;

 Circle() {
 radius = defaultRadius;
 }

 Circle(int radius) {
 this.radius = radius;
 }

 Circle(Circle referenceCircle) {
 this.radius = referenceCircle.radius;
 }

 void displayInfo() {
 System.out.println("This circle's radius is " + radius);
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 539

13.03 - exception

/* ---
This applet creates circles using different constructors. One
of these constructors throws an exception.

Java's classes: Applet (applet)
 System (lang)
 Exception (lang)

Custom classes: Constructor
 Circle
 ImaginaryCircleException

--- */

import java.applet.Applet;

public class ExceptionApplet extends Applet {
 public void init() {
 Circle c1, c2, c3, c4;

 c1 = new Circle();

 try {
 c2 = new Circle(20);
 } catch (ImaginaryCircleException e) {
 System.out.println("Exception with radius 20");
 c2 = new Circle();
 }

 try {
 c3 = new Circle(-20);
 } catch (ImaginaryCircleException e) {
 System.out.println("Exception with radius -20");
 c3 = new Circle();
 }

 c4 = new Circle(c2);

 c1.displayInfo();
 c2.displayInfo();

Barry Boone and Dave Mark Learn Java on the Macintosh 540

 c3.displayInfo();
 c4.displayInfo();
 }
}

class Circle {
 static int defaultRadius = 10;
 int radius;

 Circle() {
 radius = defaultRadius;
 }

 Circle(int radius) throws ImaginaryCircleException {
 if (radius < 0)
 throw new ImaginaryCircleException();
 else
 this.radius = radius;
 }

 Circle(Circle referenceCircle) {
 this.radius = referenceCircle.radius;
 }

 void displayInfo() {
 System.out.println("This circle's radius is " + radius);
 }
}

class ImaginaryCircleException extends Exception {
}

14.01 - hello, java

/* ---
This stand-alone application writes the words "Hello, Java!" to
the standard output.

Java's classes: System (lang)
 String (lang)

Barry Boone and Dave Mark Learn Java on the Macintosh 541

Custom classes: HelloJava (inherits from Object)

--- */
public class HelloJava {
 public static void main(String[] args) {
 System.out.println("Hello, Java!");
 }
}

14.02 - next prime

/* ---
This stand-alone application finds the next prime after the
integer passed to it as a command line parameter.

Java's classes: Applet (applet)
 Exception (lang)
 String (lang)
 Integer (lang)
 Math (lang) to find the square root

Custom classes: NextPrime

--- */

public class NextPrime {
 public static void main(String[] args) {

 int startingPoint, candidate, last, i;
 boolean isPrime;

 if (args.length == 1) {
 try {
 Integer integer = new Integer(args[0]);
 startingPoint = integer.intValue();
 } catch (Exception e) {
 return;
 }
 } else

Barry Boone and Dave Mark Learn Java on the Macintosh 542

 return;

 if (startingPoint < 2) {
 candidate = 2;
 } else if (startingPoint == 2) {
 candidate = 3;
 } else {

 candidate = startingPoint;
 if (candidate % 2 == 0) /* Test only odd numbers */
 candidate--;
 do {

 isPrime = true; /* Assume glorious success */
 candidate += 2; /* Bump to the next number to test */
 last = (int)Math.sqrt(candidate);
 /* We'll check to see if candidate */
 /* has any factors, from 2 to last */

 /* Loop through odd numbers only */
 for (i = 3; (i <= last) && isPrime; i += 2) {
 if ((candidate % i) == 0)
 isPrime = false;
 }
 } while (! isPrime);
 }

 System.out.println("The next prime after " +
 startingPoint + " is " + candidate);

 }
}

14.03 - stand alone

/* ---
This stand-alone application paints a circle or square of the
color you've chosen wherever you click. This application keeps a
list of the shapes you've drawn and paints all the shapes in the
list when it repaints.

Barry Boone and Dave Mark Learn Java on the Macintosh 543

Java's classes: Applet (applet)
 Event (awt) user-generated action
 Graphics (awt) used for drawing
 Color (awt) defines colors
 Choice (awt) shape and color selection
choices
 Vector (util) list of shapes

Custom classes: SimpleDraw
 Circle defines and draws circles
 Square defines and draws squares
 Shape a common ancestor for circles and squares

--- */

import java.applet.Applet;
import java.util.*;
import java.awt.*;

public class SimpleDraw extends Applet {
 Vector drawnShapes;
 Choice shapeChoice;
 Choice colorChoice;

 /** Be able to run as a stand-alone application. */
 public static void main(String[] args) {

 // create a new instance of this applet
 SimpleDraw sd = new SimpleDraw();

 // initialize the applet
 sd.init();

 // create a frame to hold this applet
 Frame f = new Frame("SimpleDraw");

 // put the applet into the frame
 f.add("Center", sd);

 // give the frame a default size
 f.resize(200,100);

 // make the frame appear

Barry Boone and Dave Mark Learn Java on the Macintosh 544

 f.show();
 }

 /** Create the GUI. */
 public void init() {
 drawnShapes = new Vector();

 shapeChoice = new Choice();
 shapeChoice.addItem("Circle");
 shapeChoice.addItem("Square");
 add(shapeChoice);

 colorChoice = new Choice();
 colorChoice.addItem("Red");
 colorChoice.addItem("Green");
 colorChoice.addItem("Blue");
 add(colorChoice);
 }

 /** Repaint all the shapes. */
 public void paint(Graphics g) {
 Shape s;
 int numShapes;

 numShapes = drawnShapes.size();
 for (int i = 0; i < numShapes; i++) {

 s = (Shape)drawnShapes.elementAt(i);

 // When the shape draws, circles and squares each
 // invoke their own draw method, depending on
 // which shape this is.
 s.draw(g);
 }
 }

 /** Create a new shape. */
 public boolean mouseUp(Event e, int x, int y) {

 Shape s; // This shape will be either a circle or a square.

 String shapeString = shapeChoice.getSelectedItem();
 String colorString = colorChoice.getSelectedItem();

Barry Boone and Dave Mark Learn Java on the Macintosh 545

 if (shapeString.equals("Circle"))
 s = new Circle();
 else
 s = new Square();

 if (colorString.equals("Red"))
 s.color = Color.red;
 else if (colorString.equals("Green"))
 s.color = Color.green;
 else
 s.color = Color.blue;

 s.x = x;
 s.y = y;

 drawnShapes.addElement(s);

 repaint();

 return true;
 }

}

/** Shapes provide common characteristics for the circle and
square. */
abstract class Shape {
 static public final int shapeRadius = 20;

 Color color;
 int x;
 int y;

 abstract void draw(Graphics g);
}

/** Draws and maintains circle information. */
class Circle extends Shape {
 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillOval(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 546

/** Draws and maintains square information. */
class Square extends Shape{
 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillRect(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }
}

15.01 - threads

/* ---
This applet paints a circle or square of the color you've chosen
wherever you click. Every second, it blinks the shape to yellow.
All shapes blink independently of each other.

This applet keeps a list of the shapes you've drawn
and paints all the shapes in the list when it repaints.

Java's classes: Applet (applet)
 Event (awt) user-generated action
 Graphics (awt) used for drawing
 Color (awt) defines colors
 Choice (awt) shape and color selection
choices
 Vector (util) list of shapes
 Thread (lang)

Custom classes: SimpleDraw
 Circle defines and draws circles
 Square defines and draws squares
 Shape a common ancestor for circles and squares
 BlinkThread controls drawing for a shape

--- */

import java.applet.Applet;
import java.util.*;
import java.awt.*;

Barry Boone and Dave Mark Learn Java on the Macintosh 547

public class SimpleDraw extends Applet {
 Vector threads;
 Choice shapeChoice;
 Choice colorChoice;

 /** Create the GUI. */
 public void init() {
 threads = new Vector();

 shapeChoice = new Choice();
 shapeChoice.addItem("Circle");
 shapeChoice.addItem("Square");
 add(shapeChoice);

 colorChoice = new Choice();
 colorChoice.addItem("Red");
 colorChoice.addItem("Green");
 colorChoice.addItem("Blue");
 add(colorChoice);

 BlinkThread.g = getGraphics(); // Get the graphics object
 }

 /** Create a new shape. */
 public boolean mouseUp(Event e, int x, int y) {

 BlinkThread t;
 Shape s; // This shape will be either a circle or a square.

 String shapeString = shapeChoice.getSelectedItem();
 String colorString = colorChoice.getSelectedItem();

 if (shapeString.equals("Circle"))
 s = new Circle();
 else
 s = new Square();

 if (colorString.equals("Red"))
 s.color = Color.red;
 else if (colorString.equals("Green"))
 s.color = Color.green;
 else
 s.color = Color.blue;

Barry Boone and Dave Mark Learn Java on the Macintosh 548

 s.x = x;
 s.y = y;

 t = new BlinkThread(s);
 t.start();

 return true;
 }

 /** Resume all the threads when the applet starts. */
 public void start() {
 BlinkThread t;
 int numThreads;

 numThreads = threads.size();
 for (int i = 0; i < numThreads; i++) {

 t = (BlinkThread)threads.elementAt(i);
 t.resume();
 }
 }

 /** Suspend all the threads when the applet stops. */
 public void stop() {
 BlinkThread t;
 int numThreads;

 numThreads = threads.size();
 for (int i = 0; i < numThreads; i++) {

 t = (BlinkThread)threads.elementAt(i);
 t.suspend();
 }
 }

 /** Stop all the threads when the applet goes away. */
 public void destroy() {
 BlinkThread t;
 int numThreads;

 numThreads = threads.size();
 for (int i = 0; i < numThreads; i++) {

Barry Boone and Dave Mark Learn Java on the Macintosh 549

 t = (BlinkThread)threads.elementAt(i);
 t.stop();
 }
 }
}

/** Shapes provide common characteristics for the circle and
square. */
abstract class Shape {
 static public final int shapeRadius = 20;

 Color color;
 int x;
 int y;

 abstract void draw(Graphics g);
 abstract void drawBlink(Graphics g);
}

/** Draws and maintains circle information. */
class Circle extends Shape {
 void drawBlink(Graphics g) {
 g.setColor(Color.yellow);
 g.fillOval(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }

 void draw(Graphics g) {
 g.setColor(this.color);
 g.fillOval(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }
}

/** Draws and maintains square information. */
class Square extends Shape{
 void drawBlink(Graphics g) {
 g.setColor(Color.yellow);
 g.fillRect(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }

 void draw(Graphics g) {

Barry Boone and Dave Mark Learn Java on the Macintosh 550

 g.setColor(this.color);
 g.fillRect(this.x - shapeRadius, this.y - shapeRadius,
 shapeRadius * 2, shapeRadius * 2);
 }
}

/** Thread to control when to blink a shape. */
class BlinkThread extends Thread {
 static Graphics g;
 Shape s;

 BlinkThread(Shape s) {
 this.s = s;
 }

 public void run() {

 // don't ever exit the thread
 while(true) {

 try {
 s.drawBlink(g);
 sleep(250); // Go to sleep for a 1/4 of a second

 s.draw(g);
 sleep(1000); // Go to sleep for 1 second

 } catch (Exception e) {
 }

 }
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 551

APPENDIX C Java Syntax Summary

The if Statement

syntax

if (expression)
 statement

example

if (numEmployees > 20)
 buyNewBuilding();

alternate syntax

if (expression)
 statement
else
 statement

example

if (temperature < 60)
 wearAJacket();
else
 buyASweater();

Barry Boone and Dave Mark Learn Java on the Macintosh 552

The while Statement

syntax

while (expression)
 statement

example

while (fireTooLow())
 addAnotherLog();

The for Statement

syntax

for (expression1; expression2; expression3)
 statement

example

int[] myArray = new myArray[100];
int i;

for (i = 0; i < 100; i++)
 myArray[i] = i;

Barry Boone and Dave Mark Learn Java on the Macintosh 553

The do Statement

syntax

do
 statement
while (expression)

example

do
 invokeThisMethod();
while (keepGoing());

The switch statement

syntax

switch (expression){
 case constant:
 statements
 case constant:
 statements
 default:
 statements
}

example

switch (disneyNumber) {
 case 7:
 System.out.println(“dwarves”);
 break;
 case 101:

Barry Boone and Dave Mark Learn Java on the Macintosh 554

 System.out.println(“dalmations”);
 break;
 default:
 System.out.println(“not used yet”);
}

The break Statement

syntax

break;

example

int i = 1;

while (i <= 9) {
 playAnInning(i);

 if (itsRaining())
 break;

 i++;
}

The return Statement

syntax

return;

Barry Boone and Dave Mark Learn Java on the Macintosh 555

example

if (allDone())
 return;

syntax

return expression;

example

int addThese (int num1, int num2)
 return num1 + num2;

The new Operator

syntax

new ClassName();

example

Button b = new Button();

The instanceof Operator

syntax

variable instanceof ClassName

Barry Boone and Dave Mark Learn Java on the Macintosh 556

example

if (myObject instanceof Button)
 System.out.println(“this is a button”);

The throw Statement

syntax

throw exception;

example

if (seriousProblem())
 throw new Exception();

The try, catch, and finally Statements

syntax without finally

try
 statement
catch (ExceptionName variable) {
 statement

example

try {
 doSomethingDangerous();
} catch (Exception e) {
 handleTheException()
}

Barry Boone and Dave Mark Learn Java on the Macintosh 557

syntax with finally

try
 statement
catch (ExceptionName variable) {
 statement
finally
 statement

example

try {
 doSomethingDangerous();
} catch (Exception e) {
 handleTheException()
} finally {
 alwaysDoThis();
}

Barry Boone and Dave Mark Learn Java on the Macintosh

APPENDIX D About CodeWarrior...

This section of the book describes the newest version of CodeWarrior. However, we thought the document s on this

CD do a better job of explaining CodeWarrior than a short appendix could. So...for a description of CodeWarrior, see

the CodeWarrior Quick Start. And, for a description of all the available documentation, see the Documentation Apple

Guide in the Metrowerks CodeWarrior folder.

Barry Boone and Dave Mark Learn Java on the Macintosh 558

APPENDIX E Exercises

Chapter 5: The Development Cycle

1. Open the project SimplestApplet.µ. Double-click SimplestApplet.java, erase anything else that’s

there, and type in the following program:

public class SyntaxApplet extends java.applet.Applet {
 static {
 System.out.println("static initializer");
 }
}

Select Make from the Project menu, then run this applet in the way you learned about, by dropping the HTML

file named SimplestApplet.html onto the Metrowerks Java icon.

Once you’ve verified this applet works and that it displays the words “static initializer” in the Java Output

window, make the following changes to experiment with syntax errors. For each of these three examples, make the

suggested change and try to remake the project. Describe the syntax error messages that result.

a. Change the line:

static {

to say:

static (

b. Change things back. Now change the line:

Barry Boone and Dave Mark Learn Java on the Macintosh 559

public class SyntaxApplet extends java.applet.Applet {

to say:

public class SyntaxApplet java.applet.Applet {

c. Change things back. Now change the line:

 System.out.println("static initializer");

to say:

 System.out.println(static initializer);

Chapter 6: Variables and Operators

1. Find the error in each of the following code fragments:

a. System.out.println(Hello, world);

b. int myInt myOtherInt;

c. myInt =+ 3;

d. myInt + 3 = myInt;

2. Compute the value of myInt after each code fragment is executed:

a. myInt = 5;
 myInt *= (3 + 4) * 2;

b. myInt = 2;

Barry Boone and Dave Mark Learn Java on the Macintosh 560

 myInt *= ((3 * 4) / 2) - 9;

c. myInt = 2;
 myInt /= 5;
 myInt--;

d. myInt = 25;
 myInt /= 3 * 2;

e. myInt = 5;
 System.out.println("myInt = " + myInt = 2);

f. myInt = 1;
 myInt /= 10;

Chapter 7: Introduction to Methods

1. What’s wrong with each of the following methods?

a. void myMethod {
 return 3;
 }

b. void anotherMethod(int num1) {
 return num1 * 2;
 }

c. int addThese(int num1, int num2) {
 int sum = num1 + num2;
 }

2. What is the result of executing myMethod() in the example below?

 void myMethod() {
 int i = 3;
 System.out.println("result = " + anotherMethod(i));
 }

 int anotherMethod(int number) {

Barry Boone and Dave Mark Learn Java on the Macintosh 561

 return number * number;
 }

3. Write an applet that, in its init() method, invokes another method that writes your name to the Java Output win-

dow.

Chapter 8: Controlling Your Program’s Flow

1. What’s wrong with each of the following code fragments:

a. if i
 i++;

b. for (i = 0; i < 20; i++)
 i--;

c. while ()
 i++;

d. do (i++)
 until (i == 20);

e. switch (i) {
 case firstChoice:
 case secondChoice:
 System.out.println("first or second choice");
 break;
 default:
 System.out.println("other choice");
 }

f. if (i < 20)
 if (i == 20)
 System.out.println("never...");

Barry Boone and Dave Mark Learn Java on the Macintosh 562

g. while (done = true)
 done = !done;

h. for (i = 0; i < 20; i*2)
 System.out.println("modification...");

2. What is the output from each of the following code fragments?

a. for (i = 4; i > 0; i--)
 System.out.println(i);

b. while (true)
 System.out.println("hello");

c. int i;
 do {
 System.out.println(i++);
 } while (i < 5);

d. int i = 5;
 int j = 10;
 if (i < j && j > 10)
 System.out.println("first option");
 else
 System.out.println("second option");

e. int i = 5;
 int j = 10;
 if (i < j || j > 10)
 System.out.println("first option");
 else
 System.out.println("second option");

3. Modify nextPrime.java to compute the prime numbers from 1 to 100.

4. Modify nextPrime.java to compute the first 100 prime numbers.

Barry Boone and Dave Mark Learn Java on the Macintosh 563

Chapter 9: Objects

1. Given a class defined like this:

class Elephant {
 static int population;
 int age;

 int tuskLength() {
 return age * 2;
 }

 int pop() {
 return population;
 }
}

and given code that creates two elephants, like this:

 Elephant e1 = new Elephant();
 e1.age = 3;
 e2.age = 5;

what do expect the output to be for each of the following two code snippets:

a. System.out.println(e1.tuskLength());
 System.out.println(e2.tuskLength());

b. Elephant.population = 3000;
 System.out.println(e1.pop());
 Elephant.population = 4000;
 System.out.println(e2.pop());

2. What is wrong with each of the following class definitions:

Barry Boone and Dave Mark Learn Java on the Macintosh 564

a. class {
 int length;
 int width;
 }

b. class Car {
 int speed();
 }

c. class Boat {
 int length;
 int init(int length) {
 length = length;
 }
 }

d. class Flower {
 int petals;
 static int numPetals() {
 return petals;
 }

3. Write an applet that uses a class called Student. The class should define a method that can determine whether a stu-

dent has passed (with a score of 60 and above) or failed (with a score below 60). Each student object will keep track

of a test score. The applet should create four students, assign different student objects the test scores 94, 72, 52, and

90, and write out whether each one has passed or failed.

Chapter 10: Java’s Classes and Inheritance

1. Given two classes defined like this:

class Plant {
 boolean isAlive;
 boolean beautiful() {
 return isAlive;

Barry Boone and Dave Mark Learn Java on the Macintosh 565

 }
}

class Flower extends Plant {
 int numPetals;
 boolean beautiful() {
 if (numPetals > 4 && isAlive)
 return true;
 else
 return false;
 }
}

These definitions say, basically, that if a plant is alive it’s beautiful, but if we’re dealing with a flower, we

have a little more restrictive definition of beautiful. Now let’s create three flowers:

Flower f1 = new Flower();
f1.isAlive = true;
f1.numPetals = 4;

Flower f2 = new Flower();
f2.isAlive = true;
f2.numPetals = 5;

Flower f3 = new Flower();
f3.isAlive = false;
f2.numPetals = 100;

What are the results of each of the following code snippets:

a. System.out.println(f1.beautiful());

b. System.out.println(f2.beautiful());

c. System.out.println(f3.beautiful());

Barry Boone and Dave Mark Learn Java on the Macintosh 566

2. What if the flower did not provide it’s own beautiful() method? What do you think the results would be for

f1, f2, and f3 if we used the plant’s beautiful() method instead of the flower’s?

3. If isAlive was turned into a private variable, how could you rewrite the flower’s beautiful() method so

that it would still work?

4. Imagine making isAlive protected instead of private.

a. Would the flower’s beautiful() method need to be changed at all to determine whether it was alive?

b. Could a class defined like this:

class FlowerPot {
 int diameter;
}

determine whether a flower it contained was alive or not by directly accessing isAlive?

5. What’s wrong with each of the following class definitions:

a. class Computer {
 int processorSpeed();
 }

b. class Tree {
 abstract String genus();
 }

c. abstract class Bird {
 abstract int flightSpeed();
 }

 class Seagull extends Bird {
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 567

d. class Animal {
 private int numLives;
 }

 class Cat extends Animal;
 Cat() {
 numLives = 9;
 }

Chapter 11: Creating a User Interface

1. Given an empty paint() method for an applet defined like this:

public void paint(Graphics g) {
}

How would you:

a. Draw a solid, green circle who’s top left edge is 30 pixels from the left, 30 pixels from the top, and that is 20 pixels

in diameter?

b. Display the text “Who’s zomming who?” who’s bottom, left edge is 40 pixels from the left and 20 pixels from the

top?

2. Create an applet that displays two mutually exclusive check boxes labelled “male” and “female.” If you are using

CodeWarrior Lite, modify the empty Java source file located in the folder 05.01 - empty applet.

Barry Boone and Dave Mark Learn Java on the Macintosh 568

3. Adapt the program you developed in question 2 and write a message to the Java Output window that identifies

which check box the user selected whenever the user clicks one of the check boxes.

4. Create an applet that contains a single button. Each time you click the button, alternate between drawing a red and

a blue square who’s left edge is located 10 pixels from the left, 10 pixels from the top, and is 40 pixels on each side.

Chapter 12: Working with Data

1. What is wrong with each of the following code snippets:

a. double myDouble = 50.1;
 int myInt = myDouble;

b. int numStudents;
 int totalScores = 891;
 int average = totalScores/numStudents;

c. String schoolMascot = new String();
 int numStudents = 409;
 schoolMascot = "tiger";

d. int myIntArray = new myIntArray[10];

e. try {
 Integer number = new Integer(4);
 }

 if (number != null)
 System.out.println("we have a number");

f. try {
 doAConversion();
 } catch {

Barry Boone and Dave Mark Learn Java on the Macintosh 569

 handleException();
 }

g. boolean[] toggles = new boolean[3];
 for (int i = 0; i <= 3; i++)
 toggles[i] = true;

h. int[] myIntArray;
 System.out.println(myIntArray.length);

2. What do you expect the output to be for each of the following lines of code:

a. try {
 Integer number = new Integer('1');
 System.out.println("created a new Integer instance");
 } catch (Exception e) {
 System.out.println("trouble in River City");
 }

b. float myFloat = (float)50.75;
 int myInt = (int) myFloat;
 System.out.println(myInt);

c. int[] myIntArray = new myIntArray[3];
 for (int i = 0; i < 3; i++)
 myIntArray[i] = i;
 System.out.println(myIntArray.length);
 System.out.println(myIntArray[2]);

3. Change the program contained in NextPrime3.java, located in the folder 08.06 - next prime 3.

Instead of writing out the prime number as soon as it is found, save the prime number in the next unused element in

an array of 100 integers. At the very end of the init() method, loop through the array and write out each entry.

Barry Boone and Dave Mark Learn Java on the Macintosh 570

Chapter 13: Advanced Topics

1. What is wrong with each of the following class definitions:

a. class Rocket {
 void liftoff(int speed, boolean successful) {
 }
 double liftoff(int velocity, boolean reachOrbit) {
 }
 }

b. class Mountain {
 int height;
 int Mountain(int height) {
 this.height = height;
 return height;
 }
 }

c. class Sun {
 final Color color = Color.yellow;
 int age;
 int setAge(int years) {
 age = years;
 if (years > 10000000)
 color = Color.orange;
 }
 }

d. class Trouble {
 void rightHere() {
 throws new Exception();
 }
 }

2. What do you expect the output to be for each of the following code snippets:

a. try {
 Integer myInteger = new Integer("$");
 } catch (Exception x) {

Barry Boone and Dave Mark Learn Java on the Macintosh 571

 System.out.println("error");
 } finally {
 System.out.println("clean up");
 }

3. Write an applet that displays the number of check boxes indicated by a parameter in the HTML file that launches

the applet. You can leave off the names of the check boxes if you’d like. As before, you can use the empty Java source

file located in 05.01 - empty project.

Barry Boone and Dave Mark Learn Java on the Macintosh 572

APPENDIX F Solutions to the Exercises

Chapter 6: Variables and Operators

1a. There should be quotes around the words to be displayed, as in:

 System.out.println("Hello, world");

1b. There should be a comma separating variables declared on the same line, as in:

 int myInt, myOtherInt;

1c. To add 3 to a number, use the operator +=, like this:

 myInt += 3;

1d. The left side of the equation must be a variable, not an expression, like this:

 myInt = myInt + 3;

2a. 120.

2b. -6.

2c. -1.

2d. 4.

2e. “myInt = 2” will appear in the Java Output window.

2f. 0.

Barry Boone and Dave Mark Learn Java on the Macintosh 573

Chapter 7: Introduction to Methods

1a. A method declared as void cannot return a value. To return a value such as an int, declare the method using int

instead of void, like this:

 int myMethod {
 return 3;
 }

1b. Again, the method must be declared as an int to return an int:

 int anotherMethod(int num1) {
 return num1 * 2;
 }

1c. A method declared as returning a value must return a value:

 int addThese(int num1, int num2) {
 int sum = num1 + num2;
 return sum;
 }

2. “result = 9” will appear in the Java Output window.

3.

public class WriteNameApplet extends java.applet.Applet {
 public void init() {
 writeYourName();
 }
 void writeYourName() {
 System.out.println("Henry Higgens");
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 574

Chapter 8: Controlling Your Program’s Flow

1a. Parentheses are needed around the expression in the if test, and the expression must yield a Boolean result, as in:

 if (i != 0)
 i++;

1b. Since we decrement i by 1 in the body of the for loop, and since we increment i by 1 in the modification of the

loop counter, this will result in an infinite loop!

1c. We need some expression in the parentheses for a while loop; these parentheses cannot be empty.

1d. The syntax is not do-until but do-while. This might be updated to read:

 do (i++)
 while (i < 20);

1e. case statements require constants and will not take variables. If firstChoice was equal to 1 and secondChoice was

equal to 2, this could be rewritten as:

 switch (i) {
 case 1:
 case 2:
 System.out.println("first or second choice");
 break;
 default:
 System.out.println("other choice");
 }

1f. Since the first if test passes only if i is less than 20, the second if test will never execute, and hence the line that

reads “never...” will never appear in the Java Output window.

1g. Since the result of the assignment operator is the value that was assigned, the expression done = true results in the

value of true. This means the while loop will never end, and we’ll be caught in an infinite loop.

1h. The loop counter, i, is never actually modified. If the intent was to multiply i by 2, the loop should have been writ-

ten:

Barry Boone and Dave Mark Learn Java on the Macintosh 575

 for (i = 0; i < 20; i *= 2)
 System.out.println("modification...");

2a. 4
 3
 2
 1

2b. hello
 hello
 hello

The word “hello” will be written to the Java Output window forever.

2c. 0
 1
 2
 3
 4
 5

2d. second operation

2e. first option

3. The solution can be found in the folder 08.05 - next prime 2.

4. The solution can be found in the folder 08.06 - next prime 3.

Chapter 9: Objects

1a. 6

Barry Boone and Dave Mark Learn Java on the Macintosh 576

 10

1b. 3000
 4000

2a. You must supply the name of the class when defining a class. You could fix this snippet by writing:

 class MyClass {
 int length;
 int width;
 }

2b. You must supply a method body when defining a method (the part between the curly brackets). It is possible to

define a method without a body; you’ll learn about that in the Chapter 10. To fix this snippet, you could simply pro-

vide an empty body (though it must return an int, as indicated in the method declaration):

 class Car {
 int speed() {
 return 0;
 }
 }

2c. The intent of this init() method seems to be to set the instance variable, but parameters and local variables take

precedence over instance and class variables. Therefore, the instance variable would never be set, and the parameter

would be set back to itself! This snippet needs to prefix the instance variable with the special variable named this.

 class Boat {
 int length;
 int init(int length) {
 this.length = length;
 }
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 577

2d. The variable petals is defined as an instance variable, but the method named numPetals() is defined as a class

(that is, a static) method. Methods defined as static cannot access an instance variable without referencing a

particular object. If numPetals() was an instance method, then this would be legal.

 class Flower {
 int petals;
 int numPetals() {
 return petals;
 }

3.

public class ScoreApplet extends java.applet.Applet {
 public void init() {
 Student s1 = new Student();
 s1.score = 94;
 Student s2 = new Student();
 s2.score = 72;
 Student s3 = new Student();
 s3.score = 52;
 Student s4 = new Student();
 s4.score = 90;

 System.out.println("s1 passed? " + s1.passed());
 System.out.println("s2 passed? " + s2.passed());
 System.out.println("s3 passed? " + s3.passed());
 System.out.println("s4 passed? " + s4.passed());
 }
}

class Student {
 int score;
 boolean passed() {
 if (score >=60)
 return true;
 else
 return false;
 }
}

Barry Boone and Dave Mark Learn Java on the Macintosh 578

Chapter 10: Java’s Classes and Inheritance

1. Given two classes defined like this:

class Plant {
 boolean alive;
 boolean beautiful() {
 return alive;
 }
}

class Flower extends Plant {
 int numPetals;
 boolean beautiful() {
 if (numPetals > 4 && isAlive)
 return true;
 else
 return false;
 }
}

These definitions say, basically, that if a plant is alive it’s beautiful, but if we’re dealing with a flower, we

have a little more restrictive definition of beautiful. Now let’s create three flowers:

Flower f1 = new Flower();
f1.isAlive = true;
f1.numPetals = 4;

Flower f2 = new Flower();
f2.isAlive = true;
f2.numPetals = 5;

Flower f3 = new Flower();
f3.isAlive = false;
f2.numPetals = 100;

Barry Boone and Dave Mark Learn Java on the Macintosh 579

What are the results of each of the following code snippets:

1a. false
1b. true
1c. false

2. The results would be true, true and false for f1, f2, and f3, respectively.

3. First of all, to set the value for isAlive, you could write a method that took a boolean value and set this value,

as in:

 void setIsAlive(boolean newValue) {
 isAlive = newValue;
 }

Then, when creating the flowers, instead of setting isAlive directly, you could invoke its setIsAlive() method,

like this:

f1.setIsAlive(true);

and so on. Instead of accessing isAlive directly, methods in the flower class could invoke their superclass’s beau-

tiful() method, which would return the value of the private isAlive variable.

4a. If isAlive was defined as protected, the flower’s beautiful() method not need to be changed.

Barry Boone and Dave Mark Learn Java on the Macintosh 580

4b. Other classes that were not descendents of Plant, such as FlowerPot, could not access isAlive.

5a. There is no body defined for the method processorSpeed(). In this case, the method and the class must both

be declared as abstract:

 abstract class Computer {
 abstract int processorSpeed();
 }

5b. If a class contains an abstract method, the class itself must also be declared as abstract:

 abstract class Tree {
 abstract String genus();
 }

5c. Descendents of abstract must define the abstract methods or they must be declared abstract them-

selves, as in:

 abstract class Bird {
 abstract int flightSpeed();
 }

 abstract class Seagull extends Bird {
 }

5d. Subclasses cannot access their superclass’s private variables. To allow this, the variable must be made pro-

tected (or you can use the default access restrictions, which is defined by not using any keywords. This allows all

methods defined in the same package to access that variable).

 class Animal {
 protected int numLives;
 }

Barry Boone and Dave Mark Learn Java on the Macintosh 581

 class Cat extends Animal;
 Cat() {
 numLives = 9;
 }

Chapter 11: Creating a User Interface

1a.

 g.setColor(Color.green);
 g.fillOval(30, 30, 20, 20);

1b.

g.drawString("Who's zooming who?", 40, 20);

2.

public class CheckboxApplet extends java.applet.Applet {
 public void init() {
 checkboxGroup = new CheckboxGroup();

 checkbox = new Checkbox("male", checkboxGroup, false);
 add(checkbox);
 checkbox = new Checkbox("female", checkboxGroup, false);
 add(checkbox);
 }
}

3. One way to do this is to keep track of the two checkboxes and identify which object the user selected in the action()

method for your applet, like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 582

public class CheckboxApplet extends java.applet.Applet {
 Checkbox male, female;

 public void init() {
 checkboxGroup = new CheckboxGroup();

 male = new Checkbox("male", checkboxGroup, false);
 add(male);
 female = new Checkbox("female", checkboxGroup, false);
 add(female);
 }

 public boolean action(Event e, Object arg) {
 if (e.target == male)
 System.out.println("male");
 else if (e.target == female)
 System.out.println("female");

 return super.action(e, arg);
 }
}

4.

import java.applet.Applet;
import java.awt.*;

public class TestApplet extends Applet {
 Button toggle;
 Color color = Color.blue;

 public void init() {
 toggle = new Button("toggle");
 add(toggle);
 }

 public boolean action (Event e, Object arg) {

 if (e.target == toggle) {
 if (color == Color.red)
 color = Color.blue;
 else

Barry Boone and Dave Mark Learn Java on the Macintosh 583

 color = Color.red;
 }

 repaint();
 return true;
 }

 public void paint(Graphics g) {
 g.setColor(color);
 g.fillOval(10, 10, 40, 40);
 }

}

Chapter 12: Working with Data

1a. You cannot assign a double to an int without casting:

 double myDouble = 50.1;
 int myInt = (int)myDouble;

1b. Dividing by 0 with int values is not legal.

1c. A string cannot be assigned a value after it is created. Instead, set the string’s value at the time it is created. (To

work with strings that you can write to as well as read from, use instances of StringBuffer instead.)

 String schoolMascot = new String(“tiger”);
 int numStudents = 409;

1d. Make sure all arrays are declared with brackets after the data type, like this:

d. int[] myIntArray = new myIntArray[10];

Barry Boone and Dave Mark Learn Java on the Macintosh 584

(Alternatively, arrays can be declared by placing the square brackets after the variable name.)

1e. A try block should have a matching catch block immediately following it.

1f. The catch block needs to declare a variable that will be assigned the exception object:

 try {
 doAConversion();
 } catch (Exception exception) {
 handleException();
 }

1g. The only legal elements in an array declared to be 3 in length are the elements 0, 1, and 2. Therefore, the loop

must end before it gets to 3.

 boolean[] toggles = new boolean[3];
 for (int i = 0; i < 3; i++)
 toggles[i] = true;

1h. You cannot access the length of an array before it is allocated using the new operator.

2a. Since the character 1 is being passed to the Integer constructor (because of the single quotes rather than double

quotes surrounding the 1), Java will throw an exception. The output will be simply:

trouble in River City

2b. The floating point value will be truncated, and the value 50 will appear in the Java Output window.

2c. The two lines in the Java Output window will be:

Barry Boone and Dave Mark Learn Java on the Macintosh 585

3
2

3. One possible version of the new program is:

public class NextPrime3 extends java.applet.Applet {
 public void init() {

 int primeIndex, candidate, i, last;
 boolean isPrime;
 int[] primeNumbers = new int[100];

 primeNumbers[0] = 2;

 candidate = 3;
 primeIndex = 1;

 while (primeIndex < 100) {

 isPrime = true;
 last = (int)Math.sqrt(candidate);

 for (i = 3; (i <= last) && isPrime; i += 2) {
 if ((candidate % i) == 0)
 isPrime = false;
 }

 if (isPrime) {
 primeNumbers[primeIndex] = candidate;
 primeIndex++;
 }

 candidate += 2;
 }

 for (i = 0; i < 100; i++) {
 System.out.println("Prime #" + (i+1) +
 " is " + primeNumbers[i]);
 }

 }

Barry Boone and Dave Mark Learn Java on the Macintosh 586

}

Chapter 13: Advanced Topics

1a. Methods with the same name must have unique signatures. Signatures include the method name and the data types

of its parameters (not the return values).

1b. Constructors cannot return a value, such as int. (They don’t even return void.) Here’s how the Mountain class

could be rewritten:

 class Mountain {
 int height;
 Mountain(int height) {
 this.height = height;
 return height;
 }
 }

1c. Contants (that is, variables declared as final) cannot be changed. To be able to change a variable, leave off the

final keyword.

 class Sun {
 Color color = Color.yellow;
 int age;
 int setAge(int years) {
 age = years;
 if (years > 10000000)
 color = Color.orange;
 }
 }

1d. Methods that throw an exception must include the throws keyword, followed by the type of exception they

throw, in the method declaration, like this:

Barry Boone and Dave Mark Learn Java on the Macintosh 587

 class Trouble throws Exception {
 void rightHere() {
 throws new Exception();
 }
 }

2a. The following two lines will appear in the Java Output window:

error
clean up

3.

import java.awt.Checkbox;

public class CheckboxApplet extends java.applet.Applet {
 public void init() {
 int num;
 Checkbox checkbox;
 String s = getParameter("checks");

 try {
 num = Integer.parseInt(s);
 } catch (Exception e) {
 num = 0; // default
 }

 for (int i = 0; i < num; i++) {
 checkbox = new Checkbox();
 add(checkbox);
 }
 }
}

Here’s a possible HTML file for this code:

Barry Boone and Dave Mark Learn Java on the Macintosh 588

<applet codebase="Checkbox" code="CheckboxApplet.class" width=250
height=100>
<param name=checks value="25">
</applet>

Barry Boone and Dave Mark Learn Java on the Macintosh 589

APPENDIX G Additional Resources

This section provides a number of links to additional resources for learning more about Java.

Web Resources

Sites Supporting This Book

There are two places where you can go on the Web to learn more about Learn Java on the Macintosh. The first site is

maintained by Metrowerks and can be found at:

http://www.metrowerks.com/products/discover/java/

The second site is maintained by Addison-Wesley and can be found by starting at the Addison-Wesley home

page, located at:

http://www.aw.com/devpress/

Try looking under the What’s New and Recently Published links, or look up the book in the index you’ll find

at:

Barry Boone and Dave Mark Learn Java on the Macintosh 590

http://www.aw.com/devpress/library.html

Documentation

JavaSoft, Sun Microsystem’s spin-off company that develops and supports Java, has posted lots of great documenta-

tion on their site. For the latest Application Programmer Interface documentation, look under:

http://java.sun.com/JDK-1.0/api/packages.html

For the directory of other documentation sources maintained by JavaSoft, check out:

http://java.sun.com/java.sun.com/doc/programmer.html

The documentation here includes the Java language specification, The Java Virtual Machine, and additional,

introductory material to learn more about Java programming.

Java Applets on the Web

There are lots of examples of great Java applets on the Web, and more are being added everyday. Lots of these sam-

ples include the source code. You can find a great many of these at the Gamelan site, at:

http://www.gamelan.com/noframe/Gamelan.programming.html

Barry Boone and Dave Mark Learn Java on the Macintosh 591

Internet Resources

One of the best Internet resources are the newsgroups. In particular, you should check out

comp.lang.java

for lively discussions on programming in Java and the latest directions in Java software.

There are also ftp sites where you can download the latest software samples and documentation. Start at:

http://java.sun.com/java.sun.com/devcorner.html

and follow the links to the latest and greatest that JavaSoft has to offer.

Books

Java Essentials for C and C++ Programmers, by Barry Boone

This book, published by Addison-Wesley, will help you find out more about Java’s advanced features, such as excep-

tions, multitasking, interfaces, and constructors. Though this book is written for programmers, once you are up to

speed on Java programming, this book is a great resource for learning about these advanced topics.

Barry Boone and Dave Mark Learn Java on the Macintosh 592

Learn C on the Macintosh, by Dave Mark

Java is very similar to C in some fundamental ways. This book, published by Addison-Wesley, can help you learn the

basics of variables, operators, data types, and flow control. Most of the information in Learn C on the Macintosh

that’s relevant to Java is also included in the chapters in this book. However, if you want to learn more about a lan-

guage that is a predecessor to Java, this is a great place to start.

	Chapter 1 - Welcome Aboard
	What's in This Package?
	Why Learn Java?
	What Should You Know to Get Started?
	What Equipment Will You Need?
	The Lay of the Land
	Conventions Used in this Book
	Review
	What's Next?

	Chapter 2 - Installing and Testing CodeWarrior Lite
	Installing CodeWarrior Lite
	Testing CodeWarrior Lite
	Review
	What's Next?

	Chapter 3 - Web Programming Basics
	Web Content
	Interactivity
	Jazzing Up Your Web Page
	Reasons for Programming
	What is a Program?
	How is Java Different from HTML?
	Other Programming Languages
	Developing Software Using These Languages
	Why Java is Perfect for the Web
	Runtime Environments
	Review
	What's Next?

	Chapter 4 - Problem Solving in Java
	What It's Like to Be a Programmer
	The Programming Process
	Designing Your Program
	Review
	What's Next?

	Chpter 5 - The Development Cycle
	An Overview
	Organizing Your Files
	An Example: The Simplest Applet
	Editing the Source File
	Syntax Errors
	Displaying Messages
	Review
	What's Next?

	Chapter 6 - Variables and Operators
	An Introduction to Variables
	Working with Variables
	Variable Names
	The Size of a Type
	Operators
	Arithmetic Operators
	Operator Order
	Sample Programs
	Programming With Style
	Review
	What's Next?

	Chapter 7 - Introduction to Methods
	Creating a Method
	Invoking a Method
	Defining a Method
	Designing with Methods
	Taking Part in Your Applet's Life-Cycle
	Sample Programs
	Review
	What's Next?

	Chapter 8 - Controlling Your Program's Flow
	Boolean Values
	Flow Control
	Expressions
	Comparative Operators
	Logical Operators
	Compound Expressions
	Statements
	Curly Braces Revisited
	Where to Place the Semicolon
	The Loneliest Statement
	The while Statement
	The for Statement
	The do Statement
	The switch Statement
	break Statements in Other Loops
	Sample Programs
	Review
	What's Next?

	Chapter 9 - Objects
	The Purpose of Objects
	How to Create Objects
	Instance Variables
	Instance Methods
	Sample Programs
	Class Variables and Methods
	Sample Programs
	Review
	What's Next?

	Chapter 10 - Java's Classes and Inheritance
	What is Inheritance?
	When to Use Inheritance
	Advanced Inheritance Topics
	Packages
	Sample Programs
	Review
	What's Next?

	Chapter 11 - Creating a User Interface
	Drawing
	Java's User Interface Elements
	Arranging User Interface Elements
	Events
	Sample Programs
	Review
	What's Next?

	Chapter 12 - Working With Data
	Integer Data
	Floating Point Data
	Character Data
	Objects
	Strings
	The Integer and Floating Point Classes
	Handling Exceptions
	Arrays
	Vectors
	Sample Programs
	Review
	What's Next?

	Chapter 13 - Advanced Topics
	Applet Parameters
	Method Overloading
	Constructors
	Constants
	Throwing Exceptions
	Sample Programs
	Review
	What's Next?

	Chapter 14 - Stand-Alone Applications
	What Is a Stand-Alone Application?
	Differences Between Applications and Applets
	Sample Programs
	Review
	What's Next?

	Chapter 15 - Where Do You Go From Here?
	Learn About Interfaces
	Define Your Own Packages
	Learn About Threads
	Learn How Java Works on the Inside
	Explore Java's Packages
	Study Other Resources
	Sample Programs
	Review
	What's Next?

	Appendix A - Glossary
	Appendix B - Source Code
	Appendix C - Java Syntax Summary
	Appendix D - About CodeWarrior...
	Appendix E - Exercises
	Appendix F - Solutions to the Exercises
	Appendix G - Additional Resources
	Web Resources
	Internet Resources
	Books

